Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Fast Anomaly Detection for Streaming Data*

Swee Chuan Tan
SIM University, Singapore
jamestansc @unisim.edu.sg

Abstract

This paper introduces Streaming Half-Space-Trees
(HS-Trees), a fast one-class anomaly detector for
evolving data streams. It requires only normal data
for training and works well when anomalous data
are rare. The model features an ensemble of ran-
dom HS-Trees, and the tree structure is constructed
without any data. This makes the method highly
efficient because it requires no model restructuring
when adapting to evolving data streams. Our anal-
ysis shows that Streaming HS-Trees has constant
amortised time complexity and constant memory
requirement. When compared with a state-of-the-
art method, our method performs favourably in
terms of detection accuracy and runtime perfor-
mance. Our experimental results also show that
the detection performance of Streaming HS-Trees
is not sensitive to its parameter settings.

1

The problem of detecting anomalies in streaming data has the
following characteristics. Firstly, the stream is infinite, so any
off-line learning algorithms that attempt to store the entire
stream for analysis will run out of memory space. Secondly,
the stream contains mostly normal instances because anoma-
lous data are rare and may not be available for training. In
this case, any multi-class classifiers that require fully labeled
data will not be suitable. Thirdly, streaming data often evolve
over time. Thus, the model must adapt to different parts of
the stream in order to maintain high detection accuracy.

This paper proposes an anomaly detection algorithm,
Streaming Half-Space Trees (HS-Trees), that addresses the
above-mentioned problem. The proposed method has sev-
eral features that distinguish itself from other existing tech-
niques. Firstly, it processes data in one pass and only requires
constant amount of memory to process potentially endless
streaming data or massive datasets. Thus it is different from
existing off-line anomaly detectors (e.g., ORCA [Bay and

Introduction

*This work is partially supported by the Air Force Research Lab-
oratory, under agreement# FA2386-10-1-4052. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

1511

Kai Ming Ting and Tony Fei Liu
Monash University, Australia
{kaiming.ting, tony.liu} @monash.edu

Schwabacher, 2003], LOF [Breunig et al., 2000] and SVM
[Scholkopf et al., 2002]) which are designed to mine static
and finite datasets.

Secondly, Streaming HS-Trees is a one-class anomaly de-
tector which is useful when a stream contains a significant
amount of normal data.

Thirdly, it performs fast model updates in order to maintain
high detection accuracy when dealing with time-varying data
distribution. Its model update is simple and fast because it re-
quires no modifications of the tree structure when processing
streaming data.

Streaming HS-Trees employs mass [Ting et al., 2010] as
a measure to rank anomalies. The mass profile can be con-
structed with small samples, allowing the anomaly detector
to learn quickly and adapt to changes in data streams in a
timely manner.

Unlike other decision trees (e.g., random forests [Breiman,
2001]), Streaming HS-Trees does not induce its tree struc-
ture from actual training examples. Instead, the tree structure
is constructed using the data space dimensions alone. The
trees can be built quickly because it requires no attribute or
split-point evaluations; and the model can be deployed be-
fore the streaming data arrive. A direct consequence of this
feature is that Streaming HS-Trees has a constant amortised
time complexity and a constant memory requirement. This is
unlike algorithms that induce decision tree and alter its tree
structure dynamically as streaming data arrive (e.g., Hoeffd-
ing Tree [Domingos and Hulten, 2000]).

Our experimental study shows that an ensemble of Stream-
ing HS-Trees leads to a robust and accurate anomaly detector
that is not too sensitive to different parameter settings.

2 Related work

In the literature, there are already a number of studies devoted
to anomaly detection in static datasets. Typical examples
include the statistical methods [Barnett and Lewis, 1994],
classification-based methods [Abe er al., 2006], clustering-
based methods [He et al., 2003], distance-based methods
[Bay and Schwabacher, 2003], One-Class Support Vector
Machine (SVM) [Scholkopf et al., 2002] and Isolation For-
est [Liu er al., 2008]. These off-line learning methods are not
designed to process streaming data because they require load-
ing of the entire dataset into the main memory for mining.

