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Abstract

In multi-issue automated negotiation against un-
known opponents, a key part of effective negotia-
tion is the choice of concession strategy. In this
paper, we develop a principled concession strategy,
based on Gaussian processes predicting the oppo-
nent’s future behaviour. We then use this to set the
agent’s concession rate dynamically during a single
negotiation session. We analyse the performance of
our strategy and show that it outperforms the state-
of-the-art negotiating agents from the 2010 Auto-
mated Negotiating Agents Competition, in both a
tournament setting and in self-play, across a variety
of negotiation domains.

1 Introduction

A key aspect to effective negotiation in multi-issue negotia-
tions is the choice of concession strategy. Specifically, there
exists a trade-off between conceding quickly, thereby reach-
ing an agreement early with a low utility, versus a more pa-
tient approach, that concedes slowly, therefore reaching an
agreement later, but potentially with a higher utility. This
trade-off is particularly relevant in domains with a discount-
ing factor, where unnecessary delays result in a lower utility.
Furthermore, where the negotiation has a deadline, there is a
risk that delaying concession may result in no agreement be-
ing reached. Against this background, our aim is to develop a
concession strategy for use in negotiations against unknown
opponents. Such opponents have neither a known utility func-
tion, nor a known type of behaviour. Furthermore, the strat-
egy will be used in domains which consist of multiple issues
and realistic time constraints. That is, rather than having fixed
rounds, we assume that agents can make offers in real time.
Furthermore, the time constraints we consider are based on
the amount of real time that has elapsed, and consist of both
a deadline and discounting. All of these features combine to
create a complex but realistic negotiation setting.

As an example, consider a scenario in which two parties
are negotiating over the provision of a computing resource in
order to compute the solution to a problem. The issues that
they are negotiating over include the price per unit, the pro-
cessor speed and the amount of memory. The user and the
service provider have not previously done business together,

and therefore there are no previous negotiation encounters
that can be used by either party to inform their negotiation
strategy. Furthermore, both parties need to reach an agree-
ment before a fixed deadline. There is a benefit to reaching
an agreement promptly, as this will allow the task to be com-
pleted sooner, freeing up the service provider’s resources to
be used by another user, whilst providing the user with a re-
sult in shorter time.

There exists extensive literature that deals with different
aspects of such a scenario. Specifically, [Faratin et al., 1998]
developed time dependent concession, in which the utility
level is calculated as a function of time. This approach uses a
parameter that affects the rate of concession, and it is nec-
essary for the agent to set this parameter appropriately in
advance. However, it is not possible to tune these parame-
ters in advance without any knowledge of the opponent’s be-
haviour. In addition, they propose behaviour dependent con-
cession, such as the tit-for-tat approach, in which the agent
chooses its concession based on the ground given by its op-
ponent in previous rounds. However, this assumes that the
concession made by the opponent can be observed. In ne-
gotiations where the opponent’s utility function is unknown,
this may not be the case, and it may be necessary to measure
the concession in terms of the agent’s own utility function.
In this case, a tit-for-tat strategy may concede more than it
needs to, resulting in a lower utility for the agent. To ad-
dress the shortcomings of these strategies, more recent lit-
erature specifically deals with uncertainty. To this end, [Br-
zostowski and Kowalczyk, 2006] propose a strategy that per-
forms on-line prediction of opponent behaviour, by assuming
that the opponent uses a strategy that is a weighted combi-
nation of time- and behaviour-dependent concession. How-
ever, their negotiation environment contains no discounting
factor, and so their solution assumes that the best approach is
to reach an agreement at the deadline. In negotiations where
the opponent is unknown, many existing strategies attempt to
model the opponent. Commonly, this involves learning either
the opponent’s preferences [Coehoorn and Jennings, 2004;
Hindriks and Tykhonov, 2008; Robu et al., 2005] or classi-
fying the opponent [Lin et al., 2008] using techniques such
as Bayesian updating or kernel density estimation. How-
ever, in domains with many issues, this approach becomes
computationally expensive, and may be unnecessary in auto-
mated negotiation where time constraints are based on real
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time rather than the number of interactions. Under such con-
straints, there is no benefit to limiting the number of offers
exchanged, hence it may be possible for automated agents to
exchange thousands of offers in order to explore the nego-
tiation space. We found this to be the case in experiments
carried out with automated agents using the GENIUS negoti-
ation environment [Hindriks et al., 2009].

