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Abstract: We consider nonparametric estimation of the covariance function for

dense functional data using computationally efficient tensor product B-splines. We

develop both local and global asymptotic distributions for the proposed estimator,

and show that our estimator is as efficient as an “oracle” estimator where the true

mean function is known. Simultaneous confidence envelopes are developed based

on asymptotic theory to quantify the variability in the covariance estimator and to

make global inferences on the true covariance. Monte Carlo simulation experiments

provide strong evidence that corroborates the asymptotic theory. Examples of near

infrared spectroscopy data and speech recognition data are provided to illustrate

the proposed method.
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1. Introduction

Covariance estimation is crucial in both functional and longitudinal data

analysis. For longitudinal data, a good estimation of the covariance function

improves the estimation efficiency of the mean parameters (Wang, Carroll and

Lin (2005); Fan, Huang and Li (2007)). In functional data analysis (Ramsay

and Silverman (2005)), covariance estimation plays a critical role in functional

principal component analysis (James, Hastie and Sugar (2000); Zhao, Marron and

Wells (2004); Yao, Müller and Wang (2005b); Hall, Müller and Wang (2006);

Yao and Lee (2006); Zhou, Huang and Carroll (2008); Li and Hsing (2010b)),

functional generalized linear models (Cai and Hall (2005); Yao, Müller and Wang

(2005a); Li, Wang and Carroll (2010)), and other functional nonlinear models

(Ramsay and Silverman (2005); Li and Hsing (2010a)). Other related work on

functional data analysis includes Bigot et al. (2010), Ferraty and Vieu (2006)

and Morris and Carroll (2006).

There are some important recent works on nonparametric covariance

estimation in functional data that are mostly based on kernel smoothing, for
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example Yao, Müller and Wang (2005b), Hall, Müller and Wang (2006) and Li
and Hsing (2010b). So far, existing work has concentrated on estimation and the
corresponding asymptotic convergence rate. There is no theoretical or method-
ological development for inference procedures on the covariance functions, such
as simultaneous or uniform confidence envelopes. Nonparametric simultaneous
confidence regions are powerful tools for making global inference on functions;
see Härdle and Marron (1991), Claeskens and Van Keilegom (2003), Zhao and
Wu (2008), Ma, Yang and Carroll (2012), Wang et al. (2014) and Zheng, Yang
and Härdle (2014) for related theory and applications.

In this paper, we consider a typical functional data setting where the func-
tions are recorded on a dense regular grid in an interval X and the measurements
are contaminated with measurement errors. Some recent applications of this type
of functional data include near infrared spectra (Li and Hsing (2010b)), recorded
speeches for voice recognition (Hastie, Buja and Tibshirani (1995)), electroen-
cephalogram (EEG) data (Crainiceanua, Staicu and Di (2009)). We propose to
estimate the covariance function by tensor product B-splines. We show that the
estimation error in the mean function is asymptotically negligible in estimating
the covariance function, and thus our covariance estimator is as efficient as an
“oracle” estimator where the true mean function is known. We derive both local
and global asymptotic distribution for the proposed spline covariance estimator.
Especially, based on the asymptotic distribution of the maximum deviation of
the estimator, we propose a new simultaneous confidence envelope for the co-
variance function that can be used to quantify and visualize the variability of
the covariance estimator and to make global inferences on the shape of the true
covariance.

We apply the proposed confidence envelope method to a Tecator near in-
frared spectra data set to test the hypothesis that the covariance is stationary. In
a speech recognition application, the classic functional linear discriminant analy-
sis (Hastie, Buja and Tibshirani (1995); James and Hastie (2001)) assumes that
the random curves from different classes share a common covariance function. We
further extend our confidence envelope method to a two-sample problem, where
one can test whether the covariance functions from two groups are different.

We organize our paper as follows. In Section 2 we describe the data structure
and the proposed spline covariance estimator. In Section 3, we study the local
and global asymptotic properties of the proposed estimator. Based on the theory,
we propose a new confidence envelope approach and extend the method to two-
sample hypothesis testing problems. More details of the proposed confidence
envelopes are provided in Section 4. We present simulation studies in Section 5
and applications to the Tecator infrared spectroscopy and the speech recognition
data set in Sections 6. Some concluding remarks are provided in Section 7. Proofs
are provided in the Appendix and in the supplementary material.
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2. Spline Covariance Estimation

2.1. Data structure and model assumptions

Following Ramsay and Silverman (2005), the data we consider are a collection

of trajectories {ηi(x)}ni=1 which are i.i.d. realizations of a smooth random func-

tion η(x), defined on a continuous interval X . Assume that {η(x), x ∈ X} satisfies
E
∫
X η

2(x)dx < +∞, and let m(x) = E{η(x)} and G (x, x′) = Cov {η(x), η(x′)}.
The covariance function is a symmetric nonnegative-definite function with spec-

tral decomposition, G (x, x′) =
∑∞

k=1 λkψk(x)ψk (x
′), where λ1 ≥ λ2 ≥ · · · ≥ 0,∑∞

k=1 λk < +∞, are the eigenvalues, and {ψk(x)}∞k=1 are the corresponding

eigenfunctions, a set of orthonormal functions in L2 (X ). By the Karhunen-Loève

representation, ηi(x) = m(x) +
∑∞

k=1 ξikϕk(x), where the random coefficients ξik
are uncorrelated with mean 0 and variance 1, and the rescaled eigenfunctions

ϕk =
√
λkψk converge to 0 in L2 (X ).

Without loss of generality, we take X = [0, 1]. Then the observed data are

Yij = ηi (Xij) + σ (Xij) εij , for 1 ≤ i ≤ n, 1 ≤ j ≤ N , εij are i.i.d. random

errors with E (ε11) = 0, E(ε211) = 1, and σ2(x) is the variance function of the

measurement errors. We take Xij = j/N as there is an abundance of interesting

functional data sets of such form, see Section 6. The case of randomly observed

Xij requires further investigation.

By the Karhunen-Loève representation, the observed data can be written as

Yij = m

(
j

N

)
+

∑∞

k=1
ξikϕk

(
j

N

)
+ σ

(
j

N

)
εij .

We model functions m(·) and G(·, ·) nonparametrically, and hence {λk}∞k=1,

{ϕk(·)}∞k=1, and {ξik}∞k=1 are unknown and need to be estimated.

2.2. Spline covariance estimator

Many smoothing tools can be used to estimate the covariance function: ker-

nel methods (Yao, Müller and Wang (2005a)), regression B-splines, penalized

splines (Crainiceanua, Staicu and Di (2009)). Asymptotically, these estimators

are similar, and users can choose their favorite smoother. Here, we consider the

regression B-spline approach because of its good approximation properties and

its computational convenience. See Huang and Yang (2004) for discussion of the

computational merits of regression splines.

