
An Interaction-Oriented Model for Multi-Scale Simulation

Sébastien Picault and Philippe Mathieu

University Lille 1

LIFL UMR CNRS 8022

Villeneuve d’Ascq, France

{sebastien.picault, philippe.mathieu}@lifl.fr

Abstract

The design of multiagent simulations devoted to
complex systems, addresses the issue of modeling
behaviors that are involved at different space, time,
behavior scales, each one being relevant so as to
represent a feature of the phenomenon. We propose
here a generic formalism intended to represent mul-
tiple environments, endowed with their own spa-
tiotemporal scales and with behavioral rules for the
agents they contain. An environment can be nested
inside any agent, which itself is situated in one
or more environments. This leads to a lattice de-
composition of the global system, which appears to
be necessary for an accurate design of multi-scale
systems. This uniform representation of entities
and behaviors at each abstraction level relies upon
an interaction-oriented approach for the design of
agent simulations, which clearly separates agents
from interactions, from the modeling to the code.
We also explain the implementation of our formal-
ism within an existing interaction-based platform.

1 Introduction

Multi-agent simulation has long proved its adequacy to deal
with complex systems. The interest of the agent-based ap-
proach consists in making concepts, that underlie domain
models, concrete – as well as the behavior of those entities.
The mapping is not always easy to implement without biases,
but it makes an essential contribution to the mutual under-
standing between domain experts (biologists, economists, so-
ciologists ...) and computer scientists.

Especially, in the context of large-scale simulations (in-
volving large numbers of entities, belonging to many fami-
lies and exhibiting various behaviors), a major issue is the
coexistence of different scales [An, 2008]: for instance, the
simulation of gene regulation networks involves, at least, the
cell level, together with nested organites such as the nucleus,
the cytoplasm, and often molecular details such as the tran-
scription factors, the DNA strand, etc. Similarly, the study of
client behaviors in commercial places requires to model si-
multaneously the way people behave in the mall, in the shops,
in the shelves, etc.

Approaches such as multi-model simulations offer differ-
ent paradigms, depending on the level of observation, to rep-
resent multi-level phenomena: e.g., they can combine an
agent-based simulation at the macroscopic level and a dif-
ferential equation model at the microscopic level. The disad-
vantage of these methods is primarily the same as non-agent
models, namely the lack of shared representations with ex-
perts regarding entities and behaviors. In addition, there is an
increased risk of bias by coupling models of different kinds.

We advocate instead a uniform approach in which only
agents and behaviors are used, at each simulation level.
Thus, the model we describe in this paper extends a uniform
simulation approach, called “IODA” [Kubera et al., 2008;
2011]. IODA is an “interaction-oriented” approach which is
based on three key ideas:

• Each relevant entity is modeled through an agent [Ku-
bera et al., 2010].

• Each behavior is a generic interaction which is defined
independently from agents, as a condition/action rule,
and implemented through a specific piece of code.

• When an agent, that is able to perform an interaction (a
“source agent”), encounters another agent that can un-
dergo the same interaction (a “target agent”), then this
interaction can occur if both source and target agents ful-
fill the conditions of the interaction.

In this paper, we try to formalize the relationships between
the agents and several environments, in order to propose a
flexible and unified representation of multiple space and time
scales in an agent-based simulation. In addition, we also de-
scribe how to take advantage of the interaction-oriented ap-
proch, to easily model different patterns of agent behaviors in
each simulation level.

In the first section, we examine several models, architec-
tures or simulations that have been proposed to manage ei-
ther hierarchical structures, or the attachment of an agent
to multiple spaces or social groups. Then, we present our
formal model, called “PADAWAN”, for representing encap-
sulation and situation relations between agents and environ-
ments. This model tries to overcome the limitations of ex-
isting approaches and to generalize them. We show that the
interaction-oriented approach of simulation facilitates the de-
sign of behaviors bound to each observation level. Finally,

332

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

we explain how this model is implemented within an existing
interaction-based platform.

2 Current multi-scale simulation approaches

The simulation of complex systems must take into account all
organization levels that are considered relevant to the study of
a given phenomenon. Thus, many architectures have been
long proposed to represent nested systems (which usually
leads to nested agents or nested environments). More re-
cently, this mere problem of encapsulation recedes, in favor
of the issue of agents multi-membership (in different groups
or areas).