In addition to the above empirical work, there is consid-
erable previous work that looks at computing game theoretic
equilibria in agent-based negotiation. However, this tends to
require additional assumptions and/or a less complex envi-
ronment than the one we consider. For example, in [An et
al., 2010], there is one-sided uncertainty, in which one of the
agents has uncertainty about its opponent’s behaviour, whilst
the other agent has complete information. In contrast, in our
work there is two-sided uncertainty. Alternatively, in [Fatima
et al., 2007], the negotiation model assumes that time con-
straints are based on the number of offers made, rather than
the real time used. In such an environment, it is possible to
perform backwards induction in order to find a game theo-
retic solution, but this would be infeasible under real-time
constraints, as the number of steps would be unknown.

Given this context, we have developed a principled ap-
proach, which first predicts the opponent’s behaviour through
a Gaussian process and then uses this to find the optimal con-
cession. Optimal in this context means that our strategy max-
imises the agent’s expected utility. Unlike previous work,
our concession strategy considers the observed concession of
the opponent and negotiation constraints which are based on
the elapsed real time, rather than the number of negotiation
rounds. In addition, our strategy can be adjusted to negoti-
ate more aggressively by altering the risk profile of the agent.
Furthermore, we make no assumptions about the opponent.

In developing this strategy, our work advances the state-of-
the-art in multi-issue negotiation in the following ways:

• We provide the first concession strategy that uses an es-
timate of the opponent’s future concession, including a
measure of the uncertainty of that estimate, in order to
optimally set the rate of concession, in a negotiation set-
ting that contains multiple issues, uncertainty and real-
time constraints.

• We show that this strategy outperforms other state-of-
the-art strategies in a complex environment contain-
ing independently developed benchmark domains taken
from the First Automated Negotiating Agents Competi-
tion (ANAC 2010) [Baarslag et al., 2010].

• We show, using empirical game theory, that our strategy
is stable and that other agents have an incentive to devi-
ate towards it.

The remainder of this paper proceeds as follows. Section 2
describes the negotiation setting that we have considered,
then Section 3 describes the strategy that we have designed
for use in this setting. We evaluate the strategy in Section 4
and finally, we conclude in Section 5.

2 The Negotiation Setting

Our strategy is designed to participate in multi-issue, bi-
lateral negotiation, in which two parties negotiate over mul-

tiple issues in order to reach an agreement. The negotiation
protocol that is used is based on the alternating offers pro-
tocol [Rubinstein, 1982], with each offer, o, representing a
complete package, in that it specifies the values for all issues.
Formally, o = (v1, v2, ..., vn), where vi is the value for is-
sue i. Furthermore, the utility function, U(·), is defined as
a function which maps all possible offers, o in the outcome
space O, to a value. Specifically:

∀o ∈ O,U(o) ∈ [0, 1] (1)

Our agent knows its own utility function, but the utility func-
tion of the opponent is unknown. In each negotiation round,
our agent receives an offer, oopp from the opponent (except
on the first round, if our agent starts the negotiation). It can
choose to accept this offer or make a counter-offer, oown.

Our model differs from that of [Rubinstein, 1982], in that
we use a different model of time. Rather than having fixed
rounds, agents can make offers in real time. This means that
the number of negotiation steps that can be made in a given
time period is unknown, and depends on the time required
to compute the offer. Especially when using automated ne-
gotiation, this allows many offers to be exchanged in a short
period of time. Furthermore, in order to encourage the agents
to reach an agreement in a timely fashion, we apply a dis-
counting factor, δ, which is based on the amount of real time
that has elapsed, rather than the number of negotiation steps.
Note that this value may be different for each agent and is
privately known. We furthermore assume that there is a dead-
line, tmax, common to and known by both agents, which is
a limit to the amount of time that the negotiation can last.
If the deadline is reached without an agreement being made,
the negotiation results in conflict and both agents receive zero
utility. Typically, in our experimental setting, during a nego-
tiation, agents can exchange thousands of offers. Specifically,
the discounted utility function D(·, ·) is given by:

D(u, t) = ue−δt/tmax (2)

where u is the undiscounted utility of a particular agreement,
δ is the discounting factor, t is the time of agreement and tmax
is the deadline.

