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Abstract

In multidimensional classification the goal is to
assign an instance to a set of different classes.
This task is normally addressed either by defin-
ing a compound class variable with all the possi-
ble combinations of classes (label power-set meth-
ods, LPMs) or by building independent classifiers
for each class (binary-relevance methods, BRMs).
However, LPMs do not scale well and BRMs ig-
nore the dependency relations between classes. We
introduce a method for chaining binary Bayesian
classifiers that combines the strengths of classi-
fier chains and Bayesian networks for multidimen-
sional classification. The method consists of two
phases. In the first phase, a Bayesian network (BN)
that represents the dependency relations between
the class variables is learned from data. In the sec-
ond phase, several chain classifiers are built, such
that the order of the class variables in the chain
is consistent with the class BN. At the end we
combine the results of the different generated or-
ders. Our method considers the dependencies be-
tween class variables and takes advantage of the
conditional independence relations to build simpli-
fied models. We perform experiments with a chain
of naı̈ve Bayes classifiers on different benchmark
multidimensional datasets and show that our ap-
proach outperforms other state-of-the-art methods.

1 Introduction

In contrast with traditional (one–dimensional) classifiers,
multidimensional classifiers (MDCs) assign each instance to
a set of d classes. MDCs have gained a lot of attention
in recent years, as several important problems can be seen
as multidimensional classification [Zhang and Zhou, 2007;
Vens et al., 2008], such as text classification (assigning a doc-
ument to several topics), HIV drug selection (determining the
optimal set of drugs), among others.

Two main types of approaches have been proposed for
solving a MDC problem with binary classes: binary rele-
vance and label power-set [Tsoumakas and Katakis, 2007].
In the binary relevance approach [Zhang and Zhou, 2007],
an MDC problem is transformed into d binary classification

problems, one for each class variable, C1, . . . , Cd. A classi-
fier is independently learned for each class variable, and the
results are combined to determine the predicted class set. The
main advantages of this approach are its low computational
complexity, and that existing classification techniques can be
directly applied. However, it is unable to capture the inter-
actions between classes and, in general, the most likely class
of each classifier will not match the most likely set of classes
due to possible interactions among them.

The label power-set approach [Tsoumakas and Katakis,
2007] transforms the multidimensional problem into a single-
class scenario by defining a new compound class variable
whose possible values are all of the possible combinations
of values of the original classes. In this case the interactions
between the different classes are implicitly considered. Thus,
it can be effective for domains with a few class variables. But
its main drawback is its computational complexity, as the size
of the compound class variable increases exponentially with
the number of classes.

To overcome the limitations of the previous methods, there
are two main strategies: (i) to incorporate class interactions in
binary relevance methods, in what are known as chain clas-
sifiers [Read et al., 2009; Dembczynski et al., 2010], and
(ii) to explicitly represent the dependence structure between
the classes, avoiding the combinatorial explosion of the label
power-set approach, via multidimensional Bayesian network
classifiers [van der Gaag and de Waal, 2006; Bielza et al.,
2011].

Bayesian Chain Classifiers (see Fig. 1) combine the previ-
ous strategies, taking advantage of their strengths and at the
same time avoiding their main limitations. The method for
learning these classifiers consists of two main phases: (i) to
obtain a dependency structure for the class variables, and (ii)
based on the dependency structure, build a classifier chain. In
the first phase, a Bayesian network (BN) that represents the
dependency relations between the class variables is learned
from data. This class structure serves as a guide for the sec-
ond phase, as it restricts the possible variable orderings in the
chain. In the second phase, a chain classifier is built, such
that the order of the class variables in the chain is consistent
with the graph of the previously learned BN (class BN). Al-
though there are still many possible orderings, the number is
reduced significantly with respect to all possible random or-
ders. In this chain, previous classes are also incorporated as
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Figure 1: An example of a Bayesian Chain Classifier where
each intermediate node on the chain is a naı̈ve Bayesian clas-
sifier which has as attributes only its parent classes (C3) and
its corresponding features (F1, F2, F3).

features along the chain, but only the parents variables in the
class BN, as in a BN every variable is independent of its non-
descendants given its parents. Thus, the number of additional
features is restricted even for domains with a large number of
classes. Finally, as for chain classifiers, the predicted class
set is obtained by combining the outputs of all the classifiers
in the chain.

