
Automatic State Abstraction from Demonstration∗

Luis C. Cobo

luisca@gatech.edu
College of Engineering

Georgia Tech
Atlanta, GA 30332

Peng Zang

pengzang@cc.gatech.edu
College of Computing

Georgia Tech
Atlanta, GA 30332

Charles L. Isbell Jr.

isbell@cc.gatech.edu
College of Computing

Georgia Tech
Atlanta, GA 30332

Andrea L. Thomaz

athomaz@cc.gatech.edu
College of Computing

Georgia Tech
Atlanta, GA 30332

Abstract

Learning from Demonstration (LfD) is a popu-
lar technique for building decision-making agents
from human help. Traditional LfD methods use
demonstrations as training examples for supervised
learning, but complex tasks can require more ex-
amples than is practical to obtain. We present Ab-
straction from Demonstration (AfD), a novel form
of LfD that uses demonstrations to infer state ab-
stractions and reinforcement learning (RL) meth-
ods in those abstract state spaces to build a policy.
Empirical results show that AfD is greater than an
order of magnitude more sample efficient than just
using demonstrations as training examples, and ex-
ponentially faster than RL alone.

1 Introduction

Our research goals center around deploying agents in real-
world human environments, e.g., robotic assistants in homes
and hospitals, or non-player characters in video games. As
it is impractical to pre-program an agent with every skill it
might need in these domains, we aim for flexible agents that
can learn new tasks and skills from non-expert end-users.

Learning from Demonstration (LfD) is a natural choice for
achieving such flexibility, having been applied successfully
in domains ranging from helicopter flying [Ng et al., 2004] to
simulated robosoccer [Aler et al., 2005]. LfD is a form of su-
pervised learning that uses demonstrations to approximate a
mapping from states to actions [Argall et al., 2009]. Unfortu-
nately, the possibly large number of examples needed to learn
a mapping may be a burden on the human. Further, training
and test distributions may not match when the agent has not
perfectly mimicked the demonstrator: a policy only partially
replicating human behavior may lead to unknown parts of the
state space. Thus, small errors can produce large differences
in the distribution of states that the agent will encounter.

We present an alternative approach, Abstraction from
Demonstration (AfD), a combination of demonstration and
traditional reinforcement learning (RL) approaches. AfD
avoids these problem and dramatically reduces the number of

∗This work is supported by the National Science Foundation un-
der Grant No. 0812116 and Obra Social “la Caixa”.

demonstrations needed to obtain good performance. In AfD,
we use demonstration data not to learn the underlying map-
ping, but to identify relevant task features. We then apply RL
methods with this abstract state space to learn a policy.

AfD lies between LfD approaches that rely primarily on
demonstrations to build a good policy, and RL methods that
rely primarily on a reward signal. Compared to LfD, AfD
supplements human examples with information from the re-
ward to build policies better than those demonstrated. Com-
pared to RL, AfD supplies abstraction information from hu-
man data to reduce the complexity of the problem.

AfD exploits the fact that the set of features necessary to
learn and represent a reasonable policy may be much smaller
than the full set of features. It might seem more straight-
forward to ask human subjects directly for features; how-
ever, such an approach requires interfaces for presenting and
querying domain features and requires users to understand
the features and their ramifications. Demonstrations on the
other hand, let us extract information about what features are
relevant implicitly through users’ actions.

In this paper we present our algorithm for using non-
expert human demonstrations to identify relevant features.
We present experiments showing that resulting policies are
significantly better than what can be learned directly from the
demonstrations or via RL in the full state space. Finally, we
discuss the implications and applicability of our approach.

1.1 Related work

There are numerous extensions to LfD [Argall et al., 2009]. A
significant branch of LfD focuses on combining demonstra-
tions with traditional RL methods, including using demon-
stration to guide exploration [Smart and Kaelbling, 2002],
learn a reward function [Abbeel and Ng, 2004], and in-
duce task decompositions [N. Mehta et al., 2007; Zang et
al., 2009]. AfD uses demonstrations to learn state abstrac-
tions, making the subsequent application of RL dramatically
faster. This is most similar to inducing task decompositions
but through a different mechanism. As such, when a domain
contains both potential abstractions and hierarchical decom-
positions, these techniques are complementary.