Recent work on anomaly detection for streaming data in-
clude the domain of monitoring sensor networks [Subrama-
niam et al., 2006] and for abnormal event detection [Davy
et al., 2005], but there is currently little work considering
anomaly detection in evolving data streams.

One interesting related work is LOADED by Otey et
al. [2006], a link-based unsupervised anomaly detector that
works well on datasets with mixed (continuous and categor-
ical) attributes. However, LOADED does not work well on
datasets with purely continuous attributes [Otey et al., 2006].
Unlike LOADED, Streaming HS-Trees is a semi-supervised
one-class learner [Chandola et al., 2009] that works well for
data with continuous attributes.

A recent system that deals with non-stationary data dis-
tributions is OLINDDA (OnLIne Novelty and Drift Detec-
tion Algorithm) [Spinosa et al., 2009]. OLINDDA uses stan-
dard clustering algorithm to groups examples into clusters (or
concepts). Through monitoring the clusters, it detects new
emerging concepts rather than anomalies.

Apart from unsupervised methods discussed earlier, super-
vised learning methods can also be used for anomaly detec-
tion in data streams. For example, Hoeffding Trees (HT)
[Domingos and Hulten, 2000; Hulten et al., 2001] is an in-
cremental anytime decision tree induction algorithm for clas-
sifying high-speed data streams. HT can also be used with
Online Coordinate Boosting (denoted as BoostHT) [Pelossof
et al., 2009]. HT and BoostHT require positive as well as
negative class labels to be available for training. However,
this is not a realistic assumption because anomalous data is
usually rare or not available for training.

3 The Proposed Method

This section presents the proposed method and the key nota-
tions used to describe the method are listed in Table 1.

a streaming point

the number of streaming points

an Half Space Tree, HS-tree

anode in an HS-Tree

the current depth of a node or Node.k
the number of HS-Trees in an ensemble
maximum depth (level) of a tree, or max Depth
mass of a node in the reference window
mass of a node in the latest window
window size

an anomaly score

2
&

w e =3I TR0 N3 8

Table 1: Key notations used in this paper.

3.1 Overview

The proposed method is an ensemble of HS-Trees. Each HS-
Tree consists of a set of nodes, where each node captures the
number of data items (a.k.a. mass) within a particular sub-
space of the data stream. Mass is used to profile the degree of
anomaly because it is simple and fast to compute in compari-
son to distance-based or density-based methods.

To facilitate learning of mass profiles in evolving data
streams, the algorithm segments the stream into windows

1512

of equal size (where each window contains a fixed number
of data items). The system operates with two consecutive
windows, the reference window, followed by the latest win-
dow. During the initial stage of the anomaly detection pro-
cess, the algorithm learns the mass profile of data in the ref-
erence window. Then, the learned profile is used to infer the
anomaly scores of new data subsequently arriving in the latest
window—new data that fall in high-mass subspaces is con-
strued as normal, whereas data in low-mass or empty sub-
spaces is interpreted as anomalous. As new data arrive at the
latest window, the new mass profile is also recorded. When
the latest window is full, the newly recorded profile is used
to override the old profile in the reference window; thus the
reference window will always store the latest profile that can
be used to score the next batch of newly arriving data. Once
this is done, the latest window erases its stored profile and get
ready to capture profile of the next batch of newly arriving
data. This process continues as long as the stream exists.

3.2 Half-Space Trees

Definition An HS-Tree of depth h is a full binary tree con-
sisting of 2h+1 _ 1 nodes, in which all leaves are at the same
depth, h.

When constructing a tree, the algorithm expands each node
by picking a randomly selected dimension, ¢, in the work
space (to be described later in this section) associated with
the node. Using the mid-point of g, the algorithm bisects the
work space into two half-spaces, thus creating the left child
and right child of the node. Node expansion continues un-
til the maximum depth (i.e., h or maxDepth) of all nodes is
reached.