2.1 A hierarchical platform: SWARM

Among many platforms, SWARM [Minar et al., 1996] is one
of the first that explicitly addressed the issue of handling mul-
tiple space or time scales in individual-based simulations. It
is based on a recursive organization of the system, which is
composed of swarms, that are spaces containing agents, en-
dowed with a scheduler for the actions of those agents: this
scheduler is a way to model the time scale attached to the
swarm; and agents situated in the swarms, and that can them-
selves be swarms (i.e. contain other agents with a scheduler).
This approach allows to easily replace a given modeling level
by the underlying subsystem, and so ensure that the behavior
of an agent is directly produced by the collective behavior of
the corresponding swarm.

However, SWARM suffers from severe limitations: it is a
strictly hierarchical model with a fixed structure. In additions,
it is a mere platform, that does not provide any conceptual
framework nor guidelines for the model design. Finally, the
fact that a swarm agent has no other behavior than the result
of its components is limiting, since behaviors can be often
specified at different observation levels, including both the
swarm level and the underlying agents level.

2.2 Physical vs. social environments: AGRE

The AGRE approach (Agents, Groups, Roles + Environment)
[Ferber et al., 2005] combines conceptual, abstract tools with
an operational model. It especially draws a parallel between
the physical environment and the social environments (groups
and organizations) to which an agent can take part. Thus, the
multiagent world (organization + physical world) appears as
a composition of spaces (groups and areas), which are them-
selves composed of modes (roles and bodies) played by the
agents.

Thus, in AGRE, agents can interact, both through their
body, when they are situated in the same part of the physical
space, and through their roles, when they belong to a same
group. This emphasizes that, in general, an agent is situated
in several environments (i.e. physical and social here)

Yet, in AGRE, the body (which is the visible part of an
agent in a physical environment) is assumed unique. Though
it could be argued that this viewpoint is quite intuitive, it
actually restricts what the approach allows to represent. In
addition, the distinction between social and physical worlds
comes from the initial focus, in the earlier model (AGR), on
the organization issue in MAS. But, we could also consider

mental worlds such as the memory of an agent, or its pre-
dictions (a mental simulation), etc. Moreover, AGRE also
restricts the structure of the physical world, for instance the
nested levels are limited to the world/area/body decomposi-
tion.

2.3 Other approaches

In order to cope with the conceptual and computational com-
plexity of large-scale systems, some approaches such as
HLA [Fujimoto, 1998] rely on the integration of multiple
individual-based simulations. This raises sometimes specific
difficulties in order to ensure interoperability between mod-
ules or a consistent simulation time, or to solve conflicts in
concurrent access to variables [Scerri et al., 2010]. Besides,
the lack of uniformity (in agent models, behavior descrip-
tion...) is likely to introduce biases for the same reasons than
multi-model simulations.

Besides agent-based approaches, some fruitful features can
be drawn from computational models, though they are not es-
pecially devoted to simulation. For instance, P-systems [Păun
and Rozenberg, 2002] rely on three bio-inspired items: mem-
branes (organized in a tree structure) containing both symbols
and rules which determine how to transform symbols and the
local membrane structure. Thus, the symbols have no specific
behavior by themselves: only the rules of the same membrane
can determine their function. That means, on the one hand,
that a clear separation is made between entities and behav-
iors, and on the other hand, that behaviors are defined in a
local context.

2.4 Specifications for a multi-scale model

The comparison of above approaches allows us to sketch the
ideal specification of a general approach to multi-scale/multi-
level simulation, through the following features:

• Dynamicity: An agent must be able to change the level
where it operates (i.e. in practice, change its environ-
ment) at will; in addition, there should be no limiting
principle to the creation or dissolution of any level.

• Locality: The behavior of an agent must be the result
of its presence in a given environment (i.e. the space
that defines its condition of existence), which is itself
characterized by a spatial scale and a time scale.

• Uniformity: 1) All entities must have a similar soft-
ware structure (that is, any relevant entity must be an
agent) [Kubera et al., 2010] ; 2) All behaviors must be
described through the same formalism. 3) The decom-
position of the simulation world into environments must
also be uniform.

• Genericity: The formalism, which describes knowledge
about the entities and their behavior in each environ-
ment, as well as knowledge about the relationship be-
tween levels, has to be as accessible as possible to do-
main experts, and in various application fields. But, it
must also be easily implementable in a generic simula-
tion engine.