Another branch of LfD uses demonstration data for learn-
ing plans, e.g., learning pre and post conditions; however, this
work typically assumes additional information such as anno-
tations. We limit our attention to cases where only demonstra-

1243

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



tions are available, reflecting our focus on learning from non-
experts. Requiring additional information introduces com-
plexity and moves us away from our target teacher pool.

Prior work has also focused on automated methods of per-
forming feature selection in RL such as the use of L1 reg-
ularization [Kolter and Ng, 2009], L2 regularization [Farah-
mand et al., 2009], and “forward-selection” style feature se-
lection from features generated based on Bellman error anal-
ysis [Keller et al., 2006; Parr et al., 2007]. Our work differs in
that we are selecting features for representing the human pol-
icy, as opposed to an optimal or near-optimal Q or value func-
tion. The features we select from human data are typically
inadequate for representing an accurate Q or value function
for any given (e.g., linear) model. We use an exact (tabular)
Q-representation in the abstract state space.

Finally, much prior work in LfD learns from researchers.
In our work we focus on using everyday people.

2 Preliminaries: Reinforcement Learning

A Markov Decision Process (MDP) is a tuple M =
(S,A, P a

ss′ , R
a
s , γ) where S = {F1 × · · · × Fn} is a fi-

nite set of states with n features, A a finite set of actions,
P a
ss′ = Pr (s′|s, a) the transition model that specifies the

probability of reaching state s′ when taking action a in state
s, Ra

s = r(s, a) the immediate reward when taking action a
on state s, and 0 ≤ γ ≤ 1 the discount factor. We define a
state s ∈ S as an n-tuple of features s = (f1, f2, . . . , fn).

A policy π : S → A defines which action an agent takes in
a particular state s. V π(s) = R

π(s)
s + γ

∑
s′∈S P

π(s)
ss′ V π(s′)

is the state value of s when following policy π, i.e., , the
expected sum of discounted rewards that the agent obtains
when starting on state s and following policy π. Qπ(s, a) =
Ra

s +γ
∑

s′∈S P a
ss′V

π(s′) is the Q-value of (s, a), or the dis-
counted reward received when choosing action a in state s,
and then following policy π. π∗ is the optimal policy maxi-
mizing the value of each state. V (s) = V π∗

(s), Q(a, s) =
Qπ∗

(a, s) are the optimal state and Q-values, and sometimes
are referred to simply as the values of the state.

A human demonstration, or user trace, is a set of k pairs
of tuples {(s1, a1), · · · , (sk, ak)}. Each pair is a sample that
describe which action the human teacher took in state si.

3 Abstraction from Demonstration

3.1 Algorithm

AfD learns a policy for an MDP by building an abstract space
Sα and using reinforcement learning to find an optimal policy
that can be represented in Sα. AfD obtains Sα by selecting a
subset of features from the original state space S with which
it can predict the action that a human teacher has taken in the
set of demonstrations. Learning in Sα can be significantly
more efficient because a linear reduction in the features leads
to an exponential reduction in the size of the state space.

We present our algorithm for AfD in Listing 1. It is com-
posed of two sequential steps. First, a feature selection al-
gorithm is applied on human demonstrations to choose the
subset of features we will use. In the second step, that corre-
sponds with the loop in Listing 1, the algorithm learns a pol-

icy for M using a modified version of a Monte Carlo learning
algorithm with exploring starts. Instead of learning the Q-
values of states in the original state space Q(s, a), s ∈ S, it
learns the Q-values of states in the transformed state space
Q(sα, a) where sα ∈ Sα. We stop when policy performance
converges, i.e., , when the expected return remains stable.

