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Abstract

Continuous time series data often comprise or con-
tain repeated motifs — patterns that have similar
shape, and yet exhibit nontrivial variability. Iden-
tifying these motifs, even in the presence of vari-
ation, is an important subtask in both unsuper-
vised knowledge discovery and constructing useful
features for discriminative tasks. This paper ad-
dresses this task using a probabilistic framework
that models generation of data as switching be-
tween a random walk state and states that gener-
ate motifs. A motif is generated from a contin-
uous shape template that can undergo non-linear
transformations such as temporal warping and ad-
ditive noise. We propose an unsupervised algo-
rithm that simultaneously discovers both the set of
canonical shape templates and a template-specific
model of variability manifested in the data. Experi-
mental results on three real-world data sets demon-
strate that our model is able to recover templates in
data where repeated instances show large variabil-
ity. The recovered templates provide higher clas-
sification accuracy and coverage when compared
to those from alternatives such as random projec-
tion based methods and simpler generative models
that do not model variability. Moreover, in analyz-
ing physiological signals from infants in the ICU,
we discover both known signatures as well as novel
physiomarkers.

1 Introduction and Background

Continuous-valued time series data are collected in multiple
domains, including surveillance, pose tracking, ICU patient
monitoring, and finance. These time series often contain mo-
tifs — segments that repeat within and across different se-
ries. For example, in trajectories of people at an airport,
we might see repeated motifs in a person checking in at the
ticket counter, stopping to buy food, etc. In pose tracking,
we might see characteristic patterns such as bending down,
sitting, kicking, etc. And in physiologic signals, recognizable
shapes such as bradycardia and apnea are known to precede
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severe complications such as infection. Discovering these re-
peated segments can provide primitives that are useful for do-
main understanding and as higher-level, meaningful features
that can be used to segment time series or discriminate among
time series data from different groups.

In many domains, different instances of the same motif can
be structurally similar but vary greatly in terms of pointwise
distance [Höppner, 2002]. For example, the temporal posi-
tion profile of the body in a front kick can vary greatly, de-
pending on how quickly the leg is raised, the extent to which
it is raised and then how quickly it is brought back to position.
Yet, these profiles are structurally similar, and different from
that of a round-house kick. Bradycardia and apnea are also
known to manifest significant variation in both amplitude and
temporal duration. Our goal is to deal with the unsupervised
discovery of these deformable motifs in continuous time se-
ries data.

Much work has been done on the problem of motif detec-
tion in continuous time series data. One very popular and
successful approach is the work of Keogh and colleagues
(e.g., [Mueen et al., 2009]), in which a motif is defined via
a pair of windows of the same length that are closely matched
in terms of Euclidean distance. Such pairs are identified via
a sliding window approach followed by random projections
to identify highly similar pairs that have not been previously
identified. However, this method is not geared towards find-
ing motifs that can exhibit significant deformation. Another
line of work tries to find regions of high density in the space
of all subsequences via clustering; see Oates [2002]; Den-
ton [2005] and more recently Minnen et. al. [2007]. These
works define a motif as a vector of means and variances
over the length of the window, a representation that also is
not geared to capturing deformable motifs. Of these meth-
ods, only the work of Minnen et. al. [2007] addresses de-
formation, using dynamic time warping to measure warped
distance. However, motifs often exhibit structured transfor-
mations, where the warp changes gradually over time. As
we show in our results, encoding this bias greatly improves
performance. The work of Listgarten et. al. [2005]; Kim
et. al. [2006] focus on developing a probabilistic model for
aligning sequences that exhibit variability. However, these
methods rely on having a segmentation of the time series into
corresponding motifs. This assumption allows them to im-
pose relatively few constraints on the model, rendering them
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highly under-constrained in our unsupervised setting.

This paper proposes a method, which we call CSTM (Con-
tinuous Shape Template Model), that is specifically targeted
to the task of unsupervised discovery of deformable motifs in
continuous time series data. CSTM seeks to explain the en-
tire data in terms of repeated, warped motifs interspersed with
non-repeating segments. In particular, we define a hidden,
segmental Markov model in which each state either generates
a motif or samples from a non-repeated random walk (NRW).
The individual motifs are represented by smooth continu-
ous functions that are subject to non-linear warp and scale
transformations. Our warp model is inspired by Listgarten
et. al. [2005], but utilizes a significantly more constrained
version, more suited to our task. We learn both the motifs
and their allowed warps in an unsupervised way from un-
segmented time series data. We demonstrate the applicabil-
ity of CSTM to three distinct real-world domains and show
that it achieves considerably better performance than previ-
ous methods, which were not tailored to this task.