We review some basic facts on spline functions. Consider the equally-spaced

points {tJ}Ns
J=1 as interior knots dividing the interval [0, 1] into (Ns+1) subinter-

vals IJ = [tJ , tJ+1), J = 0, . . . , Ns− 1, INs = [tNs , 1]. Let hs = 1/ (Ns + 1) be the

distance between neighboring knots. LetH(p−2) = H(p−2) [0, 1] be the polynomial

spline space of order p, consisting of all p − 2 times continuously differentiable
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functions on [0, 1] that are polynomials of degree p− 1 on each subinterval. The

J th B-spline of order p is denoted by BJ,p as in de Boor (2001). We define the

tensor product spline space as

H(p−2) ⊗H(p−2) =
{ Ns∑

J,J ′=1−p

bJJ ′pBJ,p (x)BJ ′,p

(
x′
)
, bJJ ′p ∈ R, x, x′ ∈ [0, 1]

}
.

If the mean function m(x) were known, one could compute the errors

Uij ≡ Yij −m

(
j

N

)
=

∞∑
k=1

ξikϕk

(
j

N

)
+ σ

(
j

N

)
εij ,

for 1 ≤ i ≤ n, 1 ≤ j ≤ N . If Ū·jj′ = n−1
∑n

i=1 UijUij′ , 1 ≤ j ̸= j′ ≤ N , one can

define the “oracle” estimator of the covariance function

G̃p2 (·, ·) = argmin
g(·,·)∈H(p2−2)⊗H(p2−2)

∑
1≤j ̸=j′≤N

{
Ū·jj′ − g

(
j

N
,
j′

N

)}2

, (2.1)

using tensor product splines of order p2 ≥ 2. A similar covariance estimator

was used by Cao, Yang and Todem (2012), without theoretical justification, to

construct confidence bands for the mean function. The diagonal terms Ū·jj are

biased estimations of the variance with the bias caused by the measurement errors

also referred to as the nugget effect. We remove the nugget effect from the oracle

estimator by excluding the j = j′ terms from the summation in (2.1). A similar

approach has been used in kernel smoothing methods, see Yao, Müller and Wang

(2005b), Hall, Müller and Wang (2006) and Li and Hsing (2010b).

Since m(x) is unknown, one can replace it with a spline estimator

m̂p1(·) = argmin
g(·)∈H(p1−2)

n∑
i=1

N∑
j=1

{
Yij − g

(
j

N

)}2

, p1 ≥ 1.

To mimic the above “oracle” smoother, we replace the errors Uij by their esti-

mates and take the spline covariance estimator for G(x, x′) to be

Ĝp1,p2(·, ·) = argmin
g(·,·)∈H(p2−2)⊗H(p2−2)

∑
1≤j ̸=j′≤N

{
ˆ̄U·jj′,p1 − g

(
j

N
,
j′

N

)}2

, (2.2)

where ˆ̄U·jj′,p1 = n−1
∑n

i=1 Ûijp1Ûij′p1 with Ûijp1 = Yij − m̂p1 (j/N).

Let Ns1 be the number of interior knots for mean estimation, and Ns2 be

the number of interior knots for Ĝp1,p2(x, x
′) in each coordinate. Thus, we

have N2
s2 interior knots for the tensor product spline space H(p2−2) ⊗ H(p2−2).
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For simplicity, write the tensor product spline basis function as BJJ ′,p2 (x, x
′) =

BJ,p2(x)BJ ′,p2(x
′) and in its matrix format,

Bp2

(
x, x′

)
=

(
B1−p2,1−p2,p2

(
x, x′

)
, . . . , BNs2 ,1−p2,p2

(
x, x′

)
,

. . . , B1−p2,Ns2 ,p2

(
x, x′

)
, . . . , BNs2 ,Ns2 ,p2

(
x, x′

))T
.

Then Ĝp1,p2(x, x
′) at (2.2) can be rewritten as

Ĝp1,p2(x, x
′) ≡ β̂Tp1,p2Bp2

(
x, x′

)
, (2.3)

where β̂p1,p2 is the collector of the estimated spline coefficients after solving

β̂p1,p2 = argmin
bp2∈R

(Ns2+p2)
2

∑
1≤j ̸=j′≤N

{
ˆ̄U·jj′,p1 − bT

p2Bp2

(
j

N
,
j′

N

)}2

.

3. Asymptotic Theory and Simultaneous Confidence Envelopes

In this section, we establish the oracle property of the tensor product spline

estimator Ĝp1,p2 in the sense that spline estimator can be shown uniformly close

to the “oracle” smoother of covariance function. This asymptotic consistency of

the proposed estimator is given in Propositions 2, while Theorems 2 and 3 provide

simultaneous confidence envelopes for covariance functions and their two-sample

cases.

3.1. Assumptions and the oracle property

Write Cq,ν [0, 1] as the space of ν-Hölder continuous functions on [0, 1], ν ∈
(0, 1],

Cq,ν [0, 1] =
{
ϕ : ∥ϕ∥q,ν = sup

x ̸=x′,x,x′∈[0,1]

|ϕ(q)(x)− ϕ(q) (x′) |
|x− x′|ν

< +∞
}
.

We need technical assumptions.

(A1) The regression function m ∈ Cp1−1,1 [0, 1].

(A2) The standard deviation function σ (x) ∈ C0,ν [0, 1]. Also sup(x,x′)∈[0,1]2

G (x, x′) < C, for some positive constant C and minx∈[0,1]G (x, x) > 0.

(A3) The number of knots Ns1 and Ns2 satisfy n1/(4p1) ≪ Ns1 ≪ N , n1/(2p2)

≪ Ns2 ≪ min
(
N1/2, n1/3

)
and Ns2 ≪ Np1

s1 .

(A4) The rescaled eigenfunctions ϕk (x) ∈ Cp2−1,1 [0, 1] for any k ≥ 1 and∑∞
k=1

∥∥∥ϕ(p2−1)
k

∥∥∥
0,1

<∞.
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(A5) For any i, j and k ≥ 1, E |ξik|6+E |εij |4 < +∞ and the random coefficients

ξik are independent.

Assumptions (A1)−(A3) are standard in the spline smoothing literature;

see Huang (2003), for instance. In particular, (A1) guarantee the orders of the

bias terms of the spline smoothers for m(x). Assumption (A2) ensures that the

covariance function is a uniformly bounded function. Assumption (A3) implies

that the number of points on each curve N diverges to infinity as n → ∞,

a well-developed asymptotic scenario for dense functional data, see Theorem 3

of Hall, Müller and Wang (2006), Li and Hsing (2010b). This assumption is

practically relevant since curves or images measured using new technology are

usually of much higher resolution than the previous generation. The smoothness

of our estimator is controlled by the number of knots, which increases to infinity

as specified in (A3). This increasing knots asymptotic framework guarantees

the richness of the basis. Assumption (A4) concerns the bounded smoothness

of principal components for bounding the bias terms in the spline covariance

estimator and is satisfied by all the simulation examples in Section 5. Assumption

(A5) is necessary for applying the uniform martingale difference central limit

theorem.