• Transversal approach: The components of the formal
model, that are used during the design phase, should

333

have a software reality, and this transformation should
be as automatic as possible (especially in order to reduce
the risk of biases).

The following sections try to apply those principles by defin-
ing relations between agents and environments, and then by
completing a consistent implementation of the concepts.

3 Formal principles for a multi-scale

simulation: the PADAWAN model

In order to fulfill the principles above, the model we advocate
in this paper, called “PADAWAN1”, is based on two princi-
ples:

1. Any agent may dynamically encapsulate an environ-
ment. This is the basis of a recursive nested structure
(such as those used in SWARM or P-systems), but this
structure must be able to change in time.

2. Any agent may be situated in several environments at
the same time, without a prior idea of what those envi-
ronments represent (a micro/macro level of the physical
world, a group, an organization, a spatial memory, a so-
cial network, etc.). This introduces a generalization to
the AGRE approach.

Thus our model relies upon two binary relations between
agents and environments: situation and encapsulation.

In the following sections, we denote by E the set of envi-
ronments used in a simulation, and by A the set of agents.
An environment may be any part of a metric space (e.g. an
euclidian space, a grid, a graph, a point...). In addition, we
explain later how to endow it with a specific time scale and
with differentiated behavioral rules to apply to the agents it
contains.

3.1 Situation of an agent in an environment

The agents we are interested in are situated agents. Thus, they
belong at least to one environment, in which they can perceive
and act. But, we also allow any agent to be situated in several
environments at the same time. Therefore, we define a first
binary relation: the situation of an agent in an environment.

Definition 1 An agent a ∈ A is situated in an environment
e ∈ E , denoted by: a � e, iff a can perceive, or be perceived,
or act, or undergo actions, in e.

In the following, we denote: ∀a ∈ A, location(a) = {e ∈
E|a � e} and: ∀e ∈ E , content(e) = {a ∈ A|a � e}. We
also use the notation: location(a) ← {e1, e2}, as a shorthand
for: “agent a should be placed only in e1 and e2”, i.e. a
is now involved in only two situation relations, namely with
environments e1 and e2.

Using situated agents means: �a ∈ A | location(a) = ∅.
We call “usual situated agent” any agent a ∈ A which

is situated in a single environment. The set of usual situated
agents is: S = {a ∈ A|∃e ∈ E , location(a) = {e}}.

Conversely, we call “multi-situated agent” any agent
a ∈ A which is situated in several environments at the

1PADAWAN stands for “Pattern for an Accurate Design of Agent
Worlds in Agent Nests”.

same time. The set of multi-situated agents is denoted by
M: M = A \ S

According to our aims, usual situated agents and multi-
situated agents are characterized in a dynamic way: thus, it
is not necessary to assign a prior type to agents, because their
status can change during the course of the simulation.

The use of multi-situated agents can fit very different situa-
tions: for instance, such an agent can be an edge, an interface
between two physical environments (e.g. a door) – in that
case it has to be perceived by agents belonging to any of those
environments. The concept can also be applied to represent
the social belonging of an agent, or its presence in spaces that
correspond to distinct scales or organization levels.

3.2 Encapsulation of an environment in an
agent

The second binary relation in our model represents the abil-
ity, for any agent, to encapsulate an environment (in which
other agents can be situated). For the sake of clarity, it is im-
portant to keep a conceptual and operational distinction be-
tween agents (i.e. entities) and environments (i.e. spaces),
but through this second relation we can now formalize that an
agent “plays the role” of an environment.

Definition 2 An agent a ∈ A encapsulates an environment
e ∈ E , denoted by: a ∼ e, iff a “contains” e. An agent
can encapsulate one environment at a time, and similarly an
environment can be encapsulated by only one agent.

In addition, we assume that there is only one environment,
denoted by e0, which is not encapsulated in any agent. In
that sense, e0 corresponds to “the” single environment in a
classical MAS. We call it the “root environment” (or “zero-
level environment”) of the simulation. We denote by E� = E\
{e0} the set of environments that are encapsulated in agents.