2 Generative Model

The CSTM model assumes that the observed time series is
generated by switching between a state that generates non-
repeating segments and states that generate repeating (struc-
turally similar) segments or motifs. Motifs are generated
as samples from a shape template that can undergo non-
linear transformations such as shrinkage, amplification or lo-
cal shifts. The transformations applied at each observed time
t for a sequence are tracked via latent states, the distribution
over which is inferred. Simultaneously, the canonical shape
template and the likelihood of possible transformations for
each template are learned from the data. The random-walk
state generates trajectory data without long-term memory.
Thus, these segments lack repetitive structural patterns. Be-
low, we describe more formally the components of the CSTM
generative model. In Table 1, we summarize the notation used
for each component of the model.

A Canonical Shape Template (CST)

Each shape template, indexed by k, is represented as a con-
tinuous function sk(l) where l ∈ (0, Lk] and Lk is the length
of the kth template. Although the choice of function class for
sk is flexible, a parameterization that encodes the property
of motifs expected to be present in given data will yield bet-
ter results. In many domains, motifs appear as smooth func-
tions. A possible representation might be an L2-regularized
Markovian model. However, these penalize smooth functions
with higher curvature more than those with lower curvature,
a bias not always justified. A promising alternative is piece-
wise Bézier splines [Gallier, 1999]. Shape templates of vary-
ing complexity are intuitively represented by using fewer or
more pieces. For our purpose, it suffices to present the math-
ematics for the case of piecewise third order Bézier curves
over two dimensions, where the first dimension is the time t
and the second diemsnion is the signal value.

A third order Bezier curve is parameterized by four points
pi ∈ R2 for i ∈ 0, · · · , 3. Control points p0 and p3 are the
start and end of each curve piece in the template and shared
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Figure 1: a) The template S shows the canonical shape for
the pen-tip velocity along the x-dimension and a piecewise
Bézier fit to the signal. The generation of two different trans-
formed versions of the template are shown; for simplicity, we
assume only a temporal warp is used and ω tracks the warp
at each time, b) The resulting character ‘w’ generated by in-
tegrating velocities along both the x and y dimension.

between adjacent pieces (see figure 1). The intermediate con-
trol points p1 and p2 control the tangent directions of the
curve at the start and end, as well as the interpolation shape.
Between end points, τ ∈ [0, 1] controls the position on the
curve, and each piece of the curve is interpolated as

f(τ) =

3∑
i=0

(
3
i

)
(1− τ)3−iτ ipi (1)

For higher-dimensional signals in Rn, pi ∈ Rn+1. Although
only C0 continuity is imposed here, it is possible to impose ar-
bitrary continuity within this framework of piecewise Bezier
curves if such additional bias is relevant.

Shape Transformation Model

Motifs are generated by non-uniform sampling and scaling
of sk. Temporal warp can be introduced by moving slowly
or quickly through sk. The allowable temporal warps are
specified as an ordered set {w1, . . . , wn} of time increments
that determines the rate at which we advance through sk.
A template-specific warp transition matrix πk

ω specifies the
probability of transitions between warp states. To generate a
series y1, · · · , yT , let ωt ∈ {w1, . . . , wn} be the random vari-
able tracking the warp and ρt be the position within the tem-
plate sk at time t. Then, yt+1 would be generated from the
value sk(ρt+1) where ρt+1 = ρt+ωt+1 and ωt+1 ∼ πk

ω(ωt).
(For all our experiments, the allowable warps are {1, 2, 3}δt
where δt is the sampling rate; this posits that the longest se-
quence from sk is at most three times the shortest sequence
sampled from it.)

We also want to model scale deformations. Analogously,
the set of allowable scaling coefficients are maintained as the
set {c1, . . . , cn}. Let φt+1 ∈ {c1, . . . , cn} be the sampled
scale value at time t + 1, sampled from the scale transition
matrix πk

φ. Thus, the observation yt+1 would be generated

1466



around the value φt+1s
k(ρt+1), a scaled version of the value

of the motif at ρt+1, where φt+1 ∼ πk
φ(φt). Finally, an ad-

ditive noise value νt+1 ∼ N (0, σ̇) models small shifts. The
parameter σ̇ is shared across all templates.