In a tournament setting, the primary aim of our strategy
is to ‘win’ the negotiation by achieving a higher utility than
that of its opponent. In such a setting, reaching an agreement
with a fairly high utility is not always good enough, since it is
possible that the opponent may have achieved an even higher
utility, thereby winning the negotiation. Consequently, the
strategy may need to take a more aggressive approach than it
would if it were simply maximising its own utility.

In order to deal with this trade-off, we include the concept
of risk attitude in the design of our concession strategy. For-
mally, the risk function used by our agent is:

R(u) = ur (3)

where r is the risk parameter. If r = 1, the strategy is risk-
neutral, for r > 1, the strategy is risk-seeking and for r < 1,
it is risk-averse. A risk-seeking strategy would result in more
aggressive behaviour, since such an agent will concede more
slowly, as it will regard lower utilities to be of even lower
value than their true value.
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Algorithm 1 Let δ be the discounting factor, r be the risk pa-
rameter, tmax be the negotiation deadline. oown and oopp repre-
sent our own and the opponent’s latest offers, respectively. μ
and σ are vectors, representing the mean and variance respec-
tively, as output from the regression function. t∗ is the time
at which the estimation of our utility is maximised. u∗ is the
utility that we should offer at that time in order to maximise
the received utility. uτ is the target utility at time tc.
Require: δ, r, tmax

while tc < tmax do

oopp ⇐ RECEIVEOFFER()
RECORDOFFER(oopp, tc)
if REGRESSIONREQUIRED(tc) then

μ, σ ⇐ PERFORMREGRESSION()
t∗, u∗ ⇐ GETBEST(μ, σ, tc, δ, r)

end if

uτ ⇐ GETTARGET(t∗, u∗, tc)
if GETUTILITY(oopp, tc, δ)≥ uτ then

ACCEPTOFFER(oopp)
return

end if

oown ⇐ GENERATEOFFER(uτ )
PROPOSEOFFER(oown)

end while

3 Design of the Negotiation Strategy

Our strategy for the above setting consists of three distinct
phases. Algorithm 1 gives an overview of our approach and,
in the remainder of this section, we describe these phases in
turn. The first stage, described in Section 3.1, is to predict the
concession of the opponent (represented by the PERFORM-
REGRESSION function). The second stage, described in Sec-
tion 3.2, is to set the concession rate such that it optimises the
expected utility given the prediction of the opponent’s con-
cession (represented by the GETBEST function). The final
stage, described in Section 3.3 is to generate an offer accord-
ing to the concession rate (represented by the GENERATEOF-
FER function).

3.1 Predicting the Opponent’s Concession

To estimate the utility that we can expect to achieve later in
the negotiation, our approach begins by predicting the con-
cession of the opponent, but only using the information we
can actually observe. This works as follows. First, for each
offer made by the opponent, we record the time at which the
offer was made, along with the utility that it offers to our
agent, according to our agent’s utility function. Then, we esti-
mate the future concession of our opponent using a regression
technique. Specifically, our agent uses a Gaussian process,
with a Matérn covariance function and a linear mean function
[Rasmussen and Williams, 2006]. We use a Gaussian process
as it provides both a prediction and a measure of the level of
confidence in that prediction. The covariance and mean func-
tions were selected due to their robustness, as well as the fact
that they can be computed in real time during the negotiation.

The output of the Gaussian process is a Gaussian distribu-
tion, for each time t, of the form:

f(u;μt, σt) =
1

σt

√
2π

e
−(u−μt)

2

2σ2
t (4)

where μt and σt are the mean and standard deviation, respec-
tively. The mean, μt, gives an indication of the most likely

value for u at time t, whilst the standard deviation, σt is an
indication of how accurate the prediction of μt is likely to be.