To understand the behavior of the spline covariance estimator Ĝp1,p2 in (2.2),

we first study the asymptotic property of the “oracle” estimator G̃p2 in (2.1). Let

∆
(
x, x′

)
=

∞∑
k,k′=1

ϕk (x)ϕk′
(
x′
) (
ξ̄·kk′ − δkk′

)
, (3.1)

where ξ̄·kk′ = n−1
∑n

i=1 ξikξik′ and δkk′ = 1 for k = k′ and 0 otherwise.

Proposition 1. Under (A2)−(A5),

sup
(x,x′)∈[0,1]2

∣∣∣G̃p2(x, x
′)−G(x, x′)−∆

(
x, x′

)∣∣∣ = op

(
n−1/2

)
.

The proof is provided in the supplementary material. We have that the

difference between the tensor product spline estimator Ĝp1,p2 and the “oracle”

smoother is uniformly bounded at an op
(
n−1/2

)
rate; hence Ĝp1,p2 is as efficient

as the “oracle” estimator.

Proposition 2. Under (A1)−(A5),

sup
(x,x′)∈[0,1]2

∣∣∣Ĝp1,p2(x, x
′)− G̃p2(x, x

′)
∣∣∣ = op

(
n−1/2

)
.
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The proof is also in the supplementary material. By combining the results
in Propositions 1 and 2, we have

sup
(x,x′)∈[0,1]2

∣∣∣Ĝp1,p2(x, x
′)−G(x, x′)−∆

(
x, x′

)∣∣∣ = op

(
n−1/2

)
.

This result shows that the random field ∆(x, x′) is the leading term in the expan-
sion of Ĝp1,p2(x, x

′) −G(x, x′), and the remaining terms are uniformly bounded
at an op(n

−1/2) rate. To understand the asymptotic properties of Ĝp1,p2(x, x
′)

and build confidence envelopes for G(x, x′), we need only study the limiting dis-
tribution of ∆(x, x′).

3.2. Asymptotic confidence envelopes

Theorem 1. Under (A1)−(A5),

nE[Ĝp1,p2(x, x
′)−G(x, x′)]2 = V

(
x, x′

)
+ o(1),

where

V
(
x, x′

)
= G2

(
x, x′

)
+G (x, x)G

(
x′, x′

)
+

∞∑
k=1

ϕ2k (x)ϕ
2
k

(
x′
) (
Eξ41k − 3

)
. (3.2)

Remark 1. The existence of V (x, x′) in the infinite-dimensional case is guaran-
teed by Mercer’s Theorem and (A2),

sup
x,x′∈[0,1]

∞∑
k=1

ϕ2k (x)ϕ
2
k

(
x′
)
≤ C sup

x,x′∈[0,1]

∞∑
k=1

(
ϕ4k (x) + ϕ4k

(
x′
))

≤ C sup
x,x′∈[0,1]

(
G (x, x) +G

(
x′, x′

))
<∞.

We address the simultaneous envelopes for the covariance function G(x, x′).
Further discussion on how to evaluate V (x, x′) is in Section 4.

Theorem 2. Under (A1)−(A5), for any α ∈ (0, 1) and (x, x′) ∈ [0, 1]2

lim
n→∞

P
{

sup
(x,x′)∈[0,1]2

n1/2
∣∣∣Ĝp1,p2(x, x

′)−G(x, x′)
∣∣∣V −1/2

(
x, x′

)
≤ Q1−α

}
= 1− α,

where Q1−α is the 100 (1− α)th percentile of the absolute maxima distribution of
ζZ (x, x′)V −1/2 (x, x′), and ζZ (x, x′) is a gaussian random field with mean
EζZ (x, x′) = 0, variance Eζ2Z (x, x′) = V (x, x′), and covariance

Ω
(
x, x′, y, y′

)
= Cov

(
ζZ

(
x, x′

)
, ζZ

(
y, y′

))
=

∞∑
k ̸=k′

ϕ2k (x)ϕ
2
k′
(
x′
)
ϕ2k (y)ϕ

2
k′
(
y′
)

+
∞∑

k,k′=1

(
Eξ41k − 1

)
ϕ2k (x)ϕ

2
k′
(
x′
)
ϕ2k (y)ϕ

2
k′
(
y′
)

(3.3)
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for any (x, x′), (y, y′) ∈ [0, 1]2.

Remark 2. Although the proposed spline covariance estimator is not guaranteed
to be positive semi-definite, it tends to the true positive semi-definite covariance
function in probability.

Remark 3. Under (A1)−(A5), as n → ∞, an asymptotic 100 (1− α)% simul-
taneous confidence envelope for G(x, x′), ∀(x, x′) ∈ [0, 1]2 is

Ĝp1,p2(x, x
′)± n−1/2Q1−αV

1/2
(
x, x′

)
, (3.4)

while an asymptotic 100 (1− α)% pointwise confidence envelope for G(x, x′) is

Ĝp1,p2(x, x
′)± n−1/2Z1−α/2V

1/2
(
x, x′

)
, ∀(x, x′) ∈ [0, 1]2.

In practice, the percentile Q1−α and the variance function V (x, x′) need to
be estimated from the data. These issues are addressed in Section 4.

3.3. Extension to two-sample problems

In functional analysis of variance and linear discriminant analysis, it is com-
monly assumed that the covariance functions are the same across different treat-
ment groups. More recently, Delaigle and Hall (2012) strongly advocate linear
discriminant analysis for classification of functional data. One of their funda-
mental assumptions is that the random curves from different classes share a
common covariance function. It is therefore important to extend our method
to two-sample problems, and to construct confidence envelopes for the difference
between the covariances functions from two independent groups, similar to a two-
sample t-test. Applying the two-sample simultaneous confidence envelope, one
can test the common covariance function assumption with quantified uncertainty.

Suppose we have two independent groups of curves with sample sizes n1 and
n2, respectively. We denote the ratio of two sample sizes as r̂ = n1/n2 and assume

that limn1,n2→∞ r̂ = r > 0. Let Ĝ
(1)
p1,p2(x, x

′) and Ĝ
(2)
p1,p2(x, x

′) be the spline esti-
mates of covariance functions G(1)(x, x′) and G(2)(x, x′) by (2.2). Let ζ12 (x, x

′),
∀ (x, x′) ∈ [0, 1]2 be a Gaussian process such that Eζ12 (x, x

′) ≡ 0, Eζ212 (x, x
′) ≡

V1 (x, x
′)+ rV2 (x, x

′), and Cov (ζ12(x, x
′), ζ12(y, y

′)) = Ω1 (x, x
′, y, y′)+ rΩ2(x, x

′

, y, y′) for any x, x′, y, y′ ∈ [0, 1], where Ω1 (x, x
′, y, y′) and Ω2 (x, x

′, y, y′) are the
covariance functions for the two groups as defined in (3.3). Take Q12,1−α as the
(1− α)-th quantile of sup(x,x′)∈[0,1]2 ζ12(x, x

′) ×(V1(x, x
′) + rV2(x, x

′))−1/2.