Then, we call a “regular agent”, any agent that does not
encapsulate an environment, and conversely “compartment
agent”, any agent that encapsulates an environment. The set
of compartment agents is denoted by C: C = {a ∈ A|∃e ∈
E�, a ∼ e}. The set of regular agents is denoted by R: R =
A\C. In addition, we denote: ∀e ∈ E�, host(e) =!a ∈ C|a ∼
e and: ∀a ∈ C, space(a) =!e ∈ E�|a ∼ e.

3.3 Joint use of both relations

By combining the situation in an environment together with
the encapsulation of an environment in an agent, we are able
to define new concepts and the basis of a multi-level architec-
ture.

Thus, for instance, the mere intersection M ∩ C includes
compartment agents that are multi-situated agents at the same
time: agents that are able to act or perceive in several environ-
ments, and also encapsulate an environment. Far from being
a wild invention, this can be applied to many real modeling is-
sues. For instance, it can be used to describe a membrane pro-
tein, which has an end inside the cell, and the other end out-
side: this kind of protein is able to contain other molecules.
Similarly, an elevator can be seen as a compartment-agent
which is situated at the same time in the shaft and in the suc-
cessive floors. We call “pipe agent” such a multi-situated,
compartment agent.

334

More generally, we can formalize two new relations: in-
clusion and hosting.

Definition 3 Environment inclusion. An environment e1 is
included in an environment e2 (denoteb by e1 ⊂ e2) iff: ∃a ∈
C|a ∼ e1 ∧ a � e2.

Definition 4 Agent hosting. An agent a1 is guest of an agent
a2, or a2 is host to a1 (denoted by a1 � a2) iff: ∃e ∈ E�|a2 ∼
e ∧ a1 � e.

The first relation can be summarized, for all environments
and agents in the simulation, on the environment graph (or
inclusion graph), which is the directed graph defined by all
inclusion relations (⊂) between environments. This graph is
dynamic, since it represents all actual situation and encap-
sulation relations at a time in the simulation. In the general
case, it can also have directed cycles. Similarly, the agent
graph (or hosting graph) of the simulation is the directed
graph defined by hosting relations (�) between agents.

By extension, we define: e1 ⊆ e2 (transitive inclusion) iff:
e1 = e2 or e1 ⊂ e2 or ∃e ∈ E|e1 ⊆ e∧e ⊆ e2 (i.e. iff there is
a path between e1 and e2 in the inclusion graph) ; similarly:
a1 � a2 (transitive hosting) iff: a1 = a2 or a1 � a2 or ∃a ∈
A|a1 � a ∧ a � a2.

In the general case, any environment is not necessarily in-
cluded (transitively) in e0. This could cause paradoxical situ-
ations, which have no interest in simulation. In order to avoid
them, it is sufficient that, at any time, the environment graph
has no directed cycle. We call that a Topologically Regular
Simulation.

Under this assumption, the relation ⊆ is now a partial
order. Consequently, the environment graph is an upper-
semilattice with e0 as least upper bound: e0 = sup⊆E . Thus,
several rather qualitative concepts such as the “level” of an
environment (or of the related compartment) can be now for-
mally defined (in this case, as the shortest distance to e0) and
be used to characterize the organization of a system and its
subsystems.

4 Implementation in an interaction-oriented

simulation approach

The definitions above allow to decompose a complex sys-
tem into subsystems, which are bound one to another through
non-trivial relations (i.e. namely, not only a tree structure). In
this section, we explain why an interaction-oriented simula-
tion approach is particularly fruitful in association with situ-
ation and encapsulation relations, especially when the behav-
ior of an agent should depend on the environment where it is
situated.

Therefore, we rely upon the IODA interaction-oriented ap-
proach [Kubera et al., 2011]. Its first advantage is that it is
a transversal approach, i.e. the concepts involved during the
design phase are implemented as true pieces of code, in a
very straightforward way. In addition, IODA assumes a clear
separation between agents and behaviors:

• Any relevant entity is an agent (which can be more or
less complex) endowed with perception and action prim-
itives.

• Any behavior is described by a generic interaction,
which is a rule involving two agents (a source and a tar-
get). Conditions and actions rely upon generic percep-
tion and action primitives, thus interactions are indepen-
dent from the concrete implementation of the agents.

• Interactions are assigned to source and target agents
through an interaction matrix. Roughly, the interaction
matrix is a function M : A×A → ℘(I), which defines
the set of interactions that a source agent can perform on
a target agent.