Algorithm 1 Generic AfD algorithm with γ = 1, the general
case is a simple extension.
Require: MDP M = (S,A, P a

ssα , R
a
s , γ), S = {F1 ×

. . . × Fn}, feature selector F, human demonstrations H =
{{(s1, a1), (s2, a2), . . .}, . . .}, s ∈ S, a ∈ A.
chosenFeatures← F(H)
π ← arbitrary policy
Initialize all Q(sα, a) to arbitrary values
Intialize all Rewards[(sα, a)] to []
while π performance has not converged do

visited← []
Start episode with random state-action, then follow π
for all Step (state s, action a, reward r) do

for all (sα, a) in visited do
EpisodeReward[(sα, a)] += r

end for
sα ← getFeatureSubset(s, chosenFeatures)
if (sα, a) not in visited then

Add (sα, a) to visited
EpisodeReward[(sα, a)]← 0

end if
end for
for all (sα, a) in visited do

Add EpisodeReward[(sα, a)] to Rewards[(sα, a)]
Q(sα, a)=average(Rewards[(sα, a)])

end for
Update greedy policy π

end while

We have used two different feature selection algorithms for
AfD. The first, which we call C4.5-greedy, is a simple greedy
backward selection algorithm. Starting with the full feature
set, it iteratively removes features, one at a time, that have lit-
tle impact on the performance. In each iteration, the feature
whose absence affects accuracy the least is removed. If the
best feature to drop affects accuracy by more than 2% with
respect to the current feature set, we stop. We also stop if
dropping a feature results in an accuracy drop greater than
10% with respect to the original feature set. These stopping
parameters are not sensitive. In experiments we have tested
parameter values of 1% and 5% with no significant differ-
ence in the feature set selected. Note that we use relative
accuracy for these stopping criterion, i.e., , the amount of ac-
curacy gained with respect to the majority classifier.

The second approach, Cfs+voting, uses Correlation-based
Feature Subset Selection (Cfs) [Hall, 1999]. Cfs searches for
features with high individual predictive ability but low mu-
tual redundancy. The Cfs algorithm is used separately on the
demonstrations of each individual. A feature is chosen if it is
included by at least half of the individuals.

3.2 Policy Invariance

State abstractions that, like ours, collapse states with the same
optimal action are called policy-invariant. These present the

1244



problem that while they are enough to represent a policy, they
might not be good enough to learn it.

In the transformed state space, a single state sα ∈ Sα rep-
resents several states of the original space s1, . . . , sk ∈ S.
Assuming the subset of features selected is sufficient for pre-
dicting the demonstrator’s action, every original state corre-
sponding to sα should share the same action. Because only
values with the same associated action are collapsed, the
teacher policy can be represented in Sα. The original state
value function V (s) may not be representable in Sα because
the collapsed states s1, . . . , sk may have different true state
values in S. The same holds for the Q-values Q(s, a).

For example, Fig. 1 shows a deterministic MDP with states
defined by features {F1, · · · , Fn}. F1 can have values U or D
depending whether the state is up or down in the figure, and
the rest of the features are policy-irrelevant. The available ac-
tions are a1 and a2 and the only reward is obtained by taking
action a1 in state s2. With γ < 1, the value of s1 and s2 is
different; however, because their optimal action is the same
(a1), AfD collapses both into a single state sαa1

∈ Sα.
Conversion to the transformed space also breaks the

Markovian property. In Fig. 1, we can see that wrt. the trans-
formed space, actions a1 and action a2 in collapsed state sαa2

are identical. However, we know that in reality the two ac-
tions are very different. The value of taking action a1 from
collapsed state sαa1

depends upon how we got to sαa1
; specif-

ically, what action was taken in state sαa2
to get there. This

means reinforcement learning algorithms that make use of
bootstrapping will not work. Bootstrapping algorithms such
as Q-learning compute Q-values considering the immediate
reward and the value of the next state. In our example, with
the immediate reward and next state identical for both ac-
tions, Q-learning would be unable to learn the best action,
even though one leads to higher discounted rewards.

Previous work on policy-invariant abstractions, such as
[Jong and Stone, 2005], encapsulate the state abstraction as
an option that will not be used if it degrades performance.
We work around problems of policy-invariant abstractions by
using non-bootstrapping methods like Monte Carlo control.

3.3 Properties

AfD’s feature elimination process is benign: in the limit of
infinite data, the feature subset it yields will not negatively
affect the accuracy of the learner. To see this, consider that
AfD only removes features it judges will not reduce the accu-
racy of the learner. These judgements are based on some held
out portion of the data.1 In the limit of infinite data, these
judgements will be accurate, and the elimination process will
never remove a feature if it negatively impacts accuracy. Thus
the final feature subset cannot negatively impact accuracy.