In this paper we present the simplest version of a Bayesian
Chain Classifier, as the dependency structure between class
variables is restricted to a directed tree. Thus, each class vari-
able in the tree has at most one parent, so only one additional
feature is incorporated to each base classifier in the chain.
Additionally, the base classifiers are naı̈ve Bayes. As in [Read
et al., 2009], we combine several chain classifiers in a clas-
sifier ensemble, by changing the root node in the tree. This
basic Bayesian Chain Classifier is highly efficient in terms
of learning and classification times, and it outperforms other
more complex MDCs as demonstrated in the experiments.

2 Multidimensional Classifiers

As previously introduced, in this contribution we will present
an approach to classification problems with d class variables,
C1, . . . , Cd. In this framework, the multi-dimensional clas-
sification problem corresponds to searching for a function
h that assigns to each instance represented by a vector of
m features x = (x1, . . . , xm) a vector of d class values
c = (c1, . . . , cd):

h : ΩX1 × · · · × ΩXm → ΩC1 × · · · × ΩCd

(x1, . . . , xm) �→ (c1, . . . , cd)

We assume that Ci and Xj for all i = 1, . . . , d and all
j = 1, . . . ,m are discrete, and that ΩCi

and ΩXj
respectively

represent their sample spaces.
Under a 0 − 1 loss function, the h function should assign

to each instance x the most likely combination of classes, that
is:

argmaxc1,...,cdp(C1 = c1, . . . , Cd = cd|x)
This assignment amounts to solving a total abduction in-

ference problem and corresponds to the search for the most
probable explanation (MPE), a problem that has been proved
to be an NP-hard problem for Bayesian networks [Shimony,
1994].

3 Related Work

In this section we briefly review the main approaches for
multidimensional classification. The review is organized into
three subsections, discussing research in multi-label classifi-
cation, multidimensional Bayesian networks classifiers, and
chain classifiers, respectively.

3.1 Multi-label Classification

In multi-label classification domains each instance is associ-
ated with a subset of labels (present in the instance) from a
set of d labels. Taking the notation introduced in previous
sections into account, this multi-label classification problem
can be seen as a particular case of a multidimensional classi-
fication problem where all class variables are binary, that is
|ΩCi

| = 2 for i = 1, . . . , d.
An overview of multi-label classification is given in

[Tsoumakas and Katakis, 2007], where two main categories
are distinguished: (a) problem transformation methods, and
(b) algorithm adaptation methods. Methods in (a) transform
the multi-label classification problem into either one or more
single-label classification problems. Methods in (b) extend
specific learning algorithms to handle multi-label data di-
rectly. For example, decision trees [Vens et al., 2008], sup-
port vector machines [Boutell et al., 2004], k-nearest neigh-
bor [Zhang and Zhou, 2007], neural networks [Zhang and
Zhou, 2006], and a hybrid of logistic regression and k-nearest
neighbor [Cheng and Hullermeier, 2009] have been proposed.

3.2 Multidimensional Bayesian Network
Classifiers

A multidimensional Bayesian network classifier (MBC) over
a set V = {Z1, . . . , Zn}, n ≥ 1, of discrete random variables
is a Bayesian network B = (G,Θ), where G is an acyclic
directed graph with vertexes Zi and Θ is a set of parameters
θz|pa(z) = p(z|pa(z)), where pa(z) is a value for the set
Pa(Z), parents variables of Z in G. B defines a joint proba-
bility distribution pB over V given by:

pB(z1, . . . , zn) =
n∏

i=1

p(zi|pa(zi)). (1)

The set V of vertexes is partitioned into two sets VC =
{C1, . . . , Cd}, d ≥ 1, of class variables and VX =
{X1, . . . , Xm}, m ≥ 1, of feature variables (d + m = n).
The set A of arcs is also partitioned into three sets, AC , AX ,
ACX , such that AC ⊆ VC × VC is composed of the arcs be-
tween the class variables, AX ⊆ VX × VX is composed of
the arcs between the feature variables and finally, ACX ⊆
VC × VX is composed of the arcs from the class variables to
the feature variables. The corresponding induced subgraphs
are GC = (VC ,AC), GX = (VX ,AX ) and GCX = (V,ACX ),
called respectively class, feature and bridge subgraphs.

Different graphical structures for the class and feature sub-
graphs may lead to different families of MBCs. [van der Gaag
and de Waal, 2006] learn trees for both subgraphs by search-
ing for the maximum weighted undirected spanning tree and
transforming it into a directed tree using Chow and Liu’s al-
gorithm [1968]. The bridge subgraph is greedily learnt in a
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wrapper way, trying to improve the percentage of correctly
classified instances. [de Waal and van der Gaag, 2007] is a
theoretical work for finding the conditions for the optimal re-
covery of polytree structures in both subgraphs.