In summary, putting together all three possible deforma-
tions, we have that yt+1 = νt+1 + φt+1s

k(ρt+1). We use
zt = {ρt, φt, νt} to represent the values of all transforma-
tions at time t.

In many natural domains, motion models are often smooth
due to inertia. For example, while kicking, as the person gets
tired, he may decrease the pace at which he raises his leg.
But, the decrease in his pace is likely to be smooth rather than
transitioning between a very fast and very slow pace from one
time step to another. One simple way to capture this bias is
by constraining the scale and warp transition matrices to be
band diagonal. Specifically, φω(w,w

′) = 0 if |w − w′| > b
where 2b + 1 is the size of the band. (We set b = 1 for
all our experiments.) Experimentally, we observe that in the
absence of such a prior, the model is able to align random
walk sequences to motif sequences by switching arbitrarily
between transformation states, leading to noisy templates and
poor performance.

Non-repeating Random Walk (NRW)

We use the NRW model to capture data not generated from
the templates (see also Denton [2005]). If this data has dif-
ferent noise characteristics, our task becomes simpler as the
noise characteristics can help disambiguate between motif-
generated segments and NRW segments. The generation of
smooth series can be modeled using an autoregressive pro-
cess. We use an AR(1) process for our experiments where
yt = N (yt−1, σ). We refer to the NRW model as the 0th
template.

Template Transitions

Transitions between generating NRW data and motifs from
the CSTs are modeled via a transition matrix, T of size
(K + 1) × (K + 1) where the number of CSTs is K . The
random variable κt tracks the template for an observed se-
ries. Transitions into and out of templates are only allowed at
the start and end of the template, respectively. Thus, when the
position within the template is at the end i.e., ρt−1 = Lκt−1 ,
we have that κt ∼ T (κt−1), otherwise κt = κt−1. For T , we
fix the self-transition parameter for the NRW state as λ, a pre-
specified input. Different settings of λ allows control over the
proportion of data assigned to motifs versus NRW. As λ in-
creases, more of the data is explained by the NRW state and
as a result, the recovered templates have lower variance.1

Below, we summarize the generative process at each time
t:

κt ∼ T (κt−1, ρt−1) (2)

ωt ∼ πκt

ω (ωt−1) (3)

ρt =

{
min(ρt−1 + ωt, L

κt), if κt = κt−1 (4)

1, if κt �= κt−1 (5)

1Learning λ while simultaneously learning the remaining param-
eters leads to degenerate results where all points end up in the NRW
state with learned λ = 1.

Symbol Description
yt Observation at time t
κt Index of the template used at time t
ρt Position within the template at time t
ωt Temporal warp applied at time t
φt Scale tranformation applied at time t
νt Additive noise at time t
zt Vector {ρt, φt, νt} of transformations at time t

sk kth template, length of template is Lk

πk
ω Warp transition matrix for kth template

πk
φ Scale transition matrix for kth template

T Transition matrix for transitions between templa-
tes and NRW

Table 1: Notation for the generative process of CSTM.

φt ∼ πκt

φ (φt) (6)

νt ∼ N (0, σ̇) (7)

yt = νt + φts
κt(ρt) (8)

3 Learning the model

The canonical shape templates, their template-specific trans-
formation models, the NRW model, the template transition
matrix and the latent states (κ1:T , z1:T ) for the observed se-
ries are all inferred from the data using hard EM. Coordinate
ascent is used to update model parameters in the M-step. In
the E-step, given the model parameters, Viterbi is used for
inferring the latent trace.

3.1 E-step

Given y1:T and the model M from the previous iteration,
in the E-step, we compute assignments to the latent vari-
ables {κ1:T , z1:T } using approximate Viterbi decoding (we
use t1 : t2 as shorthand for the sequences of time indices
t1, t1 + 1, . . . , t2):

{κ∗1:T , z
∗

1:T} = argmaxκ1:T ,z1:T
P (κ1:T , z1:T |y1:T ,M)

During the forward phase within Viterbi, at each time, we
prune to maintain only the top B belief states2. For our ex-
periments, we maintain K × 20 states. This does not degrade
performance as most transitions are highly unlikely3.

