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ABSTRACT 
 

The study is aimed at identifying the orders of time series models in 

stationary and non-stationary non-normal data from different 

distributions; with a view to determining the best Autoregressive/ 

Moving Average orders from different time series, ARIMA models were 

considered for different underline distributions of data. The data is 

generated under normal uniform and exponential distribution using a 

second-order autoregressive model. Data were generated in two forms, 

these are, when stationarity is observed and when it is violated. Each case 

of data simulated is fitted to different models and the values of AIC, BIC, 

HQIC, and FPE are computed. The effect of different levels of parameters 

(0.3, 0.6, and -0.3, -0.6) at the sample size of 20, 40, 60, 80, 100, 120, 

140, 160, 180, and 200 which we considered to represent moderate and 

large sample sizes respectively on the simulated data from the stationary 

normal and non-normal data.    We concluded in general that the 

selections of the order for the models considered in this study are tied 

more to the underlying distribution of the series in relation to the 

Stationarity and non-Stationarity of the series as it will lead to the 

identification of the proper model.  Since the selection are almost 

identical in the stationary and non-stationary from both normal and non-

normal data structure but varies with the variation in the distribution of 

the series. And it was also observed that for the ARIMA models the order 

stocked to the principle of parsimony i.e. models with lower-order 

selected at most of the sample sizes considered. The need to develop a 

methodology for model selection that combines both objective and 

subjective techniques is strongly recommended. 
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INTRODUCTION 

Model identification in time series modeling 

and forecasting dates back to the pioneering of 

Box and Jenkins in 1976; Identifying an 

appropriate parameter of the tentative model is 

very paramount if the true objective of the 

modeling is to be achieved. Box-Jenkins’s 

method is a tripartite step of the Identification, 

Estimation, and Diagnostic/Forecasting 

approach in time series modeling. The idea 

behind Box-Jenkins’s approach is to generalize 

the true data generating process based on the 

observed values (Stadnytska et al., 2008). Of 

the three iterative procedures of Box-Jenkins’s 

approach, identification gives an overall insight 

into the basic properties (parameters) of the 

tentative model of the series under 

investigation. Identifying the proper model of 

the time series data is extremely significant if a 

better understanding of the whole process is to 

be achieved (kirushanthini, 2019). Wu and 

Drignei, (2021) proposed an order 

identification algorithm for big-time series 

data. The algorithm proposed is for integer 

order, using the kriging-based method to 

emulate the information criteria such as BIC on 

the rest of the grid and they utilized Efficient 

Global Optimization (EGO) to identify the 

orders. Their proposed algorithm is applicable 

to both ARMA and ARMA-GARCH 

Box-Jenkins has received tremendous and wide 

application in various fields of science, 

Behavioral Sciences, Engineering, and many 

different areas (see, Goin and Ahern, 2019; 

Green, 2011; Fokianos and Kedem, 2002; 

Chen, Min, and Chen, 2013) Several techniques 

for identifying the tentative model have been 

discussed extensively in the literature (see ref). 

However, none of them has identified a bethet 

order of a model to a distribution in which this 

study is trying to establish. In this study, the 

best order of the p and q are determined for 

every category of data distribution and level of 

the sample. Therefore, the objectives of this 

study are to look at the performance of the 

penalty functions of AIC, BIC HQIC, and FPE 

in ARIMA models order selection in relation to 

the type of the data being stationary and non-

stationary and also being normal or non-normal 

in structure.  

Autoregressive Moving Average (ARMA)  

The autoregressive or moving average model 

becomes deficient when a higher order model 

with many parameters is needed to adequately 

describe the dynamic structure of a given data 

(Akeyede, 2016). The autoregressive Moving 

Average Model (ARMA) models was 

introduced by (Box and Tiao, 1975). ARMA 

model basically combines the techniques of 

Autoregressive and Moving Average Models 

into a compact form so that the number of 

parameters needed is minimized. If we assume 

that the series is partly Autoregressive and 

partly Moving Average, we obtained a quite 

general time series model (ARMA) as 

                      (1) 

We say that Xt, is an autoregressive and moving average of order p and q respectively. Symbolically, 

the model is represented by ARMA (p, q).