During the course of the simulation, the simulation engine
makes each potential source agent (i.e. any agent that can per-
form interactions, according to the matrix) search, among its
neighbors, for potential pairs of interaction/target agent, then
selects one of the pairs where the condition of the interaction
is fulfilled, and performs the corresponding actions.

4.1 The many faces of an agent

The distinction that the IODA approach makes between enti-
ties (agents) and behaviors (interactions) is quite useful, in or-
der to specify behaviors that depend on an organization level.
Indeed, the key idea is to endow each environment with its
own interaction matrix. We explain this mechanism below.

In the following, we consider the general case of an agent
a with location(a) = {e1, ..., en}. Then, we propose to de-
compose a in a “central”, non-situated part, and a set of n
“peripheral” parts, each one being situated in ei.

Thus, we prefer to call “core of a” the non-situated part
of the agent (denoted by a|•), and conversely “face of a in
ei” (denoted by a|ei) the part of a that is situated in ei (i.e.
actually a, seen as an agent that would belong only to ei). The
“face” a|ei is associated with properties, which are specific to
its situatedness, such as a location (e.g. coordinates) in ei, its
own perception abilities, so as to determine the neighbors of a
in ei, which can be involved in interactions with a according
to the interaction matrix Mi defined in ei.

Now, any agent of our multi-level simulation model can be
seen as the union of a “disembodied” agent that cannot per-
ceive nor act (in fact, it is limited to a set of internal states and
to computing or decision processes) and several embodied en-
tities which have full perception and action abilities. Each of
those embodied entities, when observed in its environment,
can be treated as classical agents in usual simulations. The
pseudo-agent a|ei can participate in the native IODA interac-
tion selection process, in the context of environment ei and
interaction matrix Mi. The only difference with a “flat” ap-
proach (i.e. with a single environment), is that the primitives
performed by a|ei can access the state and functions of the
core pseudo-agent a|•.

4.2 Management of time scales and simulation
scheduling

In this section, we assume that the simulation is in discrete
time, i.e. time is divided in ticks or time steps, which repre-
sent a constant duration δt. At time step ti ∈ [0, Tmax], the
simulation time elapsed since the beginning is tiδt.

Thus, each environment can easily be endowed with its
own time scale.

335

Definition 5 We call Rhythm assignation of environments
the function: χ : e ∈ E
→ (N,ϕ) ∈ N∗ × N where
N and ϕ represent the period and phase attached to environ-
ment e.

The period indicates that “something is likely to happen”
in e every Nδt, starting at ϕδt. Based on that, we say that
an environment e is activated at time t (or t-activated) iff:
t ≡ ϕ(mod N). We denote by Eact(t) all t-activated en-
vironments. Agents that may act at time t are those situ-
ated in t-activated environments. In practice, because agents
act according to the interaction matrix of their environment,
the simulation engine has to identify faces that belong to t-
activated environments, i.e. the pairs: (a, e) ∈ A × E with
e ∈ Eact(t), denoted by Aact(t).

Aact(t) =
⋃

e∈Eact(t)

(
⋃

a∈content(e)

{(a, e)})

The algorithm we use for agent scheduling is a simplifica-
tion of the conservative scheduling of HLA [Fujimoto, 1998],
since each environment can be seen as a time-stepped sim-
ulation. Thus, in order to perform the interaction selection
at time t, the pairs of Aact(t) are first sorted according to a
scheduling policy (the default policy is a random shuffle).
This operation determines the order in which the faces select
and perform their interactions. Several scheduling policies
can be considered, e.g. sorting by agent families, or by envi-
ronments, or both. Among others, depending on the applica-
tion domain, it can be useful to sort environments by level or
by period. We cannot focus here on a comprehensive study
of frequent “patterns” of scheduling policies, but the point is
that this feature is made explicit in our simulation model, and
thus can be tuned very accurately depending on the purpose
and domain of the simulation.

Once the order upon Aact(t) has been chosen, the only re-
maining operation is the IODA interaction selection process,
applied to the corresponding faces, i.e. for each pair (a, e),
the face a|e is likely to perform at most one interaction (as a
source) with one of its neighbors (as a target). Regarding the
core a|•, il does not perform nor undergo any interaction by
itself: only the activity of the faces is likely to affect the core.