3.2 M-step

Given the data y1:T and the latent trace {κ1:T , z1:T}, the
model parameters are optimized by taking the gradient of the
penalized complete data log-likelihood w.r.t. each parameter.

2Although we use pruning to speed up Viterbi, exact infer-
ence is also feasible. The cost of exact inference in this model is
O(max(T ∗ W 2

∗ D2
∗K,T ∗K2)) where T is the length of the

series, W and D are dimensions of the warp and scale transforma-
tion matrices respectively and K is the number of templates.

3Pruning within segmental Hidden Markov Models has been
used extensively for speech recognition. To the best of our knowl-
edge, no theoretical guarantees exist for these pruning schemes but
in practice they have been shown to perform well.
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Below, we discuss the penalty for each component and the
corresponding update equations.

Updating πω, πφ and T
A Dirichlet prior, conjugate to the multinomial distribution,
is used for each row of the transition matrices as penalty Pω

and Pφ. In both cases, the prior matrix is constrained to be
band-diagonal. As a result, the posterior matrices are also
band-diagonal. The update is the straightforward MAP es-
timate for multinomials with a Dirichlet prior, so we omit
details for lack of space. For all our experiments, we set a
weak prior favoring shorter warps: Dir(7, 3, 0), Dir(4, 5, 1)
and Dir(0, 7, 3) for each of the rows of πω and πφ given our
setting of allowable warps. As always, the effect of the prior
decreases with larger amounts of data. In our experiments, we
found the recovered templates to be insensitive to the setting
for a reasonable range4.

The template transition matrix T is updated similarly. A
single hyperparameter η̇ is used to control the strength of the
prior. We set η̇ = n/(K2L), where n is the total amount
of observed data, L is the anticipated template length used in
the initializations, and K is the pre-set number of templates.
This is equivalent to assuming that the prior has the same
strength as the data and is distributed uniformly across all
shape templates. Let I(E) be the indicator function for the
event E. To update the transitions out of the NRW state,

T0,k = (1− λ)
η̇ +

∑T

t=2
I(κt−1 = 0)I(κt = k)

η̇K +
∑T

t=2
I(κt−1 = 0)

∑K

k′=1
I(κt = k′)

Transitions are only allowed at the end of each template.
Thus, to update transitions between shape templates,

Tk,k′ ∝ η̇ +
T∑

t=2

I(κt−1 = k)I(κt = k′)I(ρt−1 = Lk)

Fitting Shape Templates

Given the scaled and aligned segments of all observed time
series assigned to any given shape template sk, the smooth
piecewise function can be fitted independently for each shape
template. Thus, collecting terms from the log-likelihood rel-
evant for fitting each template, we get:

Lk = −Psk −
T∑

t=1

I(κt = k)
(yt − φts

k(ρt))
2

σ̇2
(9)

where Psk is a regularization for the kth shape template.
A natural regularization for controlling model complexity is
the BIC penalty [Schwarz, 1978] specified as 0.5 log(N)νk,
where νk is the number of Bézier pieces used and N is the
number of samples assigned to the template.5

Piecewise Bézier curve fitting to chains has been studied
extensively. Lk is not differentiable and non-convex; a series

4If the motifs exhibit large unstructured warp, the prior over the
rows of the warp matrices can be initialized as a symmetric Dirichlet
distribution. However, as seen in our experiments, we posit that in
natural domains, having a structured prior improves recovery.

5A modified BIC penalty of γ(0.5 log(N)νk) can be used if fur-
ther tuning is desired. Higher values of γ lead to smoother curves.

of hill-climbing moves are typically used to get to an opti-
mum. We employ a variant which has been commercially
deployed for large and diverse image collections [Diebel,
2008].

Updating σ and σ̇
Given the assignments of the data to the NRW and the tem-
plate states, and the fitted template functions, the variances σ
and σ̇ are computed easily.