Theorem 3. Under (A1)−(A5), modified for each group accordingly, for any
α ∈ (0, 1), as n1 → ∞, r̂ → r > 0,

P

{
sup

(x,x′)∈[0,1]2
n
1/2
1

∣∣∣Ĝ(1)
p1,p2(x, x

′)−Ĝ(2)
p1,p2(x, x

′)−G(1)(x, x′)+G(2)(x, x′)
∣∣∣

(V1 (x, x′) + rV2 (x, x′))
1/2

≤ Q12,1−α

}
= 1− α.
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Remark 4. Theorem 3 suggests that a 100(1 − α)% simultaneous confidence

envelope for G(1)(x, x′)−G(2)(x, x′) can be constructed as

Ĝ(1)
p1,p2(x, x

′)−Ĝ(2)
p1,p2(x, x

′)± n
−1/2
1 Q12,1−α

(
V1

(
x, x′

)
+ rV2

(
x, x′

))−1/2
(3.5)

for all (x, x′) ∈ [0, 1]2. One can use the confidence envelopes to test hypotheses

on G(1) (x, x′)−G(2) (x, x′). Confidence envelops are graphical tools that provide

more information than a test, providing a picture of where the functions differ

and what the difference looks like.

4. Implementation

In order to implement the confidence envelopes, there are a number of issues

that need to be addressed, including selecting the number of knots for spline

smoothing, estimating the error variance σ2(x), functional principal component

analysis, and estimating the variance function V (x, x′) and the percentile Q1−α.

4.1. Knot selection

The numbers of knots in spline smoothing are usually treated as unknown

tuning parameters, that affect the performance of the confidence envelopes in

data applications. Data-driven methods, such as the leave-one-curve-out cross

validation, can be used to select the numbers of knots. However, these methods

tend to be extremely time consuming for large data sets. We find empirical

formulas for setting the number of knots to work quite well in our numerical

studies. Given the data set (j/N, Yij)
N,n
j=1,i=1, the number of interior knots Ns1

for m̂p1(x) is taken to be [2n1/(4p1) log n], where [a] denotes the integer part

of a. The number of interior knots for the spline estimator Ĝp1,p2(x, x
′) is set

to Ns2 = [4n1/(2p2) log log n]. These choices of knots satisfy condition (A3) in

our theory. Similar empirical formulas were also used in Cao, Yang and Todem

(2012) to select the number of knots when constructing the confidence bands for

the mean functions.

4.2. Estimating the variance of the measurement error

Let σ2Y (x) = Var {Y (x)} = G(x, x) + σ2(x). As ˆ̄U·jj,p1 = (1/n)
∑n

i=1 Û
2
ijp1

are moment estimators of σ2Y (j/N), we can estimate σ2Y (x) by

σ̂2Y (x) = argmin
g(x)∈H(p1−2)

N∑
j=1

{
ˆ̄U·jj,p1 − g

(
j

N

)}2

.

We can then estimate σ2(x) by σ̂2(x) = σ̂2Y (x)− Ĝp1,p2(x, x). Similar estimators

of σ2(x) are given in Yao, Müller and Wang (2005a) and Li and Hsing (2010b)
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using kernel smoothing. Assuming σ2Y (x) is a smooth function that satisfies the

Hölder condition as for m(x), and that the knots for estimating σ2Y (x) satisfy

the same condition as for Ns1 in (A3), we can use the argument for Theorem 1

of Cao, Yang and Todem (2012) to show that supx |σ̂2Y (x)− σ2Y (x)| = Op(n
−1/2)

and hence supx |σ̂2(x) − σ2(x)| = Op(n
−1/2). In practice, the number of knots

for σ̂2Y (x) can be determined by cross-validation or the same empirical formula

as given in Section 4.1.

4.3. Functional principal component analysis

Estimates of the eigenfunctions and eigenvalues, ϕ̂k and λ̂k, are obtained by

solving the eigen-equation∫ 1

0
Ĝp1,p2(x, x

′)ϕ̂k (x) dx = λ̂kϕ̂k
(
x′
)
, (4.1)

where the ϕ̂k are subject to
∫ 1
0 ϕ̂

2
k (t) dt = λ̂k and

∫ 1
0 ϕ̂k (t) ϕ̂k′ (t) dt = 0 for

k′ < k. Our spline covariance estimator provides a continuous functional estimate

for G(x, x′); however, to solve the integral equation in principal components

decomposition, a common approach is to discretize Ĝp1,p2 and approximate the

integrals by Riemann sums (see Yao, Müller and Wang (2005a)). Since N is

sufficiently large, we estimate the eigenfunctions and eigenvalues by decomposing

the smoothed covariance matrix {Ĝp1,p2(j/N, j
′/N)}Nj,j′=1. In particular, (4.1)

can be approximated by

N−1
N∑
j=1

Ĝp1,p2

(
j

N
,
j′

N

)
ϕ̂k

(
j

N

)
= λ̂kϕ̂k

(
j′

N

)
.

The kth principal component score of the ith curve, which by definition is ξik =

λ−1
k

∫
{ηi(x)−m(x)}ϕk(x)dx, can be estimated by a numerical integration

ξ̂ik = N−1
N∑
j=1

λ̂−1
k

(
Yij − m̂p1

(
j

N

))
ϕ̂k

(
j

N

)
.

4.4. Estimating the variance function V (x, x′)

Further detailed calculation shows

V (x, x′) = M(x, x′)−G2(x, x′), (4.2)

where M(x, x′) = E{η2(x)η2(x′)}. A proof of (4.2) is provided in Section S4

in the supplementary material. Since the covariance function G(x, x′) is already

estimated by tensor product splines, we only need to estimate the function M.
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Notice that, for any j ̸= j′,

E(U2
1jU

2
1j′) = E{(η1j + σ(

j

N
)ε1j)

2(η1j′ + σ(
j′

N
)ε1j′)

2}

=M(
j

N
,
j′

N
)+G(

j

N
,
j

N
)σ2(

j′

N
)+G(

j′

N
,
j′

N
)σ2(

j

N
)+σ2(

j

N
)σ2(

j′

N
).