4.3 Primitives specific to the multi-level structure

The interactions we use are described by condition/action
rules. Those rules are themselves composed of perception
or action primitives, i.e. functions or procedures run by the
source or target agent involved in the interaction.

Thus, the introduction of situation and encapsulation rela-
tions in the interaction-oriented approach requires to define
specific primitives, in order to allow the model designer to
use those relations in the definition of interactions. We have
developed a complete set of perception/action primitives that
is sufficient to express atomic operations on the situation and
encapsulation relations. We give below several examples,
showing how the semantics of those primitives can be defined
very precisely.

Test/perception primitives
First, agents are endowed with boolean functions required to
characterize them: regular vs. compartment agent, usual sit-
uated agent vs. multi-situated agent, etc. An agent can also

test if it is the guest of another agent. Those primitives do not
raise much difficulties.

Action primitives

Realizable actions must be defined more rigorously, espe-
cially because the definition must apply to all kind of agents.
In addition, the primitives must keep the simulation “topolog-
ically regular”, i.e. they must not create directed cycles in the
environment graph.

As an example, a primitive like “enter a compartment”,
enter(a,c), makes sense only if a and c are situated at
least in a common environment, and if c �� a: then, the lo-
cation of a must be modified, by replacing all environments
shared with c by the environment which is encapsulated in c:
location(a)← (location(a) \ location(c)) ∪ {space(c)}.

In some cases, the primitive may use a function as a param-
eter. For instance, the division of a compartment c assumes
that there exists an allocation policy π, in order to determine
where the agents that were guests of c should be situated after
the division. To perform divide(c,π), the first step is to
create a compartment c′, that is itself situated in location(c);
then, we use the policy, defined as:

π : content(space(c)) → {space(c), space(c′)}

so that ∀a � c, all occurrences of space(c) in location(a)
must be replaced by π(a) (which is either space(c), or
space(c′)). The default allocation policy is random.

Similarly, we have defined the appropriate primitives to de-
stroy (recursively) an environment or an agent, create agents
in specified environments, enter or exit compartments, merge
or dissolve compartments, make a regular agent become a
compartment and vice versa, go from one environment to an-
other one by “crossing” a multi-situated environment (e.g. a
door), etc. All those primitives are available in the current
state of our simulation engine.

Extensions of the interaction matrix

In order to allow a compartment agent to interact with its
guest agents and vice-versa, we also enhance the IODA in-
teraction matrix by adding both a generic line named “host”
to specify the interactions that a compartement may perform
on its guests, and a generic column named “host” to specify
the interactions that an agent may perform on its host.

4.4 Implementation within a simulation-oriented
platform

Since the PADAWAN model relies upon the IODA
interaction-oriented approach, the concepts of which are al-
ready implemented in a Java simulation framework, called
“JEDI” [Kubera et al., 2011]), we developped the appropri-
ate extensions within the JEDI platform. Then, starting with
existing classes, we reify the “face” of an agent as shown
fig. 1. The entity that appears as an “individual” (the one
used in the design phase, and which the domain expert deals
with), extends the PADAWAN_Agent; but, each time an agent
is located in an environment, the simulation engine creates
an instance of PADAWAN_Face, which behaves exactly like a
regular JEDI agent in its single environment.

The scheduler of the simulator has also been rewritten ac-
cording to the principles explained before. At each time step,

336

JEDI_Agent JEDI_Environment

interactinatri

itatedincntent catin

encaatet
ace

PADAWAN_Agent
PADAWAN_Face

ercetina

crd

PADAWAN_Env

eridint

aeint

itatedin

catin

Figure 1: Class diagram which shows the implementation of the
PADAWAN model within the JEDI framework. Each “face” agent
is situated in a single environment, just like regular JEDI agents, but
the “true” entity (used by model designers) is the composition of the
faces around a “core”.

it computes the faces that are situated in activated environ-
ments, applies a scheduling policy, and finally makes the
faces perform an interaction selection process according to
the interaction matrix of their environment. The scheduling
policy is chosen as a parameter of the simulation, in a config-
uration file.

During one time step, each face (as a regular JEDI agent)
can interact at most once as a source, and possibly many times
as a target. Thus, a PADAWAN_Agent that has two faces, each
one belonging to an activated environment, is then likely to
be the source of one interaction in each environment.