We note that alternative regression techniques can be used
in place of a Gaussian process, provided their output contains
mean and confidence measures. However, in this work, we
have only evaluated our approach using a Gaussian process.

As input to the Gaussian process, we use the maximum
value offered by the opponent in a particular time window
of duration twindow, and the time of that window. The rea-
son for using this windowed approach is twofold. Firstly, it
reduces the effect of noise on the Gaussian process. Since
we measure the utility of the opponent’s offers in terms of
our agent’s utility function, it is possible that this value may
vary significantly in a given window. This is due to the offers
consisting of multiple issues, with the negotiation partners
having different utility functions. In such an environment,
it is possible that a small change in utility for the opponent
can be observed as a large change by our agent. Secondly,
it reduces the amount of input data for the Gaussian process.
If all of the observed offers were used, there could be thou-
sands of data points, which could significantly slow down the
regression process and therefore delay the negotiation. We
use the maximum value in each time window, rather than the
average, as the maximum represents the best offer that we
have observed, and can therefore expect to reach agreement
at. Figure 1 shows an example of the input to and output
from the Gaussian process performed at time tc = 0.25 · tmax
during a negotiation against Agent K in the U1 domain (see
Section 4.1 for more regarding the domains and opponents).
The figure shows that there is relatively high confidence in the
prediction at times close to tc, with the uncertainty increasing
at later times.

Based on the prediction of the opponent’s future conces-
sion which was generated using the regression technique, our
strategy then aims to set its concession by optimising the ex-
pected utility given that prediction.

3.2 Setting the Concession Rate

Having introduced our use of Gaussian processes in predict-
ing the future concession of the opponent, we now discuss
the main contribution of this work to the literature, which is
to show how the output of a Gaussian process can be used in
setting the concession rate. Specifically, we discuss the way
in which we use both the mean, μ, and standard deviation, σ,
output by the Gaussian process in setting an optimal conces-
sion rate. The aim of this stage of our strategy is to calculate
the best time, t∗ and utility value, u∗ at which to reach agree-
ment. We consider the best time, t∗, to be the point in future
time (t ∈ [tc, tmax]) at which the expected utility of the oppo-
nent’s offers is maximised, using:

t∗ = argmaxt∈[tc,tmax]
Erec(t) (5)

where tc is the current time and Erec(t) is the expected util-
ity, adjusted by the agent’s risk attitude and discounting, of
reaching an agreement at time t, given by:

Erec(t) =

∫ 1

0

D(R(u)f[0,1](u;μt, σt), t)du (6)
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Figure 1: Illustration of the Gaussian process used in a ne-
gotiation with Agent K in the Itex vs Cypress domain, at time
tc = 0.25 · tmax. The plus signs are the input data, based on
the observed offers. The crosses are based on the actual fu-
ture offers (which are unknown at time tc). The mean of the
Gaussian output is shown as a solid line, with the shaded area
representing the 95% confidence interval.

where D(·, ·) is the effect of the discounting factor, given by
Equation 2, R(·) is the risk function, given by Equation 3,
and f[0,1](·) is the probability distribution over the values of
u, as given by the Gaussian process. The effect of σt in this
equation is as follows. If, at two points in time, t1 and t2, the
mean values are the same (μt1 = μt2 ), but the standard de-
viation differs such that σt1 < σt2 , then a risk-seeking agent
will consider the expected utility at time t2 to be greater than
at time t1. That is, the risk-seeking agent is prepared to wait
for the less certain offer at time t2, as there is a higher chance
that the utility may exceed the value of μt2 , than it would for
μt1 . The converse applies for risk-averse agents, with risk-
neutral agents being indifferent between the two solutions.