Autoregressive Integrated Moving Average 

(ARIMA) 

A time series {Wt} is said to follow an  

Autoregressive Integrated Moving Average 

(ARIMA) model if it dth difference, 𝑊𝑡= 

∇𝑑𝑋𝑡is a stationary ARMA process. If {𝑊𝑡} 

follows an ARMA (p, q) model, we say that 𝑊𝑡 
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is an ARIMA (p,d,q) process (Akeyede, 2016). 

Fortunately, for practical purposes, d shouldn’t 

exceed 2 (i.e we can usually take d = 1 or at 

most 2). (Cryer and Chan, 2008) 

Then an ARIMA (p, 1, q) process is as follows: 

𝑊𝑡 = 𝑌𝑡 − 𝑌𝑡−1  we have 

𝑊𝑡 = ∅1𝑊𝑡−1 + ∅2𝑊𝑡−2 + ⋯ ∅𝑝𝑊𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞              (2) 

or, in terms of the observed series we will have: 

𝑌𝑡 − 𝑌𝑡−1 = ∅1(𝑌𝑡−1 − 𝑌𝑡−2) + ∅2(𝑌𝑡−2 − 𝑌𝑡−3) + ⋯ ∅𝑝(𝑌𝑡−𝑝 − 𝑌𝑡−𝑝−1) + 𝑒𝑡 − 𝜃1𝑒𝑡−1 −

𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞                           

which we may rewrite as 

𝑌𝑡 = (1 + ∅1)𝑌𝑡−1 + (∅2 − ∅1)𝑌𝑡−2 + (∅3 − ∅2)𝑌𝑡−3 + ⋯ + (∅𝑝 − ∅𝑝−1)𝑌𝑡−𝑝 −

∅𝑝(𝑌𝑡−𝑝−1) + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞                          

We call this the difference equation form of the model. Notice that it appears to be an ARMA (p + 

1,q) process. However, the characteristic polynomial satisfies 

1 − (1 + ∅1)𝑥 − (∅2 − ∅1)𝑥2 − (∅3 − ∅2)𝑥3 − ⋯ − (∅𝑝 − ∅𝑝−1)𝑥𝑝 − ∅𝑝𝑥𝑝+1 

= (1 − ∅1𝑥 − ∅2𝑥2 − ⋯ − ∅𝑝𝑥𝑝)(1 − 𝑥)                             (3) 

Which can be easily checked; this factorization 

clearly shows the root at x = 1, which implies 

non-stationarity. The remaining roots, 

however, are the roots of the characteristic 

polynomial of the stationary process ∇𝑌𝑡 

Explicit representations of the observed series 

in terms of either 𝑊𝑡 or the white noise series 

underlying 𝑊𝑡 are more difficult than in the 

stationary case. 

MATERIALS AND METHODS 

Data are simulated from normal and non-

normal distribution at sample sizes of 20, 40, 

and 200. The situations were carried out 1000 

times for every sample size and distribution to 

form 1000 iterations. At every iteration, the 

AIC, BIC, HQIC, and FPE for every other 

(p,d,q) of the ARIMA  model, are computed 

and their average values are recorded in tables 

and plotted on graphs. A model with the lowest 

values of the criteria at a particular distribution 

and sample size is considered the best for that 

sample size and distribution. The stationarity 

assumptions of the absolute values of the sum 

of coefficients of the orders of autoregressive 

less than unity and white noise assumptions are 

observed so as to achieve the stationarity of the 

data generated while it is violated to obtain 

non-stationary data structures. The Effect of 

sample size and different underlined 

distributions of data when determining the 

order of the models were examined on each of 

the general ARMA and ARIMA model sections 

on the data simulated. 
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Models Considered for Simulation 

Data is generated from second orders of Autoregressive functions given as follows: 

Model  AR (2): 𝑌𝑡𝑖 = 0.3𝑌𝑡𝑖−1 − 0.6𝑌𝑡𝑖−2 + 𝑒𝑡, 

𝑡 = 1,2, … ,20, 40, 60, 80, 100, 120, 140, 160, 180 𝑎𝑛𝑑 200. 𝑖 = 1,2, … , 1000 

The following codes were written to simulate data of sample size 50 from model 1 above 

x <- e <- rnorm(20) 

for (t in 3:20)x[t] <- 0.3*x[t-1]-0.6*x[t-2]+e[t] 

For stationary cases, data will be simulated for both response variables and error terms from normal 

distribution with mean zero and variance one i.e; 

𝑌𝑡𝑖~𝑁(0,1)𝑎𝑛𝑑𝑒𝑡𝑖 ~𝑁(0,1) 

The normality of error term with zero mean and positive variance indicates that the error term is a white 

noise and therefore the data generated from these series is stationary. 