3.3 Escaping local maxima

EM is known to get stuck in local maxima, having too many
clusters in one part of the space and too few in another [Ueda
et al., 1998]. Split and merge steps can help escape these
configurations by: a) splitting clusters that have high vari-
ance due to the assignment of a mixture of series, and b)
merging similar clusters. At each such step, for each existing
template k, 2-means clustering is run on the aligned segmen-
tations. Let k1 and k2 be the indices representing the two
new clusters created from splitting the kth cluster. Then, the

split score Lsplit
k for each cluster is Lk1 + Lk2 - Lk where

Li defines the observation likelihood of the data in cluster i.
The merge score for two template clusters Lmerge

k′k′′ is com-
puted by defining the likelihood score based on the center of
the new cluster (indexed by k′k′′) inferred from all time se-
ries assigned to both clusters k′ and k′′ being merged. Thus,
Lmerge
k′k′′ = Lk′k′′−Lk′−Lk′′ . A split-merge step with candi-

date clusters (k, k′, k′′) is accepted if Lsplit
k + Lmerge

k′k′′ > 0.6

3.4 Peak-based initialization

The choice of window length is not always obvious, espe-
cially in domains where motifs show considerable warp. An
alternative approach is to describe the desired motifs in terms
of their structural complexity — the number of distinct peaks
in the motif. Given such a specification, we first character-
ize a segment s in the continuous time series by the set of
its extremal points [Fink and Gandhi, 2010] — their heights
f s
1 , · · · , f

s
M and positions ts1, . . . , t

s
M . We can find segments

of the desired structure using a simple sliding window ap-
proach, in which we extract segments s that contain the given
number of extremal points (we only consider windows in
which the boundary points are extremal points). We now de-
fine δsm = f s

m − fs
m−1 (taking fs

0 = 0), that is, the height
difference between two consecutive peaks. The peak profile
δs1, . . . , δ

s
M is a warp invariant signature for the window: two

windows that have the same structure but undergo only tem-
poral warp have the same peak profile. Multidimensional sig-
nals are handled by concatenating the peak profile of each di-
mension. We now define the distance between two segments
with the same number of peaks as the weighted sum of the L2

distance of their peak profile and the L2 distance of the times
at which the peaks occur:

d(s, s′) =

M∑
m=1

‖δsm − δs
′

m‖2 + η

M∑
m=1

‖tsm − ts
′

m‖2 (10)

6In order to avoid curve fitting exhaustively to all candidate pairs
for the merge move, we propose plausible pairs based on the dis-
tance between their template means, and then evaluate them using
the correct objective.
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The parameter η controls the extent to which temporal warp
is considered in the similarity metric (for example, η = 0
defines an entirely warp-invariant distance); we use η = 1.
Using the metric d, we cluster segments (using e.g., kmeans)
and select the top K most compact clusters as an initialization
for CSTM. Compactness is evaluated as the distance between
all segments in the cluster to a single segment in the cluster,
minimized over the choice of this segment.

4 Experiments and Results

We evaluated the performance of our CSTM model on four
different datasets. We compare on both classification accu-
racy and coverage, comparing to the widely-used random-
projection-based methods of Mueen et. al. [2009]; Chiu et.
al. [2003]. We also compare against variants of our model
to elucidate the importance of novel bias our model imposes
over prior work. We give a brief overview of our experimen-
tal setup before describing our results.

4.1 Experimental Overview

Datasets and Metric

The Character data is a collection of x and y-pen tip veloci-
ties generated by writing characters on a tablet [Keogh and
Folias, 2002]. We concatenated the individual series to form
a set of labeled unsegmented data for motif discovery.

The Kinect Exercise data was created using Microsoft
Kinect. The data features six leg exercises such as front
kick, rotation, and knee high, interspersed with other mis-
cellaneous activity as the subject relaxes. The dataset was
collected in two different settings. We extract the three di-
mensional coordinates of the ankle.

A Simulated dataset of seven hand-drawn curves was used
to evaluate how model performance degrades under different
amounts of non-repeating segments. With these templates
and a random intialization of our model, we generated four
different datasets where the proportions of non-repeating seg-
ments were 10%, 25%, 50% and 80%.

On heart rate data collected from infants in the Edinburgh
NICU [Williams et al., 2005], our goal is to find known
and novel clinical physiomarkers. This dataset is not fully
labeled, but provides labeled examples of bradycardia. Our
work was primarily motivated by settings such as this where
simple clustering fails due to the amount of warp and non-
repeating segments in the data.

On the first three datasets which are fully labeled, we evalu-
ate the quality of our recovered templates using classification.
We treat the discovered motifs as the feature basis and their
relative proportions within a segment as the feature vector for
that segment. Thus, for each true motif class (e.g., a char-
acter or action) a mean feature vector is computed from the
training set. On the test set, each true motif is assigned a la-
bel based on distance between its feature vector and the mean
feature vector for each class. Classification performance on
the test set are reported. This way of measuring accuracy is
less sensitive to the number of templates used.