In practice, we calculate the optimal time, t∗, to reach
agreement, by discretising the values of t, with up to 101
steps, such that t ∈ {0, 0.01 · tmax, 0.02 · tmax, . . . , 0.99 ·
tmax, tmax}. Integration is carried out in a similar way, by dis-
cretising u ∈ {0, 0.01, 0.02, . . . , 0.99, 1.00}

As given by Definition 1, we assume that the utility of the
opponent’s offers must lie in the range [0, 1]. Therefore we
use a truncated normal distribution, constrained to fit in the
utility range [0, 1], as follows:

f[0,1](u;μt, σt) =
f(u;μt, σt)

f(1;μt, σt)− f(0;μt, σt)
(7)

where f(u;μt, σt) is as given in Equation 4. The mean, μt,
and variance, σt, are those given by the Gaussian process.

Having selected the time, t∗, at which the expected util-
ity of the opponent’s offers is maximised, our agent needs to
choose a utility, u∗, to offer at that time. The approach that

our strategy takes here is to maximise the expected utility of
making an offer of utility u. Therefore, the utility, u∗, which
should be offered at time t∗, is given by:

u∗ = argmaxu∈[0,1]Eoffer(u, t
∗) (8)

The expected utility is calculated based on the probability
that an offer of a given utility will be accepted. We assume
that an offer of utility u will be accepted at time t∗ if u ≤ ut∗ .
Since we have a probability distribution over ut∗ , we can cal-
culate the probability that u ≤ ut∗ using the cumulative dis-
tribution F (u;μt, σt). Therefore, our agent’s expectation for
the adjusted utility (taking into consideration the risk attitude
and time discounting) of an offer with utility u is given by:

Eoffer(u, t
∗) = D(R(u)F[0,1](u;μt∗ , σt∗), t

∗) (9)

where D(·, ·) and R(·) are as before, and F[0,1](·) is the cu-
mulative distribution for f[0,1](·).

Due to the effect of the standard deviation, note that the
risk-seeking agent will find a higher optimal utility than a
risk-neutral or risk-averse agent would. In common with
the way we find t∗, in practice, in order to find u∗, we
also discretise the values of u, with 101 steps, such that
u ∈ {0, 0.01, 0.02, . . . , 0.99, 1.00}.

Finally, having determined u∗ as the utility to offer at time
t∗, our agent needs to choose a utility to offer at the current
time, tc. The agent should not concede immediately to offer
u∗ at the current time, nor should it wait until t∗. Either of
those approaches is likely to result in concession behaviour
which is too extreme, especially since they are based on pre-
dictions which may be inaccurate. Therefore, and to avoid
any additional parameters, our agent’s approach is simply to
concede linearly between [tlr, ulr] and [t∗, u∗], where tlr is the
time at which the regression was last performed and ulr is the
target utility at that time. Consequently, the target utility, uτ

is given by:

uτ = ulr + (tc − tlr)
u∗ − ulr

t∗ − tlr
(10)

Note that the overall concession will not generally be linear,
as the predictions of t∗ and u∗ are revised at the end of each
time window, throughout the negotiation.

Once a target utility level has been selected for the current
time, our agent needs to select an offer to make.

3.3 Selecting an Offer

Having selected a target utility, uτ , our strategy needs to gen-
erate an offer which has a utility close to that target. In a
multi-issue negotiation, there may be many different pack-
ages with a similar utility. Under the real-time constraints,
the goal is to reach an agreement within a shorter time pe-
riod, but not necessarily to limit the number of offers made.
Therefore, if our agent can generate an offer quickly (even
if it does so at random), it can explore more of the outcome
space in the available time.

Consequently, our strategy chooses an offer which has a
utility close to the target, uτ , by generating a random offer
with a utility in the range [uτ −0.025, uτ +0.025]. If an offer
cannot be found within this range, the range is expanded, until
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a solution is found. In addition, if the target drops below the
highest value of the offers made by the opponent, we instead
propose the package with that utility that was offered by the
opponent. This is since we assume that, for a set of possible
offers with utility greater than uτ , the one which is most likely
to be accepted is the one which has previously been offered
by the opponent. While we believe that it can be improved,
we found that using this simple approach to selecting an offer
produced very good results.