Models Assessment Criteria 

The criteria of AIC, BIC, HQIC and FPE were used to assessed the adequacy and efficacy of the study; 

presented as follows: 

Akaike information criteria ((AIC), Akaike, 1969) 

AIC (p, q)=log [(�̂�2
𝑝,𝑞) +

(𝑝+𝑞)2

𝑇
 

Schwarz Information Criteria (SIC), Schwarz, 1978) 

SIC(p, q)=log [(�̂�2
𝑝,𝑞) +

(𝑝+𝑞)log (𝑇)

𝑇
 

Hannan-Quinn Information Criteria (HQIC), Hannan-Quinn, 1979) 

HQIC(p, q)=log [(�̂�2
𝑝,𝑞) +

(𝑝+𝑞)2log (log(𝑇))

𝑇
 

SIC and HQIC are more consistent than AIC (Hall, 1994). 

Where p and q are the orders of the model, T 

number of observations/ sample size and �̂�2
𝑝,𝑞 

mean square error (MSE) of the model 

Stationarity  

Stationarity is one most important assumption 

in time series model if meaningful inferences is 

to be made about the structure of a stochastic 

process on the basis of an observed records of 

such process. The basic idea of stationarity 

requirement is that the probability laws that 

guide the behavior of the stochastic process do 

not change with change in time. Implying that 

the process is in state of statistical equilibrium. 

Specifically, a process {Yt} is declared strictly 

stationary if the Joint Distributions of: 

𝑌𝑡1, 𝑌𝑡2, … , 𝑌𝑡𝑛 is the equivalent to the Joint 

Distributions of 𝑌𝑡1−𝑘, 𝑌𝑡2−𝑘, … , 𝑌𝑡𝑛−𝑘 for any 

choices of time points t1, t2,…, tn and any 

choices of time lag k. Similarly, a stochastic 

process {Yt} is considered to be weakly (or 

second-order) stationary if it satisfies the 

following: 

1. its mean function is time invariant, and 

2. 𝛾𝑡,𝑡−𝑘 = 𝛾0,𝑘,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 𝑡 𝑎𝑡 𝑙𝑎𝑔 𝑘 
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The pth-order autoregressive model: 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ ∅𝑝𝑌𝑡−𝑝 + 𝑒𝑡 

stationary solution to the equation exists if 

and only if the p roots of the AR 

characteristic equation each exceed 1 in 

absolute value 

That is, for the roots to be greater than 1 in 

absolute value, it is necessary, but not 

sufficient, that both: 

∅1 + ∅2 + ⋯ + ∅𝑝 < 1 

|∅𝑝| < 1 

Evaluation, Comparison and Preference of 

model 

At each scenario of specification, the best order 

and sample size, the models were examined and 

compared using Akaike information criteria 

(AIC), Bayesian information criteria (BIC), 

Hannan-Quin information criteria (HQIC) and 

Final Prediction Error (FPE) criteria. The 

model with minimum criteria under different 

scenario of simulation was taken as the best 

RESULTS AND DISCUSSION  

The analyses of the ARIMA (p,d,q) models are 

presented in tables 1- and plotted on figure 1- 

as follows and the discussion of every category 

is discussed under each graph. 

Table 1: AIC and BIC Values of ARIMA (p, d, q) Model for Stationary Normal Data  

 AIC BIC 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 74.8945 

 

63.8765 

 

60.9994 

 

48.863 

 

77.72788 

 

67.65432 

 

64.7771 

 

53.58519 

 

40 162.805 

 

113.897 

 

118.760 

 

129.305 

 

167.796 

 

120.5515 

 

125.415 

 

137.6228 

 

60 246.016 

 

190.510 

 

172.145 

 

185.221 

 

252.2487 

 

198.8206 

 

180.455 

 

195.6086 

 

80 301.299 

 

273.475 

 

236.545 

 

221.620 

 

308.4074 

 

282.953 

 

246.023 

 

233.4675 

 

100 329.256 

 

346.102 

 

293.435 

 

287.795 

 

337.0414 

 

356.4832 

 

303.815 

 

300.7712 

 

120 443.988 

 