Baseline Methods

Mueen [Mueen et al., 2009], repeatedly finds the closest
matched pair from the set of all candidate windows. To avoid

CSTM+PB Mueen2 Mueen5 Mueen10 Mueen25 Mueen50 Chiu2 Chiu5 Chiu10 Chiu25 Chiu50
0

0.2

0.4

0.6

0.8

A
c
c
u
ra
c
y

Initial
CSTM

Figure 2: Comparison of our model with an initialization us-
ing the peak-based method, and initializations from Mueen
and Chiu with different settings for R.

finding similar sequences at consecutive iterations, we use a
sliding window to remove windows within distance d times
the distances between the closest pair and iterate. We refer
to this method as Mueend. We also experiment with Chiu
[Chiu et al., 2003], a method widely used for motif-discovery.
Unlike Mueen, Chiu selects a motif at each iteration based
on its frequency in the data. For both methods, to extract
matches to existing motifs on a test sequence, at each point,
we compute the distance to all motifs at all shifts and label
the point with the closest matched motif.

Since prior works [Minnen et al., 2007] have extensively
used dynamic time warping for computing similarity between
warped subsequences, we define the variant CSTM-DTW
where each row of the warp matrix is set to be the uniform
distribution. CSTM-NW allows no warps. We also de-
fine the variant CSTM-MC which represents the motif as
a simple template encoded as a mean vector (one for each
point), as done in majority of prior works [Oates, 2002;
Minnen et al., 2007; Denton, 2005].

4.2 Results

Our method, similar to prior work, requires an input of the
template length and the number of templates K . When char-
acterizing the motif length is unintuitive, peak based initial-
ization can be used to define the initial templates based on
complexity of the desired motifs. In addition, our method re-
quires a setting of the NRW self-transition parameter: λ con-
trols the tightness of the recovered templates and can be in-
crementally increased (or decreased) to tune to desiderata. A
non-trivial partition of the data is obtained when λ < σ

σ̇
∗1/w

where w is the maximum allowed warp.7 In all our experi-
ments, we set λ = 0.5, a value which respects this constraint.
We subsample the data at the Nyquist frequency [Nyquist,
1928]8.

Character Data. On the character dataset, for different set-
tings of the parameters, number of clusters and the distance d,
we computed classification accuracies for Mueen and Chiu.
The window length is easy to infer for this data even with-
out knowledge of the actual labels; we set it to be 15 (in the
subsampled version). We experiment with different initial-
izations for CSTM: using the motifs derived by the meth-

7Essentially, this inequality is derived by comparing the likeli-
hood of NRW to the template state for a given data and eliminating
terms that are approximately equal.

8Intuitively, this is the highest frequency at which there is still
information in the signal.
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Figure 3: Accuracy on Character (top) and Kinect (bottom)
for CSTM and its variants. Two different initializations for
CSTM are compared: Mueen10 and peak-based.

ods of Mueen and Chiu, and those derived using the peak-
based initialization. Figure 2 shows the classification accura-
cies for these different initializations. The performance of
a random classifier for this dataset is 4.8%. Our method
consistently dominates Mueen and Chiu by a large amount
and yields average and best case performance of 68.75% and
76.25% over all initializations. Our method is also relatively
insensitive to the choice of initialization. Our best perfor-
mance is achieved by initializing with the peak-based method
(CSTM+PB) which requires no knowledge of the length of
the template. Moreover, for those parameter settings where
Mueen does relatively well, our model achieves significant
gain by fitting warped versions of a motif to the same tem-
plate. In contrast, Mueen and Chiu must expend additional
templates for each warped version of a pattern, fragment-
ing the true data clusters and filling some templates with re-
dundant information, thereby preventing other character pat-
terns from being learned. Increasing the distance parame-
ter for Mueen can capture more warped characters within the
same template; however, many characters in this dataset are
remarkably similar and performance suffers from their mis-
classification as d increases.

Figure 4: Confusion matrix showing performance of CSTM
(left) and CSTM-DTW (right) on the character data.