4 Empirical Evaluation

In order to evaluate the performance of our strategy, we
use the Generic Environment for Negotiation with Intelligent
multi-purpose Usage Simulation (GENIUS) [Hindriks et al.,
2009]. Using this environment, our agent can be tested under
a variety of negotiation domains, where each domain is de-
fined by the utility function of each agent. Each negotiation
takes place between a pair of agents, which negotiate within
one of these domains. However, the overall performance is
calculated for a complete tournament. We continue this sec-
tion as follows. In Section 4.1 we describe the settings we
used in our experiments, then in 4.2, we give the results of
those experiments according to the metrics used in ANAC
2010. Finally, Section 4.3 provides an empirical game theo-
retic analysis of our results.

4.1 Experimental Settings

We compare our agent against the entries submitted to the
ANAC 2010 [Baarslag et al., 2010]. As part of this evalua-
tion, we use the domains that were created for the competi-
tion, all of which had no discounting factor (δ = 0) (we refer
to the Itex vs Cypress domain as U1, the England vs Zim-
babwe domain as U2, and the Travel domain as U3). In ad-
dition, to test the performance in domains with a discounting
factor, we use the same domains, but with each agent having
a discounting factor, δ = 1. We refer to these domains as D1,
D2 and D3. We get similar results for other values of δ.

In this context, each domain specifies the number and types
of issues that are negotiated over by the agents. Furthermore,
each domain has two preference profiles which specify the
utility functions of each participant. These functions allow
each agent to calculate the utility value of any offer that can
be made in a particular domain. Each preference profile is
represented by a linear additive utility function of the form:

U(o) =

n∑
i=1

wiUi(oi) (11)

where wi is the weight of issue i, Ui(·) is the utility function
for issue i, and oi is the value for issue i in the offer o. The
actual values of wi, Ui and oi for each preference profile are
included in version 3.1 of the GENIUS platform1. Each agent
knows its own utility function, but not that of its opponent.

For each of these six domains, we run a tournament con-
taining 7 agents, as in ANAC 2010. The other agents that
we use in the tournament are the top 6 agents according to

1Available from http://mmi.tudelft.nl/
negotiation/index.php/Genius
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Figure 2: Average results of all agents in all domains, for the
risk-neutral (r = 1) version of our agent.

the results of ANAC 2010. Whilst we do not know the exact
behaviour of the other agents, we suppose that some of them
use a combination of stationary and non-stationary (adaptive)
strategies. The whole tournament run (all combinations of
agent pairs and domains) was repeated 20 times, so as to ob-
tain results with high statistical confidence.

Furthermore, we repeat these experiments using two vari-
ants of our agent. The first uses a risk-neutral approach (r =
1), whilst the other uses a risk-seeking approach (r = 4). In
all of these experiments, there is a deadline of tmax = 360s,
and we set our regression window to twindow = 10s. These
values work well in practice, but to avoid over-fitting, we have
not attempted to fine tune them.

4.2 Results in the Competition

Figure 2 shows the results achieved by each agent in each do-
main. In the domains with the largest outcome spaces (U3
and D3), our agent reaches a score which is considerably
higher than any of the other agents (the other agents reach
a score no higher than 62% of ours). In the smaller domains,
our agent reaches a lower score than some of the other agents,
but by a much smaller difference (no more than 16%).

The scores were normalised using the maximum and mini-
mum utility achieved by all agents, using the same technique
as [Baarslag et al., 2010]. Averaged over the six tournaments,
our risk-neutral agent finished in first place, with an average
normalised score of 0.846, which is 23% higher than that of
the agent which finished in second place. Table 1 shows the
raw and normalised scores of each agent, over the six do-
mains. Using our risk-seeking agent, a slightly higher aver-
age normalised score of 0.887 was obtained, which is 33%
higher than that of the agent which finished in second place.
Table 2 shows the raw and normalised scores of each agent,
over the six domains.