[Rodrı́guez and Lozano, 2008] extend polytrees to k-DB
structures for class and features subgraphs. Learning these
structures is carried out using a multi-objective genetic al-
gorithm where the individuals are permitted structures coded
with three substrings, one per subgraph. Simpler models are
used in an application for heart wall motion prediction [Qazi
et al., 2007]: a directed acyclic graph for the class subgraph,
an empty graph for the features, and a bridge subgraph where
features receive arcs from some class variables, without shar-
ing any of them.

Finally, [Bielza et al., 2011] present the most general mod-
els since any Bayesian network structure is allowed in the
three subgraphs. Learning from data algorithms cover all the
possibilities: wrapper, filter and hybrid score+search strate-
gies. Moreover, since the computation of the MPE involves
a high computational cost, several contributions are designed
to alleviate it.

3.3 Chain Classifiers

Read and others [2009] introduce chain classifiers as an al-
ternative method for multi-label classification that incorpo-
rates class dependencies, while it tries to keep the compu-
tational efficiency of the binary relevance approach. Chain
classifiers consist of d binary classifiers which are linked
in a chain, such that each classifier incorporates the class
predicted by the previous classifiers as additional attributes.
Thus, the feature vector for each binary classifier, Li, is ex-
tended with the labels (0/1) of all previous classifiers in the
chain. Each classifier in the chain is trained to learn the as-
sociation of label li given the features augmented with all
previous binary predictions in the chain, l1, l2, . . . , li−1. For
classification, it starts at L1, and propagates along the chain
such that for i ∈ L (where L = {l1, l2, . . . , ld}) it predicts
p(li | x, l1, l2, . . . , li−1). As in the binary relevance approach,
the class vector is determined by combining the outputs of all
the binary classifiers in the chain.

[Read et al., 2009] combine several chain classifiers by
changing the order for the labels, building an ensemble of
chain classifiers. Thus, m chain classifiers are trained, by
varying the training data and the order of the classes in the
chain (both are set randomly). The final label vector is ob-
tained using a voting scheme; each label li receives a number
of votes from the m chain classifiers, and a threshold is used
to determine the final predicted multi-label set.

Recently, Dembczynski et al. [2010] present probabilistic
chain classifiers (PCCs), by basically putting chain classifiers
under a probabilistic framework. Using the chain rule, the
probability of the vector of d class values C = (C1, . . . , Cd)
given the feature vector x can be written as:

p(C) = p(C1 | x)
d∏

i=2

p(Ci | C1, C2, . . . , Ci−1, x). (2)

Given a function fi that provides an approximation of the

probability of Ci = 1, they define a probabilistic chain clas-
sifier as:

p(C) = f1(x)

d∏

i=2

fi(x, C1, C2, . . . , Ci−1). (3)

PCC estimates the joint probability of the classes, pro-
viding better estimates than the chain classifiers, but with a
much higher computational complexity. In fact, the experi-
ments reported by [Dembczynski et al., 2010] are limited to
10 classes.

As shown by [Dembczynski et al., 2010], a method that
considers class dependencies under a probabilistic framework
can have a significant impact on the performance of multidi-
mensional classifiers. However, both MBCs and PCCs have
a high computational complexity, which limits their applica-
bility to high dimensional problems. In the following section
we describe an alternative probabilistic method which also
incorporates class dependencies but at the same time is very
efficient.

4 Bayesian Chain Classifiers

Given a multidimensional classification problem with d
classes, a Bayesian Chain Classifier (BCC) uses d classifiers,
one per class, linked in a chain. The objective of this problem
can be posed as finding a joint distribution of the classes C =
(C1, C2, . . . , Cd) given the attributes x = (x1, x2, . . . , xl):

p(C|x) =
d∏

i=1

p(Ci|pa(Ci), x)

where pa(Ci) represents the parents of class Ci. In this set-
ting, a chain classifier can be constructed by inducing first
the classifiers that do not depend on any other class and then
proceed with their sons. A Bayesian framework allows us to:

• Create a (partial) order of classes in the chain classi-
fier based on the dependencies between classes given the
features. Assuming that these dependencies can be rep-
resented as a Bayesian network (directed acyclic graph),
the chain structure is defined by the structure of the BN,
such that we can then start building classifiers for the
classes without parents, and continue with their children
classes, and so on.