Each node records the mass profile of data in a work space
that it represents, and has the following elements: (i) arrays
man and max, which respectively store the minimum and
maximum values of each dimension of the work space rep-
resented by the node; (ii) variables r and [/, which record the
mass profiles of data stream captured in the reference win-
dow and latest window, respectively; (iii) variable k, which
records the depth of the current node; and (iv) two nodes rep-
resenting the left child and right child of the current node,
each associated with a half-space after the split. Figure 1 de-
picts an example window of (two-dimensional) data that is
partitioned by a simple HS-Tree.

X

Figure 1: An example of data (in a window) partitioned by a
simple HS-Tree.

Creating diverse HS-Trees is crucial to the success of our
ensemble method. This is achieved by using a procedure,

Initialise Work Space, right before the construction of each
tree. Assume that attributes’ ranges are normalised to [0, 1]
at the outset. Let s, be a real number randomly and uni-
formly generated from the interval [0, 1]. A work range,
Sq £ 2 - max(sq, 1 — s4), is defined for every dimension ¢
in the feature space D. This produces a work space that is a
random perturbation of the original feature space. Since each
HS-Tree is built from a different work space (defined as min
and max in Algorithm 1), the result is an ensemble of diverse
HS-Trees.

Algorithm 1 : BuildSingleHS-Tree(min, max, k)
Inputs: min & max - arrays of minimum and maximum
values for every dimension in a Work Space,

k - current depth level

Output: an HS-Tree

if & == maxDepth then
return Node(r < 0,1 <+ 0) {External node}

else
randomly select a dimension ¢
p < (maxq + ming)/2
{Build two nodes (Left & Right) from a split into
two equal-volume half-spaces. }
temp < maxrg;, mary < p
Left < BuildSingleHS-Tree(min, maz, k + 1)
mazg < temp; ming < p
Right < BuildSingleHS-Tree(min, max, k + 1)
return Node(Left, Right, SplitAtt + q,
SplitValue < p,r < 0,1+ 0)

12: end if

SANANE AR S

NS

1
1

Algorithm 1 shows the procedure for building a single HS-
Tree. Each internal node is formed by randomly selecting a
dimension ¢ (Line 4) to form two half-spaces; the split point
is the mid-point of the current range of q. The mass variables
of each node, r and [, are initialised to zero during the tree
construction process.

Recording mass profile in HS-Trees. Once HS-Trees are
constructed, mass profile of normal data must be recorded in
the trees before they can be employed for anomaly detection.
The process involves traversing every instance in a window
through each HS-Tree. Algorithm 2 shows the process where
instances in the reference window will update mass r; and
mass [is updated using instances in the latest window. These
two collections of mass values at each node, r and [, repre-
sent the data profiles in the two different windows. They are
used in Streaming HS-Trees, which will be described in Sec-
tion 3.3.

Algorithm 2 : UpdateMass(x, Node, referenceWindow)
Inputs: x - an instance, Node - a node in an HS-Tree
Output: none

1: (referenceWindow)? Node.r++ : Node.l++

2: if (Node.k < maxzDepth) then

3: Let Node’ be the next level of Node that x traverses
4

5

UpdateMass(z, Node', reference Window)
: end if

1513

Anomaly score. Mass in every partition of an HS-Tree
is used to profile the characteristics of data. Let m[i] be
the mass in a half-space partition at depth level 7 of an HS-
Tree. Under uniform mass distribution, mass values between
any two partitions at levels ¢ and j are related as follows:
mli] x 2¢ = m/[j] x 27. When the distribution is non-uniform,
the following inequality establishes an ordering between par-
titions at different levels: mli] x 2¢ < m[j] x 27. We use this
property to rank anomalies.

Let Score(x, T) be a function that traverses a test instance
x from the root of an HS-Tree (") until a terminal node. This
function then returns the anomaly score of x by evaluating
Node*.r x 2Node™ -k where Node*.k being the depth level
of the terminal node containing Node*.r instances. Here,
a terminal node, or Node™*, is a node that has reached the
maximum depth, or a node that contains size Limit instances
or fewer.

The final score for z is the sum of scores obtained from
each HS-Tree in the ensemble:

Z Score(x,T).