It should be noted that, although the risk-seeking version
achieves a higher normalised score than the risk-neutral one,
it actually achieves a lower raw score. The latter is because
the more aggressive nature of the risk-seeking agent causes
it to generally concede more slowly, thereby reaching agree-
ments later and with a lower discounted utility. However, the

436



Agent Raw Score Normalised Score
Our Agent 0.492 ±0.007 0.846 ±0.015

Agent K 0.430 ±0.006 0.688 ±0.018

IAMhaggler2010 0.377 ±0.008 0.572 ±0.021

Nozomi 0.403 ±0.008 0.561 ±0.020

FSEGA 0.345 ±0.001 0.521 ±0.009

Yushu 0.376 ±0.007 0.508 ±0.019

IAMcrazyHaggler2010 0.295 ±0.006 0.215 ±0.012

Table 1: Scores for r = 1, with 95% confidence intervals.

Agent Raw Score Normalised Score
Our Agent 0.459 ±0.011 0.887 ±0.032

Agent K 0.395 ±0.007 0.665 ±0.017

Nozomi 0.365 ±0.009 0.562 ±0.022

IAMhaggler2010 0.342 ±0.007 0.531 ±0.020

FSEGA 0.323 ±0.002 0.495 ±0.009

Yushu 0.327 ±0.008 0.423 ±0.024

IAMcrazyHaggler2010 0.270 ±0.007 0.248 ±0.014

Table 2: Scores for r = 4, with 95% confidence intervals.

risk-seeking version also causes all other agents in the tour-
nament to achieve a lower utility. This is partially due to the
effect of the discounting, but also because the slower conces-
sion requires the opponent to concede more in order to reach
agreement. As a result, as we can see from the normalised
score, this risk-seeking behaviour has a greater negative ef-
fect on most of the opponents.

Although not a factor in achieving a high tournament score,
another measure of success of a strategy is whether it per-
forms well in negotiations with agents using the same strat-
egy. We therefore consider how the strategies perform in
self-play. Our agent achieves the highest average self-play
score. The maximum possible average self-play score over
the six domains is 0.786, with our agent achieving 91.9% of
that value. Table 3 shows the average score achieved by each
agent over the six domains.

4.3 Results of Empirical Game Theoretic Analysis

A limitation of the tournament setting is that it measures av-
erage performance considering only one agent for each type
of strategy among a set of possible strategies. Naturally, this
raises the question: would our strategy still be robust (and
would it still win) in tournaments where the mix of strategies
was different? Would any of the agents in those tournaments
have an incentive to deviate (switch to a different strategy)?

In order to answer such questions, we perform an empir-
ical game theoretic analysis of the tournament results, using
the technique developed by [Jordan et al., 2007] to analyse
the Trading Agent Competition. We consider single-agent

Agent Self-play Score % of maximum
Maximum 0 .786 ±0 .000 100 .0 ±0 .0

Our Agent (r = 1) 0.722 ±0.006 91.9 ±0.7

Our Agent (r = 4) 0.605 ±0.028 76.9 ±3.6

IAMhaggler2010 0.559 ±0.026 71.1 ±3.4

Agent K 0.547 ±0.003 69.6 ±0.4

Nozomi 0.505 ±0.030 64.2 ±3.8

Yushu 0.412 ±0.044 52.4 ±5.6

FSEGA 0.410 ±0.000 52.2 ±0.0

IAMcrazyHaggler2010 0.000 ±0.000 0.0 ±0.0

Table 3: Self-play scores, with 95% confidence intervals.
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Figure 3: Deviation in domain D3, for our strategy (with r =
1), and the strategies of IAMhaggler2010 and Agent K. The
shaded strategies are those which achieve the highest scores.

deviations, that is, where there is an incentive for one agent
to change its strategy, assuming that all other agents main-
tain their current strategy. We use this technique to search for
Nash equilibria, in which there is no incentive for any single
agent to change to another strategy.

We consider all tournaments consisting of 5 agents, each
using one of the top three strategies found in the results in
Section 4.2. Analysis of the larger 7-agent tournaments with
the full combination of strategies was also performed, but due
to space constraints in this paper, we report the similar results
from a smaller tournament setup. Under this analysis tech-
nique we find two equilibria as follows:

1. All agents use our strategy.
2. All agents use the IAMhaggler2010 strategy.
In Figure 3, we show these deviations for the strategies

used by the top three agents in domain D3 (the Travel domain,
with a discounting factor, δ = 1), which is the largest and
most complex domain used in the 2010 competition. Each
node represents a possible mixture of the three strategies in
a tournament. The corners of the triangle represent strategy
mixtures in which all agents play the same strategy. Each ar-
row indicates a statistically significant single agent deviation
to a different strategy. Furthermore, the shaded strategy at
each node represents the one which achieves the highest score
and the equilibria are the nodes with no outgoing arrow.