• Consider conditional independencies between classes to
create simpler classifiers. In this case, construct d clas-
sifiers considering only the parent classes of each class.
For a large number of classes this can be a huge reduc-
tion as normally we can expect to have a limited number
of parents per class.

In general, when we induce a Bayesian network to rep-
resent the above joint distribution, it is not always possible
to find directions for all the links. In that case we can have
different orders depending on the chosen directions. In the
worst case the number of possible directions grows exponen-
tially with the number of links (2k for k undirected links). In
practice we expect to have only a limited number of undi-
rected links. In that case we can obtain (a subset of) the
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Figure 2: Example of a Maximum Weight Spanning Tree of
Classes.

Figure 3: Using the Maximum Weighted Spanning Tree of
Classes with node 3 as root for determining the chaining or-
der.

possible orders and build an ensemble of chain classifiers
with different orders. Given a new instance, we determine
p(Ci|pa(Ci), x)∀i ∈ D with each chain classifier, and use a
voting scheme to output a set of classes.

We can simplify the problem by considering the marginal
dependencies between classes (as a first approximation) to
obtain an order in the chain classifier and then induce clas-
sifiers considering such order. Additionally, we can simplify
even further the problem by considering only one parent per
class. This can be solved by obtaining the skeleton of a tree-
structured BN for the classes using Chow and Liu’s algorithm
(1968), that is, a maximum weight undirected spanning tree
(MWST ) (see Fig. 2).

Chow and Liu’s algorithm does not give us the directions
of the links, however, we can build d directed trees by taking
each class (node) as root of a tree and assigning directions to
the arcs starting from this root node to build a directed tree
(Fig. 3). The chaining order of the classifiers is given by
traversing the tree following an ancestral ordering.

For d classes we build d classifiers in the order given by
the different trees and then combine them in an ensemble (if
d is very large we can limit the number of chains by selecting
a random subset of trees).

There are many different choices for representing each
classifier, one of the simplest and fastest to build is the naı̈ve
Bayes classifier (NBCs); although other classifiers could be
used as well. With naı̈ve Bayes classifiers in the chain, we
need to consider only the class parent, pa(Ci), and the fea-
ture vector, x, as attributes for each NBC, see Fig. 1.

We can summarize our algorithm as follows. Given a mul-
tidimensional classification problem with d classes:

1. Build an undirected tree to approximate the dependency
structure among class variables.

2. Create d orders for the chain classifiers by taking each
class as the root of the tree and assigning the rest of the
links in order.

3. For each classifier in each chain, build an NBC with the
class Ci as root and only the parents pa(Ci) and all the

attributes x as children, taking advantage of conditional
independence properties.

To classify a new instance combine the output of the d
chains, using a simple voting scheme.

This is a very fast and easy to build ensemble of chain clas-
sifiers, which represents the simplest alternative for a BCC.
Other, more complex alternatives can be explored by: (i) con-
sidering conditional dependencies between classes, (ii) build-
ing more complex class dependency structures, and (iii) using
other base classifiers.

In the next section we present the experimental results
where we compare BCCs with other state of the art multi-
dimensional classifiers.

5 Experiments and Results

The proposed method was tested on 9 different benchmark
multidimensional datasets1; each of them with different di-
mensions ranging from 6 to 983 labels, and from about 600
examples to more than 40, 000. All class variables of the
datasets are binary, however, in some of the datasets the
feature variables are numeric. In these cases we used a
static, global, supervised and top-down discretization algo-
rithm [Cheng-Jung et al., 2008]. The details of the datasets
are summarized in Table 1.

Table 1: Multidimensional datasets used in the experiments
and associated statistics. N is the size of the dataset, d is
the number of binary classes or labels, m is the number of
features. ∗ indicates numeric attributes.