AfD’s policy solver is sound. As shown in Sec. 3.2, in
a policy-invariant abstraction like ours, bootstrapping algo-
rithms like Q-learning may not find the best stationary pol-
icy; however, the abstracted space creates a POMDP, where
Monte Carlo control is sound [Singh et al., 1994]. Thus, ap-
plying the policy solver will not lower policy performance.

1We actually use cross validation for higher sample efficiency,
but the same principle holds.

Figure 1: Example of a MDP that loses the Markov property
on state abstraction. Circles represent states in S and arrows
transitions from taking a1, providing an immediate reward r.
Dashed circles represent states in the transformed space Sα.

From these properties, we can show that in the limit, the
worst case policy performance of AfD is that same as direct
LfD. In the limit, LfD will yield a policy with the best predic-
tion accuracy. Similarly, AfD’s policy solver is sound: it will
not lower policy performance. Further, AfD’s feature elimi-
nation will not lower prediction accuracy. So AfD is working
with policies at the same accuracy level as LfD. Thus, the
worst case of AfD can be no worse than that of LfD.

4 Experimental results

We compare the performance of AfD with that of using
demonstrations alone and that of using RL alone (using
Sarsa(λ)). For direct LfD we use a C4.5 decision tree clas-
sifier to learn a direct mapping. The classifier uses all the
features of the state space as input attributes and the actions
of the particular domain as labels. We use two domains.
Pong serves as a proving ground for demonstrating the cor-
rectness of AfD, using just 23 episodes as training data. The
more complex Frogger gauges generalization and real world
applicability. For Frogger, we recruited non-expert human
subjects—six males and eight females—to provide demon-
strations. Each had 3 minutes to familiarize themselves with
the controls of the game; they were then asked to provide
demonstrations by playing the game for 10 minutes.

4.1 Domains

Pong is a form of tennis where two paddles move to keep a
ball in play. Our agent use one paddle while another uses a
fixed policy to move in the direction to best match the ball’s
Y position when the ball is approaching, moving randomly
otherwise. There are five features: paddle-Y, ball-X,
ball-Y, ball-angle, and opponent-Y. Y coordinates
and ball-angle have 24 possible values while ball-X
has 18. There are two possible actions: Up or Down. Reward
is 0 except when successfully returning a ball, yielding +10.
The game terminates when a player loses or after 400 steps,
implying a maximum policy return of 60.

The second domain is a version of the classic Frogger game
(Fig. 2). In the game, the player must lead the frog from the
lower part of the screen to the top, without being run over by
a car or falling in the water.

1245



Figure 2: Capture of the Frogger domain.

Player Average Return Episodes

Human 56.5 –
Sarsa 60.0 2554
Direct LfD 15.7 –
AfD - C4.5-greedy 60.0 59

Table 1: Performance on Pong with good demonstrations.
Time is measured in seconds

At each time step, the cars advance one position in their
direction of movement, and the player can leave the frog in
its current position or move it up, down, left or right. The
positions and directions of the cars are randomly chosen for
each game, and the frog can be initially placed in any position
in the lower row. The game was played at 7 steps per second,
chosen empirically as a challenging enough speed to be fun.

The screen is divided in a grid, and the state features are
the contents of each cell relative to the current position of the
frog. For example, the feature 3u2l is the cell three rows
up and two columns to the left of the current frog position,
and the feature X1r the cell just to the right of the frog. The
possible values are empty, if the cell falls out of the screen;
good, if the cell is safe; and water, carR, carL for cells
containing water, or a car moving to the right/left.

There are 8x9 cells, so 306 features are needed to include
the screen in the state representation. With 5 possible actions
and 5 possible values per each cell, a table-based Q-learning
algorithm might need to store up to 5307 ≈ 10215 Q-values.