We can therefore construct a tensor product spline estimator for M(x, x′) that

is similar in spirit to Ĝ(x, x′). Let

M̂p1,p2(·, ·) = argmin
g(·,·)∈H(p2−2)⊗H(p2−2)

∑
1≤j ̸=j′≤N

{
w̄·jj′ − Ĝp1,p2(

j

N
,
j

N
)σ̂2(

j′

N
)

− Ĝp1,p2(
j′

N
,
j′

N
)σ̂2(

j

N
)− σ̂2(

j

N
)σ̂2(

j′

N
)− g

(
j

N
,
j′

N

)}2

,

with w̄·jj′ = (1/n)
∑n

i=1 Û
2
ijp1

Û2
ij′p1

. Then, we estimate V (x, x′) by

V̂p1,p2
(
x, x′

)
= M̂p1,p2(x, x

′)− Ĝ2
p1,p2(x, x

′).

Assuming σ2(x) and M(x, x′) are smooth functions that satisfy the

Hölder continuous conditions similar to m(x) and G(x, x′), we can show

supx,x′ |M̂p1,p2(x, x
′) −M(x, x′)| = Op(n

−1/2) using the argument for Theorem

2. This in turn leads to

sup
(x,x′)∈[0,1]2

|V̂p1,p2(x, x′)− V (x, x′)| = Op(n
−1/2).

The number of knots for M̂p1,p2(x, x
′) can be determined by cross-validation or

the empirical formula as given in Section 4.1.

4.5. Estimating the percentile Q1−α

To evaluate Q1−α, we need to simulate the Gaussian random field ζZ(x, x
′)

of Section 3.2. Let

ζ̂
(
x, x′

)
=

{ ∞∑
k ̸=k′

Zkk′ϕk (x)ϕk′
(
x′
)
+

∞∑
k=1

ϕk (x)ϕk
(
x′
)
Zk

(
Eξ41k−1

)1/2}
,

where Zkk′ = Zk′k and Zk are i.i.d. standard gaussian random variables. Hence,

ζ̂ (x, x′) is a Gaussian field such that Eζ̂ (x, x′) = 0, Eζ̂2 (x, x′) = V (x, x′),

and Cov {ζ̂ (x, x′) , ζ̂ (y, y′)} = Cov {ζZ (x, x′) , ζZ (y, y′)} for any (x, x′), (y, y′) ∈
[0, 1]2. In practice, we truncate the infinite expansion of ζ̂(x, x′) at a chosen

order κ, and replace ϕk’s by their estimators described in Section 4.3. The

number of principal component κ can be chosen using the Akaike information

criterion proposed by Li, Wang and Carroll (2013). For a small or moderate
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sample size, we find that the simple “fraction of variation explained” method

(Müller (2009)) is often satisfactory. For example, we can select the number of

eigenvalues that can explain 95% of the variation in the data. The fourth moment

of ξ1k is replaced by the empirical fourth moment of ξ̂ik. We simulate a large

number of independent realizations of ζ̂(x, x′), and take the maximal absolute

deviation for each copy of ζ̂(x, x′)V̂ −1/2(x, x′). Then Q1−α is estimated by the

empirical percentiles of these maximum values.

4.6. Additional implementation issues in the two sample problem

For the two-sample problem, we estimate the mean, covariance, and eigen-

functions for each group separately. The variance functions V̂1(x, x
′) and V̂2(x, x

′)

are estimated separately as in a one-sample problem. To evaluate Q12,1−α, we

need to simulate two random fields ζ̂1(x, x
′) and ζ̂2(x, x

′) separately, and esti-

mate Q12,1−α by the empirical percentile of sup(x,x′)∈[0,1]2 |ζ̂1(x, x′) − ζ̂2(x, x
′)|.

The confidence envelopes for G(1)(x, x′)−G(2)(x, x′) are constructed as described

in (3.5), substituting the unknown quantities with their estimates.

5. Simulation Studies

5.1. Simulation 1: coverage rate of the confidence envelopes

To illustrate the finite-sample performance of the proposed methods, we

generated data from the model

Yij = m

(
j

N

)
+

∞∑
k=1

ξikϕk

(
j

N

)
+ σεij , 1 ≤ j ≤ N, 1 ≤ i ≤ n, (5.1)

where ξik, εij ∼ N(0, 1) are independent variables. Letm(x) = sin{2π (x− 1/2)}
= sin (2πx), ϕk (x) =

√
λkψk (x), λk = (1/4)[k/2], ψ2k−1 (x) =

√
2 cos (2kπx),

ψ2k (x) =
√
2 sin (2kπx), k = 1, 2, . . .. Assumption (A4) is satisfied as

∑∞
k=1 ∥ϕk∥0,1

≤
√
2π

∑∞
k=1 (1/4)

[k/2]/2 k <∞. Since
∑1,000

k=1 λk/
∑∞

k=1 λk > 1−10−30, we trun-

cated the expansion in (5.1) at κ = 1,000.

To mimic the data examples in Section 6, we set the noise level to σ = 0.1

or 0.2 and the number of curves n to 200, 300, 500, 800 or 1,200. Different

noise levels represent different signal to noise level and for example, σ2 ≈ λ6
when σ = 0.1, 0.2. Under each sample size, the number of observations per curve

was N = 4[n0.3log(n)]. We present two estimation schemes: a) both mean and

covariance functions are estimated by linear splines, i.e., p1 = p2 = 2; b) both

estimated by cubic splines, p1 = p2 = 4. We use confidence levels 1 − α = 0.95

and 0.99 for our simultaneous confidence envelopes. To check the true coverage

rate of the proposed confidence envelopes, each simulation was repeated 1,000

times.
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Table 1. Simulation 1: uniform coverage rates from 1,000 replications.

σ n Nominal level
Linear Spline Cubic Spline
p1 = p2 = 2 p1 = p2 = 4

0.10

200
0.950
0.990

0.902
0.974

0.910
0.984

300
0.950
0.990

0.934
0.984

0.932
0.985

500
0.950
0.990

0.943
0.990

0.948
0.991

800
0.950
0.990

0.944
0.992

0.951
0.992

1, 200
0.950
0.990

0.952
0.993

0.956
0.995

0.20

200
0.950
0.990

0.910
0.971

0.914
0.979

300
0.950
0.990

0.926
0.987

0.922
0.987

500
0.950
0.990

0.936
0.988

0.945
0.989

800
0.950
0.990

0.938
0.991

0.952
0.994

1, 200
0.950
0.990

0.945
0.994

0.954
0.995

Table 1 shows the empirical frequency that the true surface G(x, x′) is en-

tirely covered by the confidence envelopes. At all noise levels, the true coverage

probability of the confidence envelopes grows closer to the nominal confidence

level as the sample size increases, a positive confirmation of Theorem 2. Since the

true covariance function is smooth in our simulation, the cubic spline estimator

provides better estimate of the covariance function. However, see Table 1, the

confidence envelopes based on two spline estimators behave similarly in terms

of coverage probability. We also tried such other estimation schemes as p1 = 4,

p2 = 2 and p1 = 2, p2 = 4, the coverage rates are not shown because they are

similar to the those presented in Table 1.