In the next batch of experiments, we focused on a single
initialization. Since Mueen performed better than Chiu, and
is relatively more stable, we consider the Mueen10 initializa-
tion, and compare CSTM against its variants with no warp,
with uniform warp, and without a template prior. In figure 3a,
we see that performance degrades in all cases. A qualitative
examination of the results shows that, while the no-warp ver-

sion fails to align warped motifs, the DTW model aligns too
freely resulting in convergence to poor optimum. The con-
fusion matrix for CSTM-DTW in figure 4 shows that many
more characters are confused when contrasted with the con-
fusion matrix for CSTM in figure 4. Where CSTM misses,
we see that it fails in intuitive ways, with many of the mis-
classifications occurring between similar looking letters, or
letters that have similar parts; for example, we see that h is
confused with m and n, p with r and w with v.

Kinect Data. Next, we tested the performance of our method
on the Kinect Exercise dataset. To evaluate Mueen on this
dataset, we tested Mueen with parameter settings taken from
the cross product of template lengths of 5, 10, 15, or 20, dis-
tance thresholds of 2, 5, 10, 25, or 50, and a number of tem-
plates of 5, 10, 15, or 20. A mean accuracy of 20% was
achieved over these 80 different parameter settings; accura-
cies over 50% were achieved only on 7 of the 80, and the
best accuracy was 62%. Using Mueen10 as an initialization
(with 10 clusters and window length 10, as above), we eval-
uate CSTM and its variants. CSTM achieves performance of
over 86%, compared to the 32% achieved by Mueen10 di-
rectly. CSTM with a peak-based initialization (using either 5
or 7 peaks) produced very similar results, showing again the
relative robustness of CSTMs to initialization. Comparing
to different variants of CSTM, we see that the lack of bias in
the template representation in this dataset lowers performance
dramatically to 56.25%. We note that the templates here are
relatively short, so, unlike the character data, the drop in per-
formance due to unstructured warp is relatively smaller.

Figure 5: a) ROC curve for bradycardia, b-c) novel phys-
iomarkers rocovered by CSTM, d) an example bradycardia
cluster recovered by CSTM, e) aligned version of cluster in
d, and f) an example bradycardia cluster from Mueen)

Synthetic Data. To evaluate how our model performs as the
proportion of non-repeating segments increases, we evaluate
the different variants of CSTM and Mueen10 on simulated
data of hand-drawn curves. CSTM performance is 78% even
at the 80% random walk level, and performs considerably bet-
ter than Mueen10, whose performance is around 50%. More-
over, CSTM’s performance (74.5% − 90%) is consistently
higher than its less-structured variants (62%− 72%).

NICU Data. On the NICU data, we compute the ROC curve
for identifying bradycardia (true positive and false positive
measures are computed as each new cluster is added up to a
total of 20 clusters). We perform a single run with peak based
clustering using 3−7 peaks and multiple runs for Mueen with
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different settings for d (see figure 5a). The ROC curve from
CSTM dominates those from Mueen with significantly higher
true positive rates at lower false positive rates. In 5b and 5c,
we show examples of novel clusters not previously known
(and potentially clinically significant). In 5d and 5f, we show
clusters containing bradycardia signals generated by CSTM
and Mueen respectively. The former is able to capture highly
variable versions of bradycardia while those in the latter are
fairly homogeneous.

5 Discussion and Conclusion

We have presented a new model for unsupervised discovery
of deformable motifs in continuous time series data. Our
probabilistic model seeks to explain the entire series and iden-
tify repeating and non-repeating segments. This approach al-
lows us to model and learn important representational biases
regarding the nature of deformable motifs. We demonstrate
the importance of these design choices on multiple real-world
domains, and show that our approach performs consistently
better compared to prior works.

Our work can be extended in several ways. Our warp-
invariant signatures can be used for a forward lookup within
beam pruning to significantly speed up inference when K ,
the number of templates is large. Our current implementa-
tion requires fixing this number of clusters. However, our ap-
proach can easily be adapted to incremental data exploration,
where additional templates can be introduced at a given itera-
tion to refine existing templates or discover new templates. A
Bayesian nonparametric prior is another approach that could
be used to systematically control the number of classes based
on model complexity. A different extension could build a
hierarchy of motifs, where larger motifs are comprised of
multiple occurrences of smaller motifs, thereby possibly pro-
viding an understanding of the data at different time scales.
More broadly, this work can serve as a basis for building non-
parametric priors over deformable multivariate curves.
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