4.2 Results

Table 1 compares the performance of various learned poli-
cies in Pong. Human results are provided for reference. As
we can see from the results, AfD is able to learn an opti-
mal policy – outperforming direct LfD; moreover, while Q-
learning also learns an optimal policy, AfD is significantly
faster. AfD’s speedup corresponds directly to the smaller
abstract state space. In particular, AfD ignored the feature
opponent-Y, which did not influence the teacher’s actions.

With Frogger, we focus on how well AfD works with non-
expert humans. The 14 human teachers obtained a success
rate (percentage of times they lead the frog to the goal) be-
tween 31% and 55%. For learning in AfD, we filtered the
demonstrations to keep only successful games and to remove
redundant samples caused by the player not pressing keys
while thinking or taking a small break. Each user provided

Player Success rate
Human 31%-55%
Direct LfD 43.9%
AfD - Cfs+voting 97.0%
AfD - C4.5-greedy 97.4%

Table 2: Frogger domain, all demos (17221 samples).

Player Success rate
Human 55%
Direct LfD 17.1%
AfD - C4.5-greedy 88.3%

Table 3: Frogger domain, best player demos (1252).

on average 33.1 demonstrations (σ = 9.3), or 1230.1 sam-
ples (σ = 273.6). Note that a demonstration is a complete
episode in the game and a sample is a single state-action pair.

We compared the algorithms using two sets of the demon-
strations: the aggregated samples of all users, 464 demon-
strations (17221 samples) in total; and the 24 demonstrations
(1252 samples) from the best player.

For feature selection in AfD, we used the Cfs+voting and
C4.5-greedy algorithms (Sec. 3). Before using C4.5-greedy
in this domain, we reduced the number of variables using
the Cfs algorithm, because iterative removal on 306 variables
was too time consuming and our tests showed that the cho-
sen features were the same as when using only C4.5-greedy.
Cfs+voting was not used on the second data set, as it is de-
signed to work with a set of demonstrations from different
teachers. For reinforcement learning, we used γ = 1; and the
rewards were r = 100 for reaching the goal, r = −100 for
death, and r = −1 for any other transition.

In Table 2 we see that, using all demonstrations, AfD
achieves a significantly higher success rate than direct LfD.
AfD gets close to 100% success regardless of feature selec-
tion algorithm, while direct LfD does not reach 44%. Note
also that the AfD policies perform better than the best human.

Table 3 shows results using only demonstrations from the
best player. Even with only 7% the number of demonstrations
of the previous experiment, AfD performance decreases only
slightly. By contrast, direct LfD is much worse. Again, AfD
performs better than the teacher. Comparing both tables we
can appreciate that AfD is much more sample efficient than
LfD, performing better with 20x fewer demonstrations.

By inspection, we see that AfD identified “key features”
of the domain. The five key features for this domain are the
cells at both sides of the frog and the three closest cells in
the row immediately above. Of the original 306 features,
the algorithms selected 9 to 12, and the five key features
were included in these sets. Only when using just the best
player demonstrations did AfD fail to include one of these
key features, to which we attribute the slight decrease in per-
formance. The other features selected were also useful: cells
in the three rows contiguous to the frog and others that al-
lowed the frog to line up with a goal cell when in a safe row.

We also compared the performance of AfD with that of
applying RL directly in the raw feature space. Fig. 3 shows

1246



Figure 3: Performance (% of games won) of AfD and learn-
ing in the raw state space in Frogger domain.ing in the raw state space in Frogger domain.

Figure 4: Policy size to number of step of AfD and learning in
the raw state space in Frogger domain. Raw line is not visible
because it matches the vertical axis.

that comparatively, working in the large raw state space did
not achieve significant learning: states are rarely visited for a
second time, retarding learning. Additionally, memory con-
sumption grows linearly as a function of the number of steps
taken. In our experiments, the raw method had consumed
19GB of memory before had to be killed. At that point, it had
taken almost 1.7 million steps even though the success rate
was still below 0.2%. By contrast, AfD was performing bet-
ter within 1k steps (the success rate is lower than in Table 2
because exploration was not disabled). Fig. 4 illustrates the
difference in state space size by showing the growth of policy
sizes (the raw method is aligned with the y-axis). Policy sizes
for the AfD methods begin to level off immediately.