Figure 1 shows the true covariance and its 95% confidence envelopes based

on a cubic spline covariance estimator. The plot is based on a typical run under

the setting n = 200, N = 100, and σ = 0.1. Here, the true covariance function is

entirely covered by the upper and lower envelopes.

5.2. Simulation 2: power of the test based on the confidence envelopes

We conducted further simulation studies to evaluate the size and power of a

hypothesis test based on the proposed spline confidence envelopes. The hypothe-
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Figure 1. Plot of the true covariance function (middle surface) of the simu-
lated data and its 95% confidence envelopes (3.4) (upper and lower surfaces).
The plot is based on a typical simulation run when n = 200, N = 100, and
σ=0.02. The confidence envelopes are based on cubic splines, p1 = p2 = 4.

ses under study were:

H0 : G(x, x
′) = G0(x, x

′), v.s. Ha : G(x, x′) = G0(x, x
′) + δΛ(x, x′),

where G0(x, x
′) is the covariance function used in Simulation 1, and Λ(x, x′)

= 4 cos(6πx) × cos(6πx′). To check the size and power of the test, we generated
data under the alternative hypothesis for δ = 0, 0.3, 0.4 and 0.5. When δ = 0, the
null hypothesis is true and the data were generated exactly the same way as in
Simulation 1. Since

√
2 cos(6πx) is the third eigenfunction of G0, adding δΛ(x, x

′)
to G0(x, x

′) is equivalent to increasing λ5 to (1/4)[5/2]+2δ. Therefore, data under
the local alternative hypothesis specified above can be simulated similarly as in
Simulation 1. We took n = 200, 300, 500, 800, and 1,200, N = 4[n0.3log(n)],
and σ = 0.1.

Table 2 shows the empirical frequencies of rejecting H0 based on 1,000 sim-
ulation runs, with nominal test level equal to 0.05 and 0.01. When δ = 0, these
frequencies represent the size of the test; and when δ ̸= 0, the reported fre-
quencies represent the power of the test. From the table, when the sample size
is moderate or large, the size of the test is very close to the nominal one. The
power of the test also increases to 1 very quickly if n or δ is large, suggesting that
the proposed test is quite powerful. The performance of the test was consistent
for both linear and cubic splines.
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Table 2. Simulation 2: empirical size and power of the test on the covariance
function based on the proposed simultaneous confidence envelopes. The
reported numbers are based on 1,000 replications using both linear (p1 =
p2 = 2) and cubic splines (p1 = p2 = 4). The noise level is σ = 0.1, ξik, εij

∼ N(0, 1) and λk = (1/4)
[k/2]

, k = 1, . . ., 1,000.

p1 = p2 = 2 p1 = p2 = 4
n Nominal Level δ δ

0 0.3 0.4 0.5 0 0.3 0.4 0.5

200
0.05 0.098 0.523 0.693 0.809 0.090 0.517 0.718 0.855
0.01 0.026 0.166 0.269 0.386 0.016 0.163 0.305 0.470

300
0.05 0.066 0.783 0.912 0.977 0.068 0.769 0.923 0.971
0.01 0.016 0.321 0.528 0.721 0.015 0.326 0.559 0.727

500
0.05 0.057 0.986 0.997 1.000 0.052 0.982 1.000 1.000
0.01 0.010 0.753 0.932 0.987 0.009 0.744 0.927 0.983

800
0.05 0.056 1.000 1.000 1.000 0.049 1.000 1.000 1.000
0.01 0.008 0.987 1.000 1.000 0.008 0.978 0.999 1.000

1,200
0.05 0.048 1.000 1.000 1.000 0.044 1.000 1.000 1.000
0.01 0.007 1.000 1.000 1.000 0.005 1.000 1.000 1.000

6. Empirical Examples

6.1. Tecator near infrared spectra data

We applied our methodology to the Tecator data, which can be downloaded

from http://lib.stat.cmu.edu/datasets/tecator. This data set contains

measurements on n = 240 meat samples. There is a N = 100 channel near-

infrared spectrum of absorbance for each sample. The spectra were recorded in

the wavelength range from 850 to 1,050 nm.

Figure 2 shows the scatter plot of the spectra. The spectra can be naturally

considered as functional data, since they are recorded on a dense grid of points

with little measurement error. On the other hand, there is a lot of variation

among different curves. We show the estimated covariance function and the 95%

confidence envelope in Figures 3. These results were obtained by applying cubic

spline smoothing (p1 = p2 = 4) to both the mean and covariance functions,

with the number of knots Ns1 = 15 and Ns2 = 13, respectively. We tried other

combinations of knots numbers and linear spline estimators (p1 = p2 = 2), and

the results were similar. From Figure 3, the within curve covariance is positive

and quite significant, since the zero hyperplane is far below the lower bound of

the confidence envelope.

Using the simultaneous confidence envelopes, one can test other hypotheses

on the true covariance function, such as whether the true covariance is stationary.

http://lib.stat.cmu.edu/datasets/tecator
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Figure 2. Plot of the Tecator data.

Figure 3. Plots of the cubic tensor product spline covariance estimator (2.3)
for the Tecator data (middle surface) and the 95% simultaneous confidence
envelope (3.4) (upper and lower surfaces).

Specifically,

H0 : G(x, x
′) ≡ g(|x− x′|), ∀

(
x, x′

)
∈ [a, b]2

v.s. Ha : G(x, x′) ̸= g(|x− x′|), ∃
(
x, x′

)
∈ [a, b]2,

(6.1)

where g(·) is a stationary covariance function, and [a, b] is the range of wavelength.
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Figure 4. Plot for testing hypothesis (6.1) for the Tecator data. The upper
and lower surfaces are the 99.95% confidence envelopes for the covariance
function, and the middle surface is the covariance estimator under station-
arity assumption, ĜS(x− x′).

To test the hypothesis in (6.1), we need to generate a new estimator under

the stationarity assumption and check if this estimator can be covered by the

simultaneous confidence envelope. With Ĝ(x, x′) the tensor product B-spline

covariance estimator, we take ĜS(u) = (b − a − u)−1
∫ b−u
a Ĝ(x, x + u)dx for

0 ≤ u ≤ b − a and ĜS(u) = ĜS(−u) for a − b < u < 0. Similar to Ĝ, ĜS is not

guaranteed to be positive semi-definite, but it is sufficient for our purpose. Under

the stationarity assumption, ĜS is a better estimator of the true covariance. We

pretend that ĜS is the true covariance and reject the null hypothesis if this

function is not covered by the confidence envelope.

Figure 4 shows cubic tensor spline envelopes with 0.9995 confidence level,

and the center surface ĜS(x− x′) as a two-dimensional function. Even for such

a high confidence level, the estimator under the stationarity assumption is not

fully covered in the envelopes. We conclude that the covariance structure in these

Tecator spectra is non-stationary. The same conclusion can be drawn using the

linear tensor spline method.