No. Dataset N d m Type
1 Emotions 593 6 72∗ Music
2 Scene 2407 6 294∗ Vision
3 Yeast 2417 14 103∗ Biology
4 TMC2007 28596 22 500 Text
5 Medical 978 45 1449 Text
6 Enron 1702 53 1001 Text
7 MediaMill 43907 101 120∗ Media
8 Bibtex 7395 159 1836 Text
9 Delicious 16105 983 500 Text

First, we compared BCCs against 9 different state-of-the-
art methods (shown in Table 2) using the Emotions, Scene and
Yeast datasets. Algorithm 1 is the basic Binary Relevance
method [Tsoumakas and Katakis, 2007]. Algorithms 2 to 6
are methods explicitly designed for learning MBCs. Algo-
rithms 7 and 8 use greedy search approaches that learn a gen-
eral Bayesian network, one guided by the K2 metric [Cooper
and Herskovits, 1992] (filter approach), and the other guided
by a performance evaluation metric, as defined in [Bielza et
al., 2011] (wrapper approach). Algorithm 9 is a multi-label
lazy learning approach named ML-KNN [Zhang and Zhou,
2006], derived from the traditional K-nearest neighbor algo-
rithm. In this experiment for the ML-KNN method K was set
to 3 in the Emotions and Scene data sets, and 5 in the Yeast

1The data sets can be found at mu-
lan.sourceforge.net/datasets.html, mlkd.csd.auth.gr/multilabel.html
and www.cs.waikato.ac.nz /jmr30/#—datasets.
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data set. Since it is unfeasible to compute the mutual informa-
tion of two features given all the class variables, as required in
[de Waal and van der Gaag, 2007], the implementation of the
polytree-polytree learning algorithm uses the marginal mutual
information of pairs of features. Algorithm 10 from Table 2
is our Bayesian Chain Classifier.

Table 2: Algorithms used in the experiments.
No. Algorithm [Reference]
1 binary relevance [Tsoumakas and Katakis, 2007]
2 tree-tree [van der Gaag and de Waal, 2006]
3 polytree-polytree [de Waal and van der Gaag, 2007]
4 pure-filter [Bielza et al., 2011]
5 pure-wrapper [Bielza et al., 2011]
6 hybrid [Bielza et al., 2011]
7 K2 BN [Cooper and Herskovits, 1992]
8 wrapper BN [Bielza et al., 2011]
9 ML-KNN [Zhang and Zhou, 2006]

10 Bayesian Chain Classifiers (BCC)

For the purpose of comparison we used two different mul-
tidimensional performance measures [Bielza et al., 2011]:

1. Mean accuracy (accuracy per label or per class) over the
d class variables:

Accd =
1

d

d∑

j=1

Accj =
1

d

d∑

j=1

1

N

N∑

i=1

δ(c′ij , cij) (4)

where δ(c′ij , cij) = 1 if c′ij = cij and 0 otherwise.
Note that c′ij denotes the Cj class value outputted by
the model for case i and cij is its true value.

2. Global accuracy (accuracy per example) over the d-
dimensional class variable:

Acc =
1

N

N∑

i=1

δ(c′i, ci) (5)

where ci is the d-dimensional vector of class values and
δ(c′i, ci) = 1 if c′i = ci and 0 otherwise. Therefore,
we call for a total coincidence on all of the components
of the vector of predicted classes and the vector of real
classes.

The estimation method for performance evaluation is 10-
fold cross-validation. Results for accuracy and a comparison
of the different methods are shown in Table 3. Table 4 shows
the average rankings of the 9 algorithms used for comparison
and that of our method. As can be seen from this table, in
general, the performance of our method is better that the other
methods used in these experiments.

Secondly, we performed experiments with the TMC2007,
Medical, Enron, MediaMill, Bibtex and Delicious datasets.
Given the complexity of these datasets, in particular in the
number of classes, they can not be tested with the other meth-
ods; so in this case we compared Bayesian Chain Classi-
fiers and Ensembles of BCCs (EBCCs). In Table 5 we show
the Mean and Global accuracies per dataset for BCCs and
EBCCs, respectively. We observe that for most of the datasets

Table 3: Performance metrics (mean ± std. deviation) and
rank (in brackets) of the algorithms using 10-fold cross-
validation.

Dataset Mean Accuracy Global Accuracy
Emotions

binary relevance 0.7762 ±0.1667(7) 0.2860 ±0.0452(8)
tree-tree 0.8300 ±0.0151(3) 0.3844 ±0.0398(1)

polytree-polytree 0.8209 ±0.0243(5) 0.3776 ±0.0622(3)
pure filter 0.7548 ±0.0280(9) 0.2866 ±0.0495(7)

pure wrapper 0.8333 ±0.0123(2) 0.3708 ±0.0435(4)
hybrid 0.8210 ±0.0170(4) 0.3557 ±0.0435(5)

K2 BN 0.7751 ±0.0261(8) 0.2812 ±0.0799(9)
wrapper BN 0.7985 ±0.0200(6) 0.3033 ±0.0752(6)

ML-KNN 0.6133 ±0.0169(10) 0.0254 ±0.0120(10)
BCC 0.8417 ±0.0231(1) 0.3822 ±0.0631(2)
Scene

binary relevance 0.8236 ±0.0250(2) 0.2898 ±0.0149(3)
tree-tree 0.7324 ±0.0359(9) 0.1857 ±0.0977(8)

polytree-polytree 0.7602 ±0.0663(8) 0.2643 ±0.1915(6)
pure filter 0.7726 ±0.0700(6) 0.3067 ±0.1991(1)

pure wrapper 0.7765 ±0.0580(4) 0.2688 ±0.1642(5)
hybrid 0.7229 ±0.0442(10) 0.1570 ±0.1018(9)

K2 BN 0.7689 ±0.0692(7) 0.2883 ±0.1995(4)
wrapper BN 0.7739 ±0.0492(5) 0.2277 ±0.1372(7)

ML-KNN 0.8196 ±0.0092(3) 0.0311 ±0.0147(10)
BCC 0.8260 ±0.0373(1) 0.2920 ±0.1218(2)
Yeast

binary relevance 0.7297 ±0.2380(9) 0.0890 ±0.0242(8)
tree-tree 0.7728 ±0.0071(4) 0.1953 ±0.0208(1)

polytree-polytree 0.7336 ±0.0182(8) 0.1431 ±0.0258(3)
pure filter 0.7480 ±0.0119(6) 0.0989 ±0.0342(7)

pure wrapper 0.7845 ±0.0131(1) 0.1410 ±0.0989(4)
hybrid 0.7397 ±0.0114(7) 0.1200 ±0.0268(6)

K2 BN 0.7686 ±0.0112(5) 0.1299 ±0.0204(5)
wrapper BN 0.7745 ±0.0049(3) 0.0550 ±0.0212(9)

ML-KNN 0.6364 ±0.0196(10) 0.0062 ±0.0029(10)
BCC 0.7771 ±0.0147(2) 0.1616 ±0.0875(2)

Table 4: Average rank values for each algorithm from the
results in Table 3.

Algorithm Mean Acc. Global Acc. Global Rank
binary relevance 6.0000 6.3334 6.1667(7)

tree-tree 5.3334 3.3334 4.3334(3)
polytree-polytree 7.0000 4.0000 5.5000(4)

pure filter 7.0000 5.0000 6.0000(5)
pure wrapper 2.3334 4.3334 3.3334(2)

hybrid 7.0000 6.6667 6.8333(9)
K2 BN 6.6667 6.0000 6.3333(8)

wrapper BN 4.6667 7.3334 6.0000(5)
ML-KNN 7.6667 10.000 8.8333(10)

BCC 1.3333 2.0000 1.6667(1)

there is a significant improvement in mean and global accu-
racy with the ensemble. The number of iterations on the en-
sembles were set to 10. A class is determined whether posi-
tive or negative by taking the value with the higher number of
votes in the ensemble.
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Table 5: Global and Mean accuracy results for the Bayesian
Chain Classifiers (BCC) and for the Ensembles of Bayesian
Chain Classifiers (EBCC).

Mean Accuracy Global Accuracy
Dataset BCC EBCC BCC EBCC

TMC2007 0.8211 0.8666 0.2576 0.3784
Medical 0.9999 0.9999 0.9989 0.9999

Enron 0.7439 0.7931 0.0011 0.0341
MediaMill 0.6980 0.7376 0.0489 0.1382

Bibtex 0.8319 0.8518 0.0304 0.0993
Delicious 0.5197 0.5950 0.0009 0.0286

In terms of computational resources, the training and clas-
sification times for the small data sets (Emotions, Scene and
Yeast) are less than one minute; and for the more complex
datasets are in the order of hours2.

6 Conclusions and Future Work

In this paper we have introduced Bayesian Chain Classifiers
for multidimensional classification. The proposed approach
is simple and easy to implement, and yet is highly competi-
tive against other Bayesian multidimensional classifiers. We
experimented with the simplest model for a BCC, consider-
ing a tree structure for the class dependencies and a simple
naı̈ve Bayes classifier as base classifier. In the future we will
explore alternative models considering more complex depen-
dency structures and other more powerful base classifiers. We
also plan to compare our approach with other classifier chains
using different metrics and datasets.
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