In this particular domain, from all non-equilibria strategy
mixtures, there exists a path of statistically significant devia-
tions which leads to the equilibria containing only our strat-
egy. Furthermore, in all non-equilibria strategy mixtures ex-
cept the one in which one agent uses the Agent K strategy and
the rest use the IAMhaggler2010 one, all such paths of devia-
tions lead to the equilibria containing only our strategy. This
represents 97.5% of the possible mixtures, demonstrating the
robustness of our strategy.

We also performed the same analysis, with r = 4 instead
of r = 1. For this setting, we observe a similar result, with
the same pair of equilibria, but with slightly fewer (83.1%) of
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Figure 4: Deviation in domain D3, for our strategy (with r =
1 and with r = 4), and the strategy of Agent K. The shaded
strategies are those which achieve the highest scores.

the possible mixtures having all paths of deviations leading to
the equilibria containing our strategy.

Having shown that both versions of our strategy perform
well against the other agents, we now consider how they per-
form in negotiation tournaments where both are present. We
therefore repeat the analysis, but this time considering the
risk-seeking version of our strategy (r = 4, denoted R), the
risk-neutral version (r = 1, denoted O), and Agent K. We
observe two equilibria, as shown in Figure 4. Both equilibria
consist entirely of our strategy, as follows:

1. Two agents with r = 1 and three agents with r = 4.

2. One agent with r = 1 and four agents with r = 4.

There are no equilibria in which all agents use either O or
R because, in this domain, the score achieved by strategy O
against strategy R is greater than the self-play score of R.
That is, there is an incentive for strategy R agents in negotia-
tions against an opponent using the same strategy to change to
strategy O. This is since, if both agents are risk-neutral, one
of them can deviate to the risk-seeking strategy, and in doing
so, extract a greater utility from the concessive, risk-neutral
agent. Similarly, in a negotiation session where both agents
use strategy O, there is an incentive for one of them to change
to strategy R. This is because, if both agents are risk-seeking,
they will be likely to take longer to reach an agreement, as
they will concede slowly. In a discounted domain, slow con-
cession reduces the utility of agreement. Therefore, by devi-
ating to a more concessive strategy (with r = 1), an agent can
obtain a higher utility by reaching agreements earlier. How-
ever, in doing so, the utility of the remaining risk-seeking
agents will also increase, potentially by a greater amount than
for the deviating agent. Therefore, in tournaments containing
both strategies O and R, it is the less concessive, risk-seeking
strategy, R that is more likely to ‘win’ the tournament (by
achieving a higher average score than its opponents), even
though the scores in individual negotiation sessions can be
higher when the risk-neutral strategy, O is used instead.

5 Conclusions and Future Work

In this work, we have developed a negotiation strategy that
uses a principled approach to concession, based on an esti-
mate of the opponent’s future concession. By developing an
agent which uses this strategy, we have demonstrated the per-
formance of our strategy in a setting containing multiple is-
sues, uncertainty and real-time constraints. Using the bench-
mark of the Automated Negotiating Agent Competition, we
have shown that our agent outperforms other state-of-the-art
agents in both a tournament setting and in self-play.

There are a number of areas where we believe improve-
ments could be made. Our current work has shown that the
risk-neutral version of our strategy is able to reach a higher
raw score than our purely risk-seeking version. We believe
that our strategy could achieve an even higher score by using
a hybrid risk function, which is risk-seeking for low utility
values, but risk-averse for high utility values. Furthermore,
our strategy’s current approach to selecting an offer with a
given value is to choose an offer at random from those which
have a utility close to our agent’s target. This may be im-
proved by modelling the opponent’s preferences, in order to
choose packages at a given utility level which maximise the
likelihood that they are accepted by the opponent.
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