6.2. Speech recognition data

The data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic
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Figure 5. Plots of the speech recognition data.

Continuous Speech Corpus, NTIS, US Dept of Commerce), a widely used resource

for research in speech recognition. The data set we used was formed by select-

ing five phonemes for classification based on digitized speech. From continuous

speech of 50 male speakers, 4,509 speech frames of 32 msec duration were selected.

From each speech frame, a log-periodogram was used as transformation for cast-

ing speech data in a form suitable for speech recognition. The five phonemes

in this data set were transcribed as: “sh” as in “she”, “dcl” as in “dark”, “iy”

as the vowel in “she”, “aa” as the vowel in “dark”, and “ao” as the first vowel

in “water”. For illustration, we focus on the “sh” and “ao” phoneme classes as

representatives of consonants and vowels. There are n1 = 872 log-periodograms

in the “sh” class, and n2 = 1, 022 log-periodograms in the “ao” group. Each

log-periodogram consists of N = 256 equally spaced points. Figure 5 shows a

sample 10 log-periodograms from each of the two phoneme classes.

This data set was first analyzed by Hastie, Buja and Tibshirani (1995) using

penalized linear discriminant analysis. One of the basic assumptions is that

the covariance functions are the same for different classes. Judging from the

scatter plot of the data in Figure 5, despite the clear difference between the

mean functions of the two groups, there is no obvious indication of difference in

covariance structures.

We obtained the cubic spline (p1 = p2 = 4) covariance estimators for the two

phoneme classes separately, see in Figure 6. These results were obtained by using

Ns1 = 20 and Ns2 = 17 knots for the “sh” class, and Ns1 = 21 and Ns2 = 18 for
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Figure 6. Plots of tensor spline estimators for “sh” and “ao” data sets.
Right: “sh”; Left: “ao”.

the “ao ”class. Different number of knots between the two groups reflects that

the sample sizes differed.

By comparing the covariance estimators in Figure 6, there seems to be a

visible difference between the two classes. We want to test the equal covariance

assumption formally. The hypotheses of interest are

H0 : G
(1)(x, x′) ≡ G(2)(x, x′), ∀

(
x, x′

)
∈ [0, 1]2

v.s. Ha : G(1)(x, x′) ̸= G(2)(x, x′), ∃
(
x, x′

)
∈ [0, 1]2 .

(6.2)

The 99.95% confidence envelopes for the difference of the two covariance functions

are provided in Figure 7, and the zero hyperplane is used as a reference. Since the

zero hyperplane is not covered by the envelopes, the equal covariance hypothesis

is rejected with p-value < 0.0005. We tried different numbers of knots and the

result was not sensitive to this.

7. Summary

In this paper, we consider covariance estimation in functional data and pro-

pose a new computationally efficient tensor-product B-spline estimator. The
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Figure 7. Plot of hypothesis test (6.2) for the speech recognition data. The
upper and lower surfaces are the 99.95% confidence envelopes based on cubic
tensor product spline covariance estimators and the middle flat surface is the
zero plane.

proposed estimator can be used as a building block for further data analysis,

such as principal component analysis, linear discriminant analysis and analysis

of variance. We study both global and local asymptotic properties of our estima-

tor and propose a simultaneous envelope approach to make inference on the true

covariance function. It is shown that the proposed method enjoys superior theo-

retical properties that have not been well studied in the literature, especially on

simultaneous inference for the covariance functions in functional data analysis.

The procedure is easily implementable. As demonstrated by our simulation re-

sults, the method works well for the case of densely sampled and regularly-spaced

functional data. The study of the covariance function inference given in this pa-

per has the potential to provide valuable insights into a number of application

problems. For instance, to test the stationarity assumption on the covariance.

In a classification problem, we extended our method to test the equal covariance

assumption of different treatment groups.

Supplementary Materials

The online supplementary material contains the proofs of Lemmas A.3, A.4

and A.6, Propositions 1 and 2 and equation (4.2).
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Appendix: Technical Lemmas and Proofs of Theorems

For any vector a = (a1, . . . , an) ∈ Rn, take ∥a∥r = (|a1|r + · · · + |an|r)1/r,
1 ≤ r < +∞, ∥a∥∞ = max (|a1| , . . . , |an|). For any matrix A = (aij)

m,n
i=1,j=1,

denote its Lr norm as ∥A∥r = maxa∈Rn,a̸=0 ∥Aa∥r ∥a∥−1
r , for r < +∞ and

∥A∥r = max1≤i≤m
∑n

j=1 |aij |, for r = ∞.

Detailed proofs can be found in the supplement.

A.1. Preliminaries

For any Lebesgue measurable function ϕ(x) on a domain D, D = [0, 1] or

[0, 1]2, let ∥ϕ∥∞ = supx∈D |ϕ (x)|. For any L2 integrable functions ϕ (x) and

φ (x), x ∈ D, take ⟨ϕ, φ⟩ =
∫
D ϕ (x)φ (x) dx, with ∥ϕ∥22 = ⟨ϕ, ϕ⟩. We then set

⟨ϕ, φ⟩N = N−1
∑

1≤j≤N

ϕ
(

j
N

)
φ
(

j
N

)
for D = [0, 1] and

⟨ϕ, φ⟩2,N = N−2
∑

1≤j ̸=j′≤N

ϕ
(

j
N ,

j′

N

)
φ
(

j
N ,

j′

N

)
for D = [0, 1]2, with

∥ϕ∥22,N = ⟨ϕ, ϕ⟩2,N .

For any positive integer p, take the theoretical and empirical inner product

matrices of {BJ,p(x)}Ns

J=1−p as

Vp =
(⟨
BJ,p, BJ ′,p

⟩)Ns

J,J ′=1−p
, V̂p =

(⟨
BJ,p, BJ ′,p

⟩
2,N

)Ns

J,J ′=1−p
.

The following lemma is from Cao, Yang and Todem (2012).

Lemma A.1. For any positive integer p there exists a constant Mp > 0, de-

pending only on p, such that
∥∥V−1

p

∥∥
∞ ≤ Mph

−1
s for large enough n, where

hs = (Ns + 1)−1.

With “⊗” as the Kronecker product of two matrices,
∥∥∥(A⊗A)−1

∥∥∥
∞

=∥∥A−1 ⊗A−1
∥∥
∞ ≤

∥∥A−1
∥∥2
∞, for any invertible matrix A which, together with

Lemma A.1, leads to the following.
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Lemma A.2. For any positive integer p, there exists a constant Mp > 0, de-

pending only on p, such that
∥∥∥(Vp ⊗Vp)

−1
∥∥∥
∞

≤M2
ph

−2
s .