Of course, the design of the interactions must take this
scheduling into account to ensure a consistent definition of
agents behavior. For instance, if a face runs a primitive
“grow”, while another face runs “shrink”, that means that two
“opposing” interactions were achievable at the same time:
though it could result from a design mistake, it may well be
the fusion of opposing forces from different environments –
but in any case, this is a domain-dependent issue.

5 Conclusion and perspectives

In this paper, we have presented a double contribution to
multi-scale, agent-based simulation. On the first hand, the
formal model PADAWAN, based on the situation and encap-
sulation relations, provides a flexible, dynamical nested struc-
ture. This model does not make any assumption regarding
what environnements represent, either (physical world, so-
cial groups, memory...). We have also characterized “regular”
cases which encompass usual MAS. Thus, the PADAWAN
model is a helpful frame for the decomposition of a multi-
layer complex system, whether for simulation or distributed
problem solving.

On the other hand, in the very context of interaction-
oriented simulation, we have shown how the use of interac-
tions (generic rules) to model agent behaviors, makes the de-
sign of level-dependent behavior patterns very easy. Indeed,
each environment used in the PADAWAN model has just to
be associated with the approriate interaction matrix, in order
to specify what interactions an agent can perform on other
agents in the corresponding environment.

We have also explained how PADAWAN was implemented
within an existing interaction-oriented platform. The cur-

rent implementation is used for the development of a “Seri-
ous Game” devoted to vendor training [Mathieu et al., 2011],
which involves the simulation of many levels from malls to
shelves.

We also intend to apply our work to cell biology, which
is a suitable touchstone for investigating multi-scale issues.
In the longer term, we hope that the convergence with other
approaches, such as AGRE, which currently focus on orga-
nizational issues, could lead to theoretical developments that
could be used outside the scope of simulation.

References

[An, 2008] G. An. Introduction of an agent-based multi-
scale modular architecture for dynamic knowledge repre-
sentation of acute inflammation. Theoretical Biology and
Medical Modelling, 5(11), 2008.

[Ferber et al., 2005] J. Ferber, F. Michel, and J. Báez.
AGRE: Integrating environments with organizations.
In Weyns et al., editor, Revised Selected Papers of
E4MAS’04, volume 3374 of LNAI, pages 48–56. Springer-
Verlag, 2005.

[Fujimoto, 1998] Richard M. Fujimoto. Time management
in the high level architecture. Simulation, 71:388–400,
1998.

[Kubera et al., 2008] Y. Kubera, P. Mathieu, and S. Picault.
Interaction-oriented agent simulations : From theory to
implementation. In Ghallab et al., editor, Proc. of the 18th
European Conf. on Artificial Intelligence (ECAI), pages
383–387. IOS Press, 2008.

[Kubera et al., 2010] Y. Kubera, P. Mathieu, and S. Picault.
Everything can be agent! In van der Hoek et al., editor,
Proc. of the 9th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS), pages 1547–1548, 2010.

[Kubera et al., 2011] Yoann Kubera, Philippe Mathieu, and
Sébastien Picault. IODA: an interaction-oriented approach
for multi-agent based simulations. Journal of Autonomous
Agents and Multi-Agent Systems, 2011. In press.

[Mathieu et al., 2011] Philippe Mathieu, David Panzoli, and
Sébastien Picault. Format-store: a multi-agent based ap-
proach to experiential learning. In F. Liarokapis, editor,
Proc. of the 3rd Int. Conf. on Games and Virtual Worlds
for Serious Applications (VS-GAMES), 2011.

[Minar et al., 1996] N. Minar, R. Burkhart, C. Langton, and
M. Askenazi. The SWARM simulation system: a toolkit
for building multi-agent simulations. Working Paper 96-
06-042, Santa Fe Institute, 1996.

[Păun and Rozenberg, 2002] G. Păun and G. Rozenberg. A
guide to membrane computing. Theoretical Computer Sci-
ence, 287(1):73–100, 2002.

[Scerri et al., 2010] David Scerri, Sarah Hickmott, Alexis
Drogoul, and Lin Padgham. An architecture for modular
distributed simulation with agent-based models. In van der
Hoek, Kaminka, Lespérance, Luck, and Sen, editors, Proc.
of the 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), pages 541–548, 2010.

337