5 Discussion

AfD presents several advantages over direct LfD. Direct LfD
seeks to approximate the mapping from states to actions;

however, in reality, the demonstrator’s policy is not neces-
sarily deterministic or stationary. Different demonstrators
may also teach different but equally valid policies. Thus,
for any given state, there may be a set of equally appropri-
ate actions; hence we are in a multi-label supervised learning
setting [Zhang and Zhou, 2007], but the data is not multi-
label. For any single action, we see examples of when it
should be used, but never examples of when it should not
be. This problem stems from the fundamental fact that when
a demonstrator shows an appropriate action for a given state,
they are not necessarily indicating that other actions are inap-
propriate. This produces a situation commonly referred to as
“positive and unlabeled data” [Letouzey et al., 2009]. One of
the approaches to deal with positive and unlabeled data is to
assume that observed positive examples are chosen randomly
from the set of all positive examples [Elkan and Noto, 2008].
This is not true for human demonstrations. AfD avoids this
issue by only using the data to identify relevant features. It
does not matter how well we can approximate the demon-
strated policy, only that a feature has a positive contribution
toward the approximation.

AfD performs better than policies built using direct LfD
even when LfD is using an order of magnitude more demon-
strations than AfD. The sample efficiency of AfD is one of
the key advantages of the algorithm given that good human
demonstrations is often expensive and time-consuming.

Given the cost of acquiring human samples, it might be
desirable to avoid it altogether and use direct RL algorithms
without using demonstrations; however, AfD achieves signif-
icant speedup by taking advantage of the exponential savings
of feature reduction, and converges to a high performance
policy in minutes while learning without demonstrations did
not show improvement over the initial random policy after
hours. This speedup suggests that, even including the time
and cost required to acquire the human demonstrations, AfD
will be more cost and time-effective than learning without us-
ing human demonstrations in many domains.

Another advantage of AfD is that its performance is not
limited to that of the teacher. AfD uses the reward signal
to obtain the best policy that can be expressed in its reduced
feature space. This policy, as our results show, is significantly
better than that of the teacher. There is no guarantee however
of optimality. While it is possible to obtain optimality from
the reward signal through use of RL methods, such methods
could not take advantage of the abstraction we derive from
human teachers. They would have to work in the full feature
set. AfD focuses on providing a reasonable policy quickly by
combining the ability of humans to discern relevant features,
with the optimization capabilities of computers.

While it is possible that the set of task-relevant features
is the full set, we believe that more often the relevant set is
much smaller, making AfD widely applicable. We make three
observations in support of this belief.

First, AfD uses only those features needed to represent
policies in demonstrations. This set is often smaller than that
needed to represent an optimal policy because humans often
prefer simpler satisficing policies over optimal ones. Addi-
tionally, the focus on features for representing policies instead
of Q-value functions helps to create small feature sets because

1247



policies are often much simpler to represent than estimates of
the expected sum of discounted rewards-to-go.

Second, autonomous agents to be deployed in human envi-
ronments are often multi-purpose, equipped with many sen-
sors that generate an array of useful features, but for any given
task, only some of these sensors are needed.

Finally, in hierarchal settings, subtasks typically require
only a small set of the available features. Often, the same
is true for the root task when given solutions for the subtasks.
We can imagine, for example, an agent with robotic limbs
and fingers that is learning to play a piece of music on a pi-
ano. The agent must learn a subtask for playing every note
and chord. For each of these subtasks, the agent only needs
to consider the initial relative position of its fingers with re-
spect to the piano. For the root task of deciding which note
to execute for a specific piece, the only feature needed is how
many notes of the piece have been played so far. By consider-
ing only the necessary features at each level of the hierarchy,
AfD can boost the efficiency of LfD in hierarchical tasks.

6 Conclusions

We have presented Abstraction from Demonstration, a new
method of Learning from Demonstration. AfD uses demon-
strations from a human teacher to infer a state space abstrac-
tion before using RL algorithms to learn a policy. We found
that AfD yielded better policies than direct LfD. Compared to
learning in the raw state space without demonstrations, AfD
provides an exponential increase in performance due to an
exponential reduction in the state space size.

