skip to main content
research-article
Open Access

Toward seamless human-robot handovers

Published:27 February 2013Publication History
Skip Abstract Section

Abstract

A handover is a complex collaboration, where actors coordinate in time and space to transfer control of an object. This coordination comprises two processes: the physical process of moving to get close enough to transfer the object, and the cognitive process of exchanging information to guide the transfer. Despite this complexity, we humans are capable of performing handovers seamlessly in a wide variety of situations, even when unexpected. This suggests a common procedure that guides all handover interactions. Our goal is to codify that procedure.

To that end, we first study how people hand over objects to each other in order to understand their coordination process and the signals and cues that they use and observe with their partners. Based on these studies, we propose a coordination structure for human-robot handovers that considers the physical and social-cognitive aspects of the interaction separately. This handover structure describes how people approach, reach out their hands, and transfer objects while simultaneously coordinating the what, when, and where of handovers: to agree that the handover will happen (and with what object), to establish the timing of the handover, and to decide the configuration at which the handover will occur. We experimentally evaluate human-robot handover behaviors that exploit this structure and offer design implications for seamless human-robot handover interactions.

References

  1. Agah, A., & Tanie, K. (1997). Human interaction with a service robot: Mobile-manipulator handing over an object to a human. In Robotics and automation (pp. 575--580).Google ScholarGoogle Scholar
  2. Aleotti, J., Micelli, V., & Caselli, S. (2012). Comfortable robot to human object hand-over. In Robot and human interactive communication (pp. 771--776).Google ScholarGoogle Scholar
  3. Basili, P., Huber, M., Brandt, T., Hirche, S., & Glasauer, S. (2009). Investigating human-human approach and hand-over. In Human centered robot systems: Cognition, interaction, technology (Vol. 6, pp. 151--160). Berlin, Heidelberg: Springer.Google ScholarGoogle Scholar
  4. Becchio, C., Sartori, L., & Castiello, U. (2010). Toward you: The social side of actions. Current Directions in Psychological Science, 19(3), 183--188Google ScholarGoogle ScholarCross RefCross Ref
  5. Cakmak, M., Srinivasa, S., Lee, M. K., Forlizzi, J., & Kiesler, S. (2011). Human preferences for robot-human hand-over configurations. In Intelligent robots and system (pp. 1986--1993).Google ScholarGoogle Scholar
  6. Cakmak, M., Srinivasa, S., Lee, M. K., Kiesler, S., & Forlizzi, J. (2011). Using spatial and temporal contrast for fluent robot-human hand-overs. In Human-robot interaction (pp. 489--496). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Castiello, U. (2003). Understanding other people's actions: Intention and attention. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 416--430.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chakraborty, B. (2007). Feature selection and classification techniques for multivariate time series. Innovative Computing, Information and Control, 42 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chan, W. P., Parker, C. A., Loos, H. M. Van der, & Croft, E. A. (2012). Grip forces and load forces in handovers: implications for designing human-robot handover controllers. In Human-robot interaction (pp. 9--16). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Clark, H. H. (1996). Using language. Cambridge University Press.Google ScholarGoogle Scholar
  11. Edsinger, A., & Kemp, C. (2007). Human-robot interaction for cooperative manipulation: Handing objects to one another. In Robot and human interactive communication (pp. 1167--1172).Google ScholarGoogle Scholar
  12. Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688--1703.Google ScholarGoogle ScholarCross RefCross Ref
  13. Glasauer, S., Huber, M., Basili, P., Knoll, A., & Brandt, T. (2010). Interacting in time and space: Investigating human-human and human-robot joint action. In Robot and human interactive communication (pp. 252--257).Google ScholarGoogle Scholar
  14. Goffman, E. (1959). The presentation of self in everyday life. Garden City, N.Y.: Doubleday.Google ScholarGoogle Scholar
  15. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157--1182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hoffman, G., & Breazeal, C. (2007). Cost-based anticipatory action selection for human-robot fluency. In Robotics (Vol. 23, pp. 952--961). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Huber, M., Radrich, H., Wendt, C., Rickert, M., Knoll, A., Brandt, T., et al. (2009). Evaluation of a novel biologically inspired trajectory generator in human-robot interaction. In Robot and human interactive communication (pp. 639--644).Google ScholarGoogle Scholar