TeHS-Trees

In practice, sizeLimit is not a critical parameter, and a
good default setting is 0.17), where v is the window size.
We want a large value for maxDepth so that a large num-
ber of subspaces is used to capture the data profile in a com-
prehensive manner. But in practice, this setting is limited by
the amount of computer memory available for tree construc-
tion. In our computer, we set maxDepth to 15, which is
adequate for capturing data stream profile. Streaming HS-
Trees is able to learn data stream profile using small samples;
hence, a small window size of ¢y = 250 is sufficient for our
experiments. The ensemble uses 25 trees as this is a mod-
erate ensemble size () which can be easily incorporated in
most machines.

3.3 Streaming HS-Trees

Algorithm 3 shows the operational procedure for Streaming
HS-Trees. Line 1 builds an ensemble of Half-Space Trees.
Line 2 uses the first ¢ instances of the stream to record its
initial reference mass profile in the HS-Trees. Since these in-
stances come from the initial reference window, only mass r
of each traversed node is updated. After these two steps, the
model is ready to provide an anomaly score for each subse-
quent streaming point.

Mass r is used to compute the anomaly score for each
streaming point (Line 8). The recording of mass for each
subsequent streaming point in the latest window is then car-
ried out on mass [(Line 9). At the end of each window, the
model is updated. The model update procedure is simple—
before the start of the next window, the model is updated to
the latest mass by simply transferring the non-zero mass [
to r (Line 14). This process is fast because it involves no
structural change of the model. After this, each node with a
non-zero mass [is reset to zero (Line 15).

Time and Space Complexities: The four key operations
in the main loop of Algorithm 3 are: scoring (Line 8), up-
dating mass (Line 9), model update (Line 14) and model re-
sets (Line 15). For each of the first two operations, every

Algorithm 3 : Streaming HS-Trees(v, t)

Inputs: ¢ - Window Size, ¢ - number of HS-Trees
Output: s - anomaly score for each streaming instance x

1: Build ¢ HS-Trees : Initialise Work Space and call Algo-
rithm 1 for each tree

Record the first reference mass profile in HS-Trees:
for each tree T, invoke UpdateMass(z, T.root, true) for

each item z in the first ¢/ instances of the stream

2:

3: Count < 0
4: while data stream continues do
5: Receive the next streaming point =
6: s+ 0
7 for each tree T in HS-Trees do
8: s <= s + Score(z, T') {accumulate scores}
9: UpdateMass(z, T.root, false) {update mass [in T'}
10: end for
11: Report s as the anomaly score for =
12: Count++
13: if Count == 1 then
14: Update model : Node.r <— Node.l for every node
with non-zero mass or [
15: Reset Node.l < 0 for every node with non-zero
mass [
16: Count < 0
17: end if

18: end while

instance is traversed from a tree’s root to a terminating node
(i.e., O(h)); the last two operations each accesses at most
nodes but occurs % times over the entire stream. Hence the
(average-case) amortised time complexity for n streaming
points is O(t(h+1)); the worst-case is O(t(h+1)), which oc-
curs when model update and reset are performed between
streaming data. These time complexities are constant when
the maximum depth level (h), ensemble size (¢) and the win-
dow size (v) are fixed.

In Streaming HS-Trees, each arriving instance is first pro-
cessed and then discarded, before the next is processed. This
forms a one-pass algorithm that uses a finite memory to pro-
cess infinite data streams. The space complexity for HS-
Trees is O(t2") which is also a constant with fixed ¢ and h.

4 Experimental Setup

Data: Columns 2 to 4 of Table 2 summarise the six large
datasets used in this study. SMTP and HTTP (from KDD Cup
99) are streaming data involving network intrusions. HTTP is
characterised by sudden surges of anomalies in some stream-
ing segments. SMTP does not have surges of anomalies,
but possibly exhibits some distribution changes within the
streaming sequence.

In practice, it is hard to quantify whether a distribution
change has indeed occurred within a stream. For this rea-
son, we derive a dataset, SMTP+HTTP, containing the SMTP
data instances follow by the HTTP data instances. We ex-
pect a distribution change to occur when the communication
protocol is switched from SMTP to HTTP.