AfD offers a middle way between traditional LfD and
learning without demonstrations, achieving better perfor-
mance than both options and requiring only a small number
of demonstrations. In future work, we plan to further study
the sample efficiency of AfD and apply it to a wider set of
complex domains, including hierarchical learning domains.
We will also evaluate if we can achieve faster convergence by
using demonstrations both to build an abstract feature space
and to build a policy prior to guide the early exploration of
the RL algorithm in the abstracted space.

References

[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y. Ng.
Apprenticeship learning via inverse reinforcement learn-
ing. In International Conference on Machine Learning,
page 1. ACM, 2004.

[Aler et al., 2005] R. Aler, O. Garcia, and JM Valls. Cor-
recting and improving imitation models of humans for ro-
bosoccer agents. In IEEE Congress on Evolutionary Com-
putation, volume 3, 2005.

[Argall et al., 2009] Brenna D. Argall, Sonia Chernova,
Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous
Systems, 57(5):469–483, May 2009.

[Elkan and Noto, 2008] C. Elkan and K. Noto. Learning
classifiers from only positive and unlabeled data. In Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 213–220. ACM, 2008.

[Farahmand et al., 2009] A.M. Farahmand,
M. Ghavamzadeh, C. Szepesvari, and S. Mannor. Regu-
larized policy iteration. Advances in Neural Information
Processing Systems, 21:441–448, 2009.

[Hall, 1999] M.A. Hall. Correlation-based feature selection
for machine learning. PhD thesis, 1999.

[Jong and Stone, 2005] Nicholas K Jong and Peter Stone.
State Abstraction Discovery from Irrelevant State Vari-
ables. International Joint Conference on Artificial Intel-
ligence, pages 752–757, 2005.

[Keller et al., 2006] P.W. Keller, S. Mannor, and D. Precup.
Automatic basis function construction for approximate dy-
namic programming and reinforcement learning. In Inter-
national Conference on Machine learning, pages 449–456.
ACM, 2006.

[Kolter and Ng, 2009] J.Z. Kolter and A.Y. Ng. Regulariza-
tion and feature selection in least-squares temporal differ-
ence learning. In International Conference on Machine
Learning, pages 521–528. ACM, 2009.

[Letouzey et al., 2009] F. Letouzey, F. Denis, and
R. Gilleron. Learning from positive and unlabeled
examples. In Algorithmic Learning Theory, pages 71–85.
Springer, 2009.

[N. Mehta et al., 2007] S. Ray N. Mehta, M. Wynkoop,
P. Tadepalli, and T. Dietterich. Automatic induction of
maxq hierarchies. In Proceedings of the Hierarchical
Organization of Behavior Workshop. 21st Conference on
Neural Information Processing Systems, 2007.

[Ng et al., 2004] A.Y. Ng, H.J. Kim, M.I. Jordan, S. Sastry,
and S. Ballianda. Autonomous helicopter flight via rein-
forcement learning. Advances in Neural Information Pro-
cessing Systems, 16, 2004.

[Parr et al., 2007] R. Parr, C. Painter-Wakefield, L. Li, and
M. Littman. Analyzing feature generation for value-
function approximation. In International Conference on
Machine learning, pages 737–744. ACM, 2007.

[Singh et al., 1994] S.P. Singh, Tommi Jaakkola, and M.I.
Jordan. Learning without state-estimation in partially ob-
servable Markovian decision processes. In International
Conference on Machine Learning, pages 284–292, 1994.

[Smart and Kaelbling, 2002] W.D. Smart and L.P. Kaelbling.
Effective reinforcement learning for mobile robots. In
IEEE International Conference on Robotics and Automa-
tion, volume 4, pages 3404–3410, 2002.

[Zang et al., 2009] P. Zang, P. Zhou, D. Minnen, and C.L.
Isbell. Discovering options from example trajectories. In
Proceedings of the 26th Annual International Conference
on Machine Learning. ACM New York, NY, USA, 2009.

[Zhang and Zhou, 2007] M.L. Zhang and Z.H. Zhou. ML-
KNN: A lazy learning approach to multi-label learning.
Pattern Recognition, 40(7):2038–2048, 2007.

1248