Take

X=

(
Bp2

(
2

N
,
1

N

)
, . . . ,Bp2

(
1,

1

N

)
, . . . ,Bp2

(
1

N
, 1

)
, . . . ,Bp2

(
1− 1

N
, 1

))
T

.

By elementary algebra and the least square algorithm,

G̃p2(x, x
′) =BT

p2(x, x
′)
(
XTX

)−1
XTŪ,

Ĝp1,p2(x, x
′) =BT

p2(x, x
′)
(
XTX

)−1
XT ˆ̄Up1 ,

where ˆ̄Up1 =
(
ˆ̄U·21,p1 , . . . ,

ˆ̄U·N1,p1 , . . . ,
ˆ̄U·1N,p1 , . . . ,

ˆ̄U·(N−1)N,p1

)
T

,

Ū = (Ū·21, . . . , Ū·N1, . . . , Ū·1N , . . . , Ū·(N−1)N )T.

Next we define the theoretical and empirical inner product matrices of tensor

product spline basis
{
BJJ ′,p2 (x, x

′)
}Ns2

J,J ′=1−p2
as

Vp2,2 =
(⟨
BJJ ′,p2 , BJ ′′J ′′′,p2

⟩)Ns2

J,J ′,J ′′,J ′′′=1−p2
,

V̂p2,2 =
(⟨
BJJ ′,p2 , BJ ′′J ′′′,p2

⟩
2,N

)Ns2

J,J ′,J ′′,J ′′′=1−p2
.

(A.1)

It is easy to obtain V̂p2,2 = N−2
(
XTX

)
, so we study the properties of V̂p2,2 and

Vp2,2.

Lemma A.3. Under Assumption (A3), for Vp2,2 and V̂p2,2 at (A.1),∥∥∥Vp2,2 − V̂p2,2

∥∥∥
∞

= O
(
N−1

)
and

∥∥∥V̂−1
p2,2

∥∥∥
∞

= O
(
h−2
s2

)
.

Lemma A.4. For V̂p2,2 at (A.1) and any N(N − 1) vector ρ =
(
ρjj′

)
, there

exists a constant C > 0 such that

sup
(x,x′)∈[0,1]2

∥∥∥N−2BT

p2(x, x
′)V̂−1

p2,2
XTρ

∥∥∥
∞

≤ C ∥ρ∥∞ .

Let ϕkk′(x, x
′) = ϕk(x)ϕk′(x

′),

ϕ̃kk′
(
x, x′

)
= BT

p2(x, x
′)
(
XTX

)−1
XTϕkk′ , (A.2)

and ϕkk′ = {ϕk (2/N)ϕk′ (1/N) , . . . , ϕk (1)ϕk′ (1/N) , . . . , ϕk (1/N)ϕk′ (1) , . . . ,

ϕk (1− 1/N)ϕk′ (1)}T.
The following lemma is a direct result from de Boor (2001, p.149), , and

Theorem 5.1 of Huang (2003). The proof is omitted.
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Lemma A.5. There is an absolute constant Cg > 0 such that for every g ∈
Cp−1,µ [0, 1], there exists a function g∗ ∈ H(p−1) [0, 1] and some µ ∈ (0, 1] such

that supx∈[0,1] |g(x)− g∗(x)| ≤ Cgh
p−1+µ
s

∥∥g(p−1)
∥∥
0,µ

. If (A2) holds,

sup
(x,x′)∈[0,1]2

∣∣∣ϕkk′(x, x′)− ϕ̃kk′(x, x
′)
∣∣∣

≤ Cϕh
p−1+µ
s2

(
∥ϕk′∥∞

∥∥∥ϕ(p−1)
k

∥∥∥
0,µ

+ ∥ϕk∥∞
∥∥∥ϕ(p−1)

k′

∥∥∥
0,µ

)
,

for ϕ̃kk′(x, x
′) at (A.2). There exists a cϕ,p ∈ (0,∞) such that, when n is large

enough, ∥ϕ̃∥∞ ≤ cϕ,p ∥ϕ∥∞ for any ϕ ∈ C[0, 1].

A.2. Proofs of Theorems 1 and 2

Proof of Theorem 1. By Propositions 1,

E[G̃p1,p2(x, x
′)−G(x, x′)]2 = E∆2

(
x, x′

)
+ o(1),

where ∆ (x, x′) is given in (3.1). Let ξ̄·kk′ = n−1
∑n

i=1 ξikξik′ , 1 ≤ k, k′. It is a

straightforward consequence of its definition that

∆
(
x, x′

)
=

∞∑
k ̸=k′

ξ̄·kk′ϕk (x)ϕk′
(
x′
)
+

∞∑
k=1

(
ξ̄·kk − 1

)
ϕk (x)ϕk

(
x′
)
.

Since

nE
[
∆

(
x, x′

)]2
=

∞∑
k,k′=1

ϕ2k (x)ϕ
2
k′
(
x′
)
+

∞∑
k,k′=1

ϕk
(
x′
)
ϕk (x)ϕk′ (x)ϕk′

(
x′
)

+
∞∑
k=1

ϕ2k (x)ϕ
2
k

(
x′
) (
Eξ41k − 3

)
= G2

(
x, x′

)
+G (x, x)G

(
x′, x′

)
+

∞∑
k=1

ϕ2k (x)ϕ
2
k

(
x′
) (
Eξ41k − 3

)
≡ V

(
x, x′

)
,

the desired result follows from Proposition 2.

Next let ζ (x, x′) = n1/2∆(x, x′).

Lemma A.6. Under (A2)−(A5), as n → ∞, L(ζ (x, x′) , (x, x′) ∈ [0, 1]2) con-

verges to L(ζZ (x, x′) , (x, x′) ∈ [0, 1]2), where ζZ (x, x′) has mean 0, variance

V (x, x′) at (3.2) and covariance function Ω (x, x′, y, y′) at (3.3).

Proof of Theorem 2. According to Lemma A.6, Propositions 1 and 2, and
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Theorem 1, for ∀α ∈ (0, 1) as n→ ∞,

lim
n→∞

P
{

sup
(x,x′)∈[0,1]2

√
n
∣∣∣Ĝp1,p2

(
x, x′

)
−G(x, x′)

∣∣∣V −1/2
(
x, x′

)
≤ Q1−α

}
= lim
n→∞

P
{

sup
(x,x′)∈[0,1]2

√
n
∣∣∣G̃p1,p2

(
x, x′

)
−G(x, x′)

∣∣∣V −1/2
(
x, x′

)
≤ Q1−α

}
= lim
n→∞

P
{

sup
(x,x′)∈[0,1]2

∣∣ζ (x, x′)∣∣V −1/2
(
x, x′

)
≤ Q1−α

}
= lim
n→∞

P
{

sup
(x,x′)∈[0,1]2

∣∣ζZ (
x, x′

)∣∣V −1/2
(
x, x′

)
≤ Q1−α

}
.
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