1514

COVERTYPE is a UCI dataset [Asuncion and Newman,
2007] commonly used in data stream research. We split the
anomaly class into several small groups and placed them in
different segments of the dataset in order to simulate short
bursts of anomalies in different streaming segments.

SHUTTLE (from UCI) and MULCROSS [Rocke and
Woodruff, 1996] are datasets with little or no distribution
change. However, MULCROSS contains dense clusters of
anomalies that are harder to detect than scattered anomalies.

Experimental Settings: The parameter settings for
Streaming HS-Trees have been discussed earlier in Section 3.
In addition, all the methods are implemented in Java and all
experiments were conducted on a 3GHz Pentium CPU with
1GB RAM.

Once the anomaly scores for all instances (of a segment in
the data stream or of the entire dataset) were obtained, the
instances were ranked based on their anomaly scores. From
this ranking and the ground truth, we then computed the AUC
(Area Under receiver operating characteristic Curve) [Hand
and Till, 2001] to measure the performance of all anomaly
detectors reported in this paper.

In all experiments, we conducted 30 independent runs of
each algorithm on each dataset, and then computed the aver-
age results. A t-test at 5% level of significance was used to
compare performance levels of the algorithms.

5 Experimental Results

We report the results of the experiments in this section. First,
we assess the effectiveness of model adaptation to varying
data distribution. This is done by comparing Streaming HS-
Trees that performs regular updates of its model (denote this
as HSTa), versus Streaming HS-Trees without model update
(we denote this model as HSTn, which only learns from the
first ¢/ instances of the stream).

Model Adaptation Performance: Unlike HSTa, Table
2 (Columns 5 and 6) shows that HSTn only works well
in datasets with no change in distribution (i.e., SHUTTLE
and MULCROSS). It performs poorly when a distribution
change occurs within the data (e.g., SMTP, SMTP+HTTP,
and COVERTYPE). These results are consistent with Figure
2, where HSTn degrades when there are changes in certain
streaming segments of SMTP, SMTP+HTTP, and COVER-
TYPE. Using two artificial datasets, we also confirm that
HSTn does not work well when there is a drift in normal
data, whereas HSTa works well when there is a drift in ei-
ther anomalies or normal data. Details of the artificial data
are omitted here due to space constraints.

Comparison with Hoeffding Trees: Here, we compare
HSTa with Hoeffding Trees (HT) as well as HT with On-
line Coordinate Boosting (BoostHT). For HT and BoostHT,
we use the probability of predicting a negative class (i.e., a
normal point) as the anomaly score—a true anomaly gener-
ally gets a low prediction probability, while a normal point
gets a high probability. This serves as a ranking measure for
anomaly detection. We employ the Java implementations of
HT and BoostHT developed by Bifet et al. [2009].

In terms of the overall AUC scores (c.f. Columns 6 to 8
of Table 2), we expect Hoeffding Tree (HT) to produce the

Data Dimension- AUC Runtime
Dataset Size ality Anomaly HSTn HSTa HT BoostHT HSTa HT
HTTP | 567497 3 attack (0.4%) 982 .996 .994 998 48 227
SMTP 95156 3 attack (0.03%) 740 .875 .858 .692 10 39
SMTP+HTTP | 662653 3 attack (0.35%) 387 .996 991 993 57 272
COVERTYPE | 286048 10 outlier (0.9%) .854 991 .998 968 25 124
MULCROSS 262144 4 2 dense clusters (10%) .998 .998 1.00 1.00 26 114
SHUTTLE 49097 9 class 2,3,5-7 (7%) 999 999 991 984 6 21

Table 2: Average AUC scores for Streaming HS-Trees with no model updates (HSTn) and with regular model updates (HSTa),
Hoeffding Tree (HT), and HT with boosting (BoostHT). Using HSTa as a reference, scores lower than HSTa are underlined, and
scores higher than HSTa are printed in boldface. Runtime is measured in seconds. The figures in brackets are the proportions

of anomalies.

best overall results because it is an oracle-informed multi-
class classifier—it is given the advantage of using the actual
positive and negative class labels for training, and this is done
immediately after each new instance is scored. In contrast,
Streaming HS-Trees with regular model updates (HSTa) uses
only normal data for training.

Because HT is an optimistic baseline, any one-class
anomaly detector for evolving data streams that performs
comparably to HT shall be deemed as a competitive method.
Interestingly, Table 2 shows that HSTa actually gives higher
AUC scores on four (i.e., HTTP, SMTP, SMTP+HTTP, and
SHUTTLE) out of six datasets tested, as compared to HT.
This observation is further examined in Figure 2, which
shows that HSTa surprisingly outperforms HT in HTTP (seg-
ment 2), SMTP (segments 1 and 5), SMTP+HTTP (segment
1) and SHUTTLE (segment 1). HT is unable to cope with
distribution changes in these segments, causing its detection
performance to degrade.

Table 2 shows that BoostHT does not improve the perfor-
mance of HT significantly. In fact, BoostHT performs poorly
on SMTP, which is the most imbalanced dataset used in this
study. This could be due to overfitting of the boosted model.

We also stress test the methods using datasets in which only
20% of the data are labelled. We find that HSTa outperforms
HT on smaller datasets (namely SHUTTLE and SMTP) due
to its ability to learn with fewer instances. Details of this
experiment will be given in a future publication.

Runtime Performance: Hoeffding Tree has the ability to
adapt its tree structure to streaming data—it uses Hoeffding
Bound to decide the best splitting attribute when incremen-
tally inducing a decision tree from a data stream. However,
this flexibility comes with a price—the need to modify the
tree causes HT’s runtime to be four to six times slower than
Streaming HS-Trees, as shown in the last two columns of Ta-
ble 2.

Unlike Hoeffding Trees, Streaming HS-Trees does not
modify or extend the tree structure during the streaming pro-
cess, after it was first built. Even the tree construction pro-
cedure for Streaming HS-Trees is very efficient because the
process requires no evaluation criteria for dimension or split
point selections.

Effects of Parameters: Using four of the datasets for illus-
tration, Figure 3(a) shows that the AUC scores of HSTa reach
high values with 10 trees, and the scores improve steadily as
the ensemble size increases. Using the SHUTTLE dataset as

1515

an example, Figures 3 (b) to (d) show that the effects of differ-
ent parameter settings diminish as the ensemble size grows.
This is due to the power of ensemble learning—while individ-
ual base learners (i.e., HS-Trees) may be weakened by non-
optimal parameter settings for a problem at hand, the combi-
nation of these weak learners still produces reasonably good
results.

6 Concluding Remarks

The proposed anomaly detection algorithm, Streaming HS-
Trees, satisfies the key requirements for mining evolving data
streams: (i) it is a one-pass algorithm with O(1) amortised
time complexity and O(1) space complexity, which is capable
of processing infinite data streams; (ii) it performs anomaly
detection and stream adaptation in a seamless manner.

Our empirical studies show that Streaming HS-Trees with
the regular model update scheme is robust in evolving data
streams. In terms of detection accuracy, Streaming HS-Trees
is comparable to the oracle-informed Hoeffding Tree (an op-
timistic baseline). In terms of runtime, Streaming HS-Trees
outperforms Hoeffding Tree. Our results also show that the
performance of Streaming HS-Trees is robust against differ-
ent parameter settings.

References

N. Abe, B. Zadrozny, and J. Langford. Outlier detection by
active learning. In Proceedings of the 12th ACM SIGKDD,
2006.

A. Asuncion and D. Newman. Uci machine learning reposi-
tory. 2007.

V. Barnett and T. Lewis.
Wiley, 1994.

S.D. Bay and M. Schwabacher. Mining distance-based
anomalies in near linear time with randomization and a
simple pruning rule. In Proceedings of the 9th ACM
SIGKDD, 2003.

A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and
R. Gavalda. New ensemble methods for evolving data
streams. In Proceedings of the 15th ACM SIGKDD, 2009.

L. Breiman. Random forests. Machine Learning, 45:5-32,
2001.

Outliers in Statistical Data. John

OHSTn B HSTa OHT
30 1 200 105 100
1.0
1.0 101 10 4 1 1
0.8 08 '
(:) 0.6 g 0.6 0 0.6
< 04 < 04 <04
0.2 0.2 0.2
0.0 0.0 0.0
1 2 3 4 5
Progresswn of data stream (120000) Progresslon of data stream (20000) Progression of data stream (150000)
(a) HTTP (b) SMTP c) SMTP+HTTP
606 219
0 576 1.0 1.0 706 713 721 717 654
. 0.8 0.9
0.8 © 0.6 O 038
(3}
S 2 04 2 07
< 06
g 0.2 0.6
0.4 0.0 0.5

Progresswn of data stream (60000)

(d) COVERTYPE

Progressmn of data stream (60000)

(e) MULCROSS

1 2 3 4 5
Progression of data stream (10000)

(f) SHUTTLE

Figure 2: AUC scores in five segments. The number on top of each segment is the number of anomalies in that segment. The

number in bracket is the number of items in each segment.

1

095 | /i

H 1
E} I —SHUTTLE s ; w=6a] ; - ~maxDepth = 2 E] — sizelimit = 10
09 HTTP 0.94 1 w=125 094"} ---maxDepth = 6 098 sizelimit = 30
' " coverryee 022 v=250 02 |/ maxDepth =10 " Sielimit-70
’ —W=2000 B —maxDepth = 15
0.85 T T] 0.9 0.9 T T 0.97 T T
0 20 % 60 0 2 2 60 0 20 % 60 0 20 a0 60

Number of HS-Trees Number of HS-Trees

(a) Effect of ensemble size (t)

Figure 3: As the ensemble size grows, the effects of different para

M.M. Breunig, H-P. Kriegel, R.T. Ng, and J. Sander. Lof:
Identifying density-based local outliers. In Proceedings of
the 6th ACM SIGKDD, 2000.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Computing Surveys, 41:1-58, 2009.

M. Davy, E. Desobry, A. Gretton, and C. Doncarli. An on-
line support vector machine for abnormal events detection.
Signal Processing, 86:2009-2025, 2005.

P. Domingos and G. Hulten. Mining high-speed data streams.
In Proceedings of the 6th ACM SIGKDD, 2000.

D.J. Hand and R.J. Till. A simple generalisation of the area
under the roc curve for multiple class classification prob-
lems. Machine Learning, 45:171-186, 2001.

Z. He, X. Xu, and S. Deng. Discovering cluster-based local
outliers. Pattern Recognition Letter, 24:1641-1650, 2003.

G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proceedings of the 7th ACM
SIGKDD, 2001.

ET. Liu, K.M. Ting, and Z.H. Zhou. Isolation forests.
Proceedings of ICDM 2008, 2008.

M.E. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed

In

1516

(b) Effect of window size (1) (c) Effect of maxDepth

Number of HS-Trees Number of HS-Trees

(d) Effect of sOizeLimit

meter settings on the detection performance tend to diminish.

outlier detection in mixed-attribute data sets. Data Mining
and Knowledge Discovery, 12:203-228, 2006.

R. Pelossof, M. Jones, Vovsha, and C. 1. Rudin. Online co-
ordinate boosting. In Proceedings of the 3rd IEEE On-line
Learning for Computer Vision Workshop, 2009.

D.M. Rocke and D.L. Woodruff. Identification of outliers
in multivariate data. Journal of the American Statistical
Association, 91:1047-1061, 1996.

B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and
J. Platt. Support vector method for novelty detection. Ad-
vances in Neural Information Processing Systems, 12:582—
588, 2002.

E.J. Spinosa, A.P. Leon, F. Carvalho, and J. Gama. Novelty
detection with application to data streams. Intelligent Data
Analysis, 13:405-422,20009.

S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kaloger-
aki, and D. Gunopulos. Online outlier detection in sensor
data using non-parametric models. In Proceedings of The
32nd VLDB, 2006.

K.M. Ting, G.T. Zhou, ET. Liu, and S.C. Tan. Mass esti-
mation and its applications. In Proceedings of 16th ACM
SIGKDD, 2010.