  18. Huber, M., Rickert, M., Knoll, A., Brandt, T., & Glasauer, S. (2008). Human-robot interaction in handing-over tasks. In Robot and human interactive communication (pp. 107--112).Google ScholarGoogle Scholar
  19. Kajikawa, S., & Ishikawa, E. (2000). Trajectory planning for hand-over between human and robot. In Robot and human interactive communication (pp. 281--287).Google ScholarGoogle Scholar
  20. Kajikawa, S., Okino, T., Ohba, K., & Inooka, H. (1995). Motion planning for hand-over between human and robot. In Intelligent robots and systems (pp. 193--199). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kim, J., Park, J., Hwang, Y. K., & Lee, M. (2004). Advanced Grasp Planning for Handover Operation Between Human and Robot: Three Handover Methods in Esteem Etiquettes Using Dual Arms and Hands of Home-Service Robot. In Autonomous robots and agents (pp. 34--39).Google ScholarGoogle Scholar
  22. Koay, K., Sisbot, E., Syrdal, D., Walters, M., Dautenhahn, K., & Alami, R. (2007). Exploratory study of a robot approaching a person in the context of handing over an object. In Multidisciplinary collaboration for socially assistive robotics (pp. 18--24).Google ScholarGoogle Scholar
  23. Lee, M. K., Forlizzi, J., Kiesler, S., Cakmak, M., & Srinivasa, S. (2011). Predictability or adaptivity? Designing robot handoffs modeled from trained dogs and people. In Human-robot interaction (pp. 179--180). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lopez-Damian, E., Sidobre, D., DeLaTour, S., & Alami, R. (2006). Grasp planning for interactive object manipulation. In Robotics and automation.Google ScholarGoogle Scholar
  25. Mainprice, J., Gharbi, M., Simeon, T., & Alami, R. (2012). Sharing effort in planning human-robot handover tasks. In Robot and human interactive communication (pp. 764--770).Google ScholarGoogle Scholar
  26. Micelli, V., Strabala, K. W., & Srinivasa, S. (2011). Perception and control challenges for effective human-robot handoffs. In Robotics: Science and systems workshop on rgb-d cameras.Google ScholarGoogle Scholar
  27. Mitchell, T. (1997). Machine learning. McGraw-Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mumm, J., & Mutlu, B. (2011). Human-robot proxemics: physical and psychological distancing in human-robot interaction. In Human-robot interaction (pp. 331--338). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mutlu, B., Yamaoka, F., Kanda, T., Ishiguro, H., & Hagita, N. (2009). Nonverbal leakage in robots: communication of intentions through seemingly unintentional behavior. In Human-robot interaction (pp. 69--76). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nagata, K., Oosaki, Y., Kakikura, M., & Tsukune, H. (1998). Delivery by hand between human and robot based on fingertip force-torque information. In Intelligent robots and systems (Vol. 2, pp. 750--757).Google ScholarGoogle Scholar
  31. Pandey, A. K., Ali, M., Warnier, M., & Alami, R. (2011). Towards multi-state visuo-spatial reasoning based proactive human-robot interaction. In Advanced robotics (pp. 143--149).Google ScholarGoogle Scholar
  32. Sadigh, M., & Ahmadi, H. (2009). Safe grasping with multi-link fingers based on force sensing. In Robotics and biomimetics (pp. 1796--1802). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Satake, S., Kanda, T., Glas, D., Imai, M., Ishiguro, H., & Hagita, N. (2009). How to approach humans? Strategies for social robots to initiate interaction. In Human-robot interaction (pp. 109--116). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70--76Google ScholarGoogle ScholarCross RefCross Ref
  35. Shibata, S., Tanaka, K., & Shimizu, A. (1995). Experimental analysis of handing over. In Robot and human communication (pp. 53--58).Google ScholarGoogle Scholar
  36. Sisbot, E., & Alami, R. (2012). A human-aware manipulation planner. In Robotics (pp. 1--13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sisbot, E., Alami, R., Simeon, T., Dautenhahn, K., Walters, M., & Woods, S. (2005). Navigation in the presence of humans. In Humanoid robots (pp. 181--188).Google ScholarGoogle Scholar
  38. Srinivasa, S. S., Berenson, D., Cakmak, M., Collet, A., Dogar, M. R., Dragan, A. D., et al. (2012). HERB 2.0: Lessons Learned From Developing a Mobile Manipulator for the Home. In Proceedings of the IEEE (Vol. 100, pp. 2410--2428).Google ScholarGoogle ScholarCross RefCross Ref
  39. Strabala, K., Lee, M. K., Dragan, A., Forlizzi, J., & Srinivasa, S. (2012). Learning the communication of intent prior to physical collaboration. In Robot and human interactive communication (pp. 968--973).Google ScholarGoogle Scholar
  40. Takayama, L., & Pantofaru, C. (2009). Influences on proxemic behaviors in human-robot interaction. In Intelligent robots and systems (pp. 5495--5502). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Toward seamless human-robot handovers
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader