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Abstract 

The threat posed by false base stations remains pertinent across the 4G, 5G, and forthcoming 6G 

generations of mobile communication. In response, this paper introduces a real-time detection 

method for false base stations employing two approaches: machine learning and specification-based. 

Utilizing the UERANSIM open 5G RAN (Radio-Access Network) test platform, we assess the 

feasibility and practicality of applying these techniques within a 5G network environment. 

Emulating real-world 5G conditions, we implement a functional split in the 5G base station and 

deploy the False Base Station Detection Function (FDF) as a 5G NF (Network Function) within the 

CU (Central Unit). This setup enables real-time detection seamlessly integrated into the network. 

Experimental results indicate that specification-based detection outperforms machine learning, 

achieving a detection accuracy of 99.6% compared to 96.75% for the highest-performing machine 

learning model XGBoost. Furthermore, specification-based detection demonstrates superior 

efficiency, with CPU usage of 1.2% and memory usage of 16.12MB, compared to 1.6% CPU usage 

and 182.4MB memory usage for machine learning on average. Consequently, the implementation 

of specification-based detection using the proposed method emerges as the most effective technique 

in the 5G environment. 

Keywords: 5G, False Base Station, Network Function, Security, Abnormal Behavior Detection. 

1 Introduction 

5G (5G, Fifth generation technology standard) is a fifth-generation mobile communication network 

based on the official designation IMT-2020 (International Mobile Telecommunications-2020), 

significantly improving bandwidth, latency, terminal connection capacity, and other aspects compared 

to previous generations, enabling services that were previously impossible (Fruhlinger et al., 2023; Yan 
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2010). Through these advancements, 5G networks, coupled with state-of-the-art terminal and sensor 

technologies, as well as AI (Artificial Intelligence) and Machine Learning technologies, are driving 

innovation and advancement in various fields such as smart cities, smart factories, smart grids, and 

autonomous vehicles, contributing to the establishment of future-generation mobile communication-

based industrial infrastructure. However, despite these developments, threats persist. One of the 

continuously mentioned threats is the false base station attack. Malicious actors deploy false base 

stations by impersonating legitimate base stations, allowing them to steal important resources such as 

user's personal information or exhaust resources through DoS attacks (Khan et al., 2022). The primary 

objective of threats originating from false base stations is often to compromise user availability. 

Therefore, ongoing research efforts to mitigate the aforementioned threats are essential to ensure users 

receive the highest quality of service. In this paper, we aim to validate the feasibility of addressing false 

base stations based on abnormal behavior detection by implementing machine learning-based detection 

and rule-based specification of false base station attack detection techniques in the form of NF, using 

real-time RSRP (Received Signal Reference Power) values received through UERANSIM. Ultimately, 

this ensures the reliability and sustainability of services provided in the 5G environment. 

2 Background and Security Threats 

1) 5G System Architecture 

The structure of the 5G system is as depicted in Figure 1. The composition of the 5G service network 

consists of UE (User Equipment), NG-RAN (New Generation – Radio Access Network), and the core 

network responsible for service connection control and UE authentication. Here, UE refers to user 

terminals, which connect to the RAN via the wireless interface (Air-Interface). The RAN provides the 

wireless interface to UE, allocates wireless resources, and controls UE mobility (Abdullah 2020). The 

core network is comprised of multiple NFs and connects UE to the data network through the UPF (User 

Plane Function), which handles the user plane (Manipriya et al., 2020). 

 

Figure 1: 5G System Architecture 
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The 5G system provides services based on the interaction of NFs. Basic NFs were defined in 3GPP 

Release 15, with additional NFs such as SCP (Service Communication Proxy) and NSSAAF (Network 

Slice Specific Authentication and Authorization Function) defined in Release 16, and further NFs like 

EASDF (Edge Application. Server Discovery Function) and NSACF (Network Slice Admission Control 

Function) defined in Release 17 (Krisztian et al., 2024). 

Compared to the previous 4G, the 5G system undergoes structural changes due to the broadening of 

RAN bandwidth, core separation, and unit reassignment. The broadening of RAN bandwidth allows for 

the utilization of higher bandwidth due to wider frequency bands (Panek et al., 2022). In terms of core 

separation and unit reassignment, 5G employs server virtualization based on MEC (Multiple-Access 

Edge Computing), distinguishing it from previous generations. This allows for forward deployment of 

the core to provide user data services from locations close to the user. UP (User Plane) is deployed 

forward, while CP (Control-Plane) is positioned at the core site, facilitating core separation and forward 

deployment. 

2) Service Based Architecture 

As an innovative architecture in 5G, SBA (Service-Based Architecture) has been introduced (Brown 

2017). In 5G SBA, each network device is software-defined into NFs, and through the SBI (Service-

Based Interface) based on SDN (Software Defined Networking) and NFV (Network Function 

Virtualization), they are organically interconnected (Shin 2022; Shin 2019). With the introduction of 

SDN/NFV concepts, various NFs in the core network have been software-defined and can operate in a 

virtualized environment. This led to the definition of separate Peer to Peer interfaces required for adding 

NFs and entities in mobile communication systems (Rudolph et al., 2019). By adopting the SBA 

structure in the 5G system, each NF can provide independent and reusable services. While this structure 

may be less efficient for introducing new features quickly, with the transition to the 5G system, 

introducing the SBA structure to NFs handling the control plane allows each NF to serve as a service 

provider, offering specific services through a single SBI, thereby retaining independence and reusability 

advantages (Wanshi & Puneet 2023). 

In SBA, each NF exposes implemented services through the HTTP/2 protocol and REST method, 

provided via the SBI. This structure allows new NFs to easily access other NF functionalities once 

permission is granted, enabling efficient network management in virtualized and cloud environments. 

The SBI in SBA supports interaction between service providers and service users, implemented using 

JSON and the HTTP/2 protocol. Additionally, all 3GPP NFs communicate via Transport Layer Security 

(TLS) encrypted channels to ensure the security of the transport layer (Brown 2017). 

Currently, NFs handling the CP in the 5G structure are all based on the SBA structure, and in the  

5G-Advanced network structure based on 3GPP (3rd Generation Partnership Project) Release-18 

specifications, some event processing of the UPF is also planned to be expanded into the SBA structure 

(Wanshi & Puneet 2023). Figure 2 illustrates the 5G SBA structure, and Table 1 summarizes the 

innovations of the 5G SBA structure. 
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Figure 2: 5G Service Based Architecture Structure 

Table 1: 5G SBA structure innovation 

Flexible Structural features Common Core Structure 

Functional Split between UP and CP  

In addition to 3GPP access, non-3GPP access networks such as Wi-Fi can connect 

to the core NF with the same N1/N2 interface as the access network. 
Functional Split of AMF (Access and Mobility 

Management Function) and SMF (Session 

Management Function) 

Modularization of NEF (Network Exposure Functions) 

and NFs facilitates deployment of 5G cores in a 

variety of optional infrastructure environments 
An integrated authentication framework for authentication and access authorization 
is designed to provide integrated services for a variety of wired and wireless access 

technologies with a common core structure that is independent of access 

technology. 

Integration with MEC (Multi Access Edge 

Computing) and combination with IT applications 

Network slicing can be implemented 

3) Security Threats from False Base Station 

The NG-RAN, the wireless access network of 5G, plays a crucial role in determining the performance 

and service quality of mobile communication networks. 5G is associated with various security threats, 

among which false base station attacks stand out as one of the most threatening attacks that have 

persisted from previous generations. These attacks exploit the characteristics of terminals attempting to 

connect to base stations receiving stronger signals, enabling malicious activities such as IMSI 

(International Mobile Subscriber Identity) theft, DoS (Denial of Service), and Device Bidding Down. 

Among these, IMSI theft attacks, which pose a risk of personal information theft, persist as a threat 

despite 5G encrypting the standard subscriber unique identifier, SUPI (Subscription Permanent 

Identifier), and sending it in the form of SUCI (Subscription Concealed Identifier). Recently, a new 

attack technique called SUCI-Catcher has been introduced, further highlighting the ongoing threats 

(Chlosta et al., 2021). 

Additionally, in the 5G environment, attacks exist that compromise SON (Self-Organizing 

Networks), which support network self-configuration, optimization, and recovery. These attacks exploit 

the insufficient ability of UEs to distinguish between wireless signals transmitted by false base stations 
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and those from legitimate base stations, thereby disrupting SON functionality and providing malicious 

users with opportunities to manipulate UE location information. Furthermore, additional security threats 

associated with false base stations are outlined in Table 2 (3GPP 2023). 

Table 2: Security threats related to false base stations 
Type of Attacks Description 

Passive attack The false base station detects nearby radio signals and stores parameters and messages from nearby cells. 

Active attack 
An attack in which a false base station disguises itself as a normal base station and receives a handover mobility 

management procedure message from the user. 

Downgrade 

attack 
An attack that lowers the quality of use by downgrading the user’s device to a previous generation network. 

location-tracking 

attack 

An attack that tracks the detailed location of a user within the range of a false base station based on the collected user 

information. 

Injection attack An attack in which an attacker inserts a random message into a user’s message. 

Information 

leakage 

An attack that collects IMSI when a user connects to a false base station by leveraging the user’s device’s ability to select 

stronger signals. 

Spoofing attack 
Since UEs that follow the LTE standard believe in the authenticity of messages received before EPS-AKA, it is possible 

for attackers to spoof information sent to the user. 

Relay attack 

The attacker uses a false base station and a malicious UE to induce the victim UE to connect and relays the 

communication by transmitting the message sent by the victim UE to a distant normal base station through the malicious 

UE. 

3 Related Work 

To address the threat of false base stations, various methods utilizing physical information have been 

proposed as primary efforts for identification. Ali et al. proposed a method for detecting false base 

stations using UE's RF (Radio Frequency) fingerprinting of legitimate base stations (Ali & Fischer 

2019). Shin et al. proposed a whitelist detection approach utilizing the ANR (Automatic Neighbor 

Relation) procedure to verify the PCI (Physical Cell Identifier) values of legitimate base stations and 

detect PCI duplicates to prevent forgery of legitimate base station information (Shin et al., 2022). 

However, these studies lack experimental results in various scenarios, and their applicability in 5G 

systems is limited due to being simulated in previous-generation environments. 

P.K. Nakarmi et al. were the first to detect false base stations by applying machine learning 

techniques to RSRP values included in the MR (Measurement Report) in a 5G environment (Nakarmi 

et al., 2022). However, this method is limited to NSA (Non-Stand Alone) 5G environments and cannot 

address threats that may arise in current SA (Stand Alone) 5G networks. 

In response, Park introduced research on false base station detection applying machine learning and 

specification-based techniques in 2023 (Park 2023). However, previous studies have not reached the 

level of considering the feasibility of applying them in actual 5G network environments. Therefore, this 

paper implements real NFs in a UERANSIM environment similar to the 5G network environment and 

validates their feasibility. 

4 False Base Station Detection Function 

1) Overview 

The NF known as the FDF (False base station Detection Function) operates using the open-source 

program UERANSIM as a 5G RAN simulator. The conventional UERANSIM supports the NAS layer 

for communication between RRC and UE and AMF, but lacks support for wireless environment 

simulation, leading to the inability of UE to generate MRs and inadequate support for handovers 
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(Docomo 2016). To address these issues, a testbed is constructed using UERANSIM with functional 

separation as DU (Distributed Unit)-CU (Central Unit) applied in the 5G wireless environment to 

measure wireless signals from multiple base stations and collect data. The system architecture of 

UERANSIM with functional separation is illustrated in Figure 3. 

 
Figure 3: UERANSIM Architecture with Functional Split 

Communication within the UERANSIM architecture revolves around the interface between NG-RAN 

and the 5G core, while the connection between DU and CU is established via the F1 interface. Within 

NG-RAN, two interfaces, NG-U and NG-C, handle the user plane and control plane, respectively. The 

NG-C utilizes SCTP (Stream Control Transmission Protocol) for reliable message-based 

communication, and its multi-homing capability enables the management of multiple IP addresses 

(3GPP 2023). This structure plays a crucial role in 5G communication, enabling efficient and stable 

communication. 

2) System Model 

The FDF follows the basic structure of the 5G core network, known as SBA. Such third-party NFs can 

seamlessly operate with other NFs in 5G networks or beyond, enabling organic integration. They exist 

within serving networks like CU, monitoring the data transmitted from DU to CU in real-time and 

detecting data generated from false base stations using machine learning and specification-based 

detection techniques. In this process, the FDF analyzes the MRs it receives in real-time to identify data 

from false base stations. Machine learning techniques utilize trained models to validate the data, while 

specification-based detection identifies abnormal behavior according to predefined behavioral rules. The 

results are stored in the FDF's database, and the system model and operational process are depicted in 

Figure 4 and Figure 5, respectively. 
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Figure 4: FDF System Mode 

 

Figure 5: FDF Operation Flow Chart 

3) Operation Process 

The FDF processes real-time received data through interactions between DU, CU, and itself. This is 

illustrated in the sequence diagram shown in Figure 6, depicting the communication between DU and 

CU and the interaction with FDF. In this diagram, DU sends the ID of the currently connected UE to 

CU, which receives it and adds a Client_ID. Then, CU transmits messages related to data communication 

along with buffer, data length, and the stream using the SCTP protocol to CU. This process repeats 

iteratively through SCTP communication. Subsequently, CU generates MR, stores logs in its own 

database, and sends messages including MR with Client_ID and signal strength values, as well as 

RRC_Setup, Handover Procedure, UE Capability, etc., to FDF. Upon receiving this, FDF detects and 

processes abnormal messages through machine learning and specification-based detection, thus handling 

the real-time received data and detecting security threats. 
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Figure 6: FDF Sequence diagram 

Figure 7 illustrates the overall operational flow of FDF. It connects to a CU, collects real-time 

accumulated MR and other data, and mirrors received messages. Then, it preprocesses signal strength 

data accumulated in CU for detection through machine learning, preprocesses it into a form suitable for 

learning, and trains each model in advance. Subsequently, real-time input data is checked for abnormal 

patterns in MR transmitted by the terminal through the trained classification model. For detection 

through specification-based techniques, it analyzes data collected in real-time from CU, such as 

RRC_Setup, Handover, etc., using a state machine representing abnormal states, detects threats, and 

reports them as abnormal if suspicious behavior indicating false base stations is detected in the entire 

data at regular intervals. Through this process, FDF efficiently detects false base stations and mitigates 

security threats. 



A Study on the Implementation of a Network Function for           

Real-time False Base Station Detection for the Next Generation 

Mobile Communication Environment 

                                          Daehyeon Son et al. 

 

192 

 

Figure 7: FDF operating procedure 

4) Feature of FDF 

Based on the MR, RRC messages, Handover messages, and Capability messages received from CU, 

FDF performs machine learning and specification-based detection. It resides on the network along with 

CU and establishes organic communication with CU through the Nfdf service-based interface. Through 

this, FDF offers various services for CU, and the end-to-end interaction between NF service consumers 

within the NF service framework occurs in a request/response manner, as shown in Figure 8. 

 

Figure 8: Nfdf Services “Response-Requests” 

In this setup, NF service consumers can discover FDF and request false base station detection 

analysis services, thus receiving analyzed information. Communication in the request/response 

mechanism takes place between the two NFs in a 1:1 manner, with one-time responses being provided. 

The designed Nfdf interface, depicted in Figure 9, includes the Nfdf_FbsDetection service, which 

provides information regarding false base station detection. For this purpose, it analyzes the data 

received from CU through MsgAnalyticsInfo and exchanges information in a request/response manner. 

The request includes information such as MachineLearningDetection, RrcSetupDetection, 

HandoverDetection, CapabilityDetection. 
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Figure 9: Description of the services provided by the Nfdf interface 

5 Experiment and Implementation Results 

1) Experiment Environment 

The experiment detects false base station attacks using machine learning and specification-based 

techniques. For machine learning, six supervised learning algorithms (SVM, KNN, Decision Tree, 

Gaussian NB, Random Forest, XGBoost) are employed to measure detection accuracy. The training data 

for supervised learning is categorized into normal and abnormal data, based on a dataset generated using 

the improved UERANSIM. Normal data is labeled as 0, while abnormal data is labeled as 1. The 

experiments are conducted in Python using Scikit-Learn and XGBoost libraries. Information contained 

in the MR transmitted from UE to base stations includes PCI and RSRP values of serving and 

neighboring cells. This data serves as the training dataset for machine learning detection methods, 

consisting of 9 base station PCIs and their corresponding RSRP values. Table 3 illustrates an example 

of the data included in MR. 

Table 3: Data Set Example 

PCI 1(S) 2 3 4 5 6 7 8 9 

RSRP 

67 60 54 73 61 54 60 57 54 

68 60 54 74 61 55 61 57 53 

66 60 54 75 62 55 60 58 52 

65 60 54 76 62 56 61 59 53 

66 60 54 77 62 54 62 58 52 

Machine learning requires essential training data, and the type and format of data required vary 

depending on the learning model being utilized. Hence, specialized data collection and preprocessing 

must be carried out for each specific environment. In contrast, specification-based detection identifies 

false base stations based on predefined rules. This method relies on human-made behavioral rules to 

achieve accurate and reliable detection, providing faster and more lightweight benefits compared to 

machine learning. Figure 10 applies a security context to system requirements from the perspective of 

false base station detection agents based on 3GPP standard specifications (Park 2023; 3GPP 2023). 

Specification-based detection offers the advantage of effectively detecting new types of zero-day 

attacks and predefined attack patterns, even when false base stations exhibit patterns similar to normal 
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base stations. Thus, FDF can swiftly and effectively detect false base stations by collecting and 

preprocessing diverse data tailored to the environment. 

 

Figure 10: Workflow for deriving behavior rules for false base station detection 

2) Implementation Results 

The implementation results of real-time machine learning detection through FDF are shown in                

Figure 11. Using the pre-trained machine learning model, detection is performed based on the received 

data's signal strength values from the MRs transmitted in real-time by the CU. The output results include 

the predicted values of normal or abnormal detection and the probability that the predicted result is true. 

 

Figure 11: Workflow for deriving behavior rules for false base station detection 

To detect false base station-related attack types as suggested by 3GPP, in the case of specification-

based detection, false base station detection state machine is employed every minute, as shown in              

Figure 12, to detect abnormal behavior indicators ranging from 1 to 8. After detection is conducted for 

each abnormal behavior indicator, the results are outputted. In the case of specification-based false base 
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station detection, detection of abnormal behaviors ranging from 1 to 8 is carried out through a false base 

station detection state machine at intervals of 1 minute.  

 

Figure 12: Detection results of attack types related to false base stations 
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After detection for 1 minute, if the system detects normal behavior, the result is as shown in                

Figure 13. 

 

Figure 13: FDF Implementation - Results through Specification-Based Detection (Normal) 

If no report is received from the FDF at 1-minute intervals, it is considered abnormal behavior, and 

the detection result is outputted as abnormal behavior as shown in Figure 14. 

 

Figure 14: FDF Implementation - Results through Specification-Based Detection (Abnormal - ABI1) 

The FDF detects false base stations by analyzing the MRs transmitted from the base stations. In this 

process, the base station receives MRs from the terminals it serves, which should only contain PCIs 

corresponding to the neighbor cell list of the serving base station. If an MR contains PCIs that are not in 

the neighbor cell list of the serving base station, it is considered abnormal and detected by the FDF as 

shown in Figure 15. 

 

Figure 15: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI2) 

The FDF detects the presence of false base stations by monitoring the process of handover of mobile 

terminals to base stations that send stronger signals according to MR trigger conditions while in motion. 

In this scenario, if a terminal sends a handover request to a false base station, the handover request count 

increases. The increase in such request counts is considered abnormal in the presence of false base 

stations and is detected by the FDF, as illustrated in Figure 16. 

 

Figure 16: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI3) 

If the number of MR transmissions in the presence of false base stations exceeds a predetermined 

threshold per unit time, it can be considered abnormal and detected as such, as illustrated in Figure 17. 
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Figure 17: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI4) 

In the process of estimating the distance between base stations and terminals using the triangulation 

technique based on the RSRP values included in the MRs, it is possible to calculate the distances between 

each base station and terminal. This allows for the estimation of the terminal's position, and by using the 

estimated position along with the signal strength values of the serving cell, the distance to the serving 

cell can be calculated, thereby determining the coordinates of the two points. Consequently, by 

calculating the difference between the two position coordinates, the difference between the RSRP value 

and the estimated position can be obtained. If this difference exceeds a predefined threshold, it is 

considered abnormal and detected by the FDF, as illustrated in Figure 18. 

 

Figure 18: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI5) 

If an attacker is positioned in between and acting as a relay, it results in increased communication 

latency. Therefore, if this communication latency exceeds a threshold, as depicted in Figure 19, it is 

detected as abnormal. 

 

Figure 19: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI6) 

After the terminal is powered on, an RRC_setup_request message is sent to establish a connection 

with the base station. However, if an attacker exists, they can intercept this message and send it to the 

base station instead. The base station, upon receiving this message, may terminate the connection with 

the already connected legitimate terminal, leading to a denial-of-service attack. If such an attack is 

suspected, as it can affect multiple affected terminals, exceeding the threshold of RRC_setup_request 

message transmissions is considered abnormal and detected by the FDF, as shown in Figure 20. 
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Figure 20: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI7) 

Detecting abnormal behavior related to UE Capability messages is crucial. UE Capability 

Information messages can be transmitted before AS (Access Stratum) security is activated. However, if 

these messages are tampered with through a man-in-the-middle attack, it may degrade the quality of 

service experienced by users. Therefore, if the number of transmissions of Capability messages with a 

level lower than the average Capability Level sent by the UE exceeds a threshold, it is considered 

abnormal and detected by the FDF, as depicted in Figure 21. 

 

Figure 21: FDF Implementation - Results through Specification-Based Detection (Abnormal – ABI8) 

3) Implementation Results 

In this section, we compare and evaluate the performance of machine learning techniques and 

specification-based methods used to detect false base stations. As depicted in Figure 22, the false base 

station detection method based on specification outperforms other machine learning algorithms in terms 

of accuracy. Furthermore, as shown in Figure 23, the efficiency aspect, including CPU usage, memory 

usage, and network latency, also demonstrates the superiority of specification-based methods. 

Additionally, we verify that the specification-based method effectively detects complex attack types 

outlined in the 3GPP technical documents addressing critical security issues in 5G environments, as 

illustrated in Figure 12. This underscores the significance of employing specification-based techniques 

for false base station detection, expecting them to play a crucial role in mitigating threats from false base 

stations in future-generation network environments. 

 

Figure 22: Comparison of detection accuracy performance by hour 
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Figure 23: Comparison of Machine Learning and Specification-Based false base station memory usage 

& processing time 

6 Conclusion 

With the advancement of mobile communication networks, new types of threats continue to emerge, and 

solutions to address them are being continuously researched. One of the prominent threats in 5G 

networks is the proliferation of false base station attacks, where malicious actors disguise them selves 

as legitimate base stations to collect user information or conduct denial-of-service attacks. In response 

to these false base station threats, this study implemented FDF, a false base station detection system in 

the form of an NF. FDF was implemented based on the SBI following the SBA for seamless 

communication with the CU. The feasibility of applying FDF in real 5G environments was validated 

through simulations using the 5G RAN test platform UERANSIM, which incorporates functional 

separation and handover capabilities. 

FDF utilizes both machine learning and specification-based detection techniques to analyze incoming 

MRs in real-time and detect abnormal behavior. Experimental results comparing the accuracy of the two 

implemented techniques revealed that while the XGBoost machine learning algorithm exhibited the 

highest accuracy at 96.75%, the accuracy of the specification-based false base station detection 

technique was superior at 99.6%. Efficiency measurements indicated that the CPU usage was on average 

1.6% for machine learning and 1.2% for specification-based detection, while memory usage was 

182.4MB for machine learning and 16.12MB for specification-based detection. Overall, specification-

based false base station detection demonstrated superior performance. Additionally, when comparing 

the processing times of machine learning and specification-based techniques within FDF, it was evident 

that specification-based detection achieved significantly lower processing times. 

While specification-based detection proved superior, combating highly sophisticated, unknown 

attacks beyond specifications necessitates the combined application of machine learning and deep 

learning techniques for detection. 

Traditional intrusion detection systems like firewalls operate independently and are not seamlessly 

integrated with 5G networks. Therefore, implementing NFs like FDF and invoking them through 

interfaces enable organic integration with serving networks such as CU, facilitating real-time detection 

by receiving CU data, thus offering speed advantages. 
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In conclusion, while specification-based detection techniques excel, to effectively counter advanced, 

unknown attacks beyond specifications, it is desirable to apply a combination of machine learning and 

deep learning techniques for detection. 
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