386.100 

 

354.834 

 

370.237 

 

452.3258 

 

397.217 

 

365.950 

 

384.133 

 

140 457.121 

 

476.512 

 

387.357 

 

369.926 

 

465.9253 

 

488.2499 

 

399.095 

 

384.5984 

 

160 506.509 

 

491.124 

 

477.409 

 

474.522 

 

515.7167 

 

503.4004 

 

489.684 

 

489.8671 

 

180 600.517 565.365 518.497 

 

540.780 610.0801 

 

578.1146 

 

531.247 

 

556.7178 

200 607.984 

 

606.226 

 

586.645 544.579 

 

617.8643 

 

619.3999 

 

599.818 

 

561.0455 
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Figure 1a: AIC values for ARIMA (p, d, q) models form Normal Data 

 

 
Figure 1b: BIC values for ARIMA (p, d, q) models from Normal Data 

 

Table 1 shows the relative performance of r the 

four fitted models on the simulated data with 

1000 iterations at various sample sizes. The 

average values of AIC and BIC for each model 

are recorded in the table above and then plotted 

in figures 1a and 1b respectively. Both AIC and 

BIC increase with increase in sample sizes for 

the simulated data; but decreases with increase 

in order. At sample size 20 ARIMA (2, 1, 2) 

was the best by both AIC and BIC, at 40 

ARIMA (1,1,2) was picked as the best. ARIMA 

(2,1,1) was picked as the best for sample size 

60, at 80 and 100 ARIMA (2,1,2) were selected 

as the best models, ARIMA (2,1,1) were the 

best for 120 and 180, ARIMA (2,1,2) were 

picked as the best at 140, 160 and 200 

respectively.  
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Table 1: HQIC and FPE Values of ARIMA (p, d, q) Model for Stationary Normal Data  
 HQIC FPE 

Sample 

Sizes 

ARIMA(1

,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARMA 

(2,1,2) 

20 65.6687 79.7087 63.6031 62.8375 37.44889 46.02889 38.5723 30.545 

40 134.421 118.821 107.831 104.282 71.4 62.77895 58.1081 53.45778 

60 189.598 184.678 163.237 154.156 98.32345 106.3834 85.5363 81.64571 

80 264.67 238.61 216.225 208.540 136.0149 122.3167 111.759 109.7663 

100 318.088 311.228 301.303 286.177 162.3569 158.7869 155.105 148.395 

120 436.564 374.624 352.076 350.028 222.4432 190.4234 180.126 176.9914 

140 501.830 427.430 413.426 407.141 254.9003 216.622 206.420 208.7788 

160 567.697 508.557 463.006 435.654 287.7038 257.3852 235.291 237.9367 

180 587.509 568.969 518.383 508.718 296.9872 287.5089 262.868 259.0323 

200 636.529 652.389 593.304 568.399 321.2922 329.3824 300.532 288.8578 

 
Figure 1c: HQIC values for ARIMA (p, d, q) models form Normal Data 
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Figure 1d: FPE values for ARIMA (p, d, q) models form Normal Data 

 

It was observed similarly from the table above 

that both the average values of HQIC and FPE 

increase with increase in sample size for the 

simulated data; but decrease with increase in 

the order of the models. The relative 

performances of the four fitted models are 

recorded in the table above and then plotted in 

figures 1c and 1d respectively.  At sample size 

20 model ARIMA (2, 1, 2) was the best picked 

by both HQIC and FPE, at 40 ARIMA (1, 1,2) 

was picked. ARIMA (2,1,1) was picked for 

sample size 60, at 80 and 100 ARIMA (2,1,2) 

were selected as the best, ARIMA (2,1,1) was 

selected for 120 and 180 and ARIMA (2,1,2) 

was picked as the beast at 140, 160 and 200 

respectively. 

Table 2: AIC and BIC Values of ARIMA (p, q) Model for Stationary Non-Normal Data (Exponential 

distribution) 
 AIC BIC 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 176.706 

 

174.317 

 

182.526 

 

209.038 

 

179.5396 

 

178.0948 

 

186.304 

 

213.761 

 

40 425.799 

 

365.405 

 

357.906 

 

435.987 

 

430.7897 

 

372.0595 

 

364.560 

 

444.3048 

 

60 648.552 

 

609.798 

 

560.666 

 

595.870 

 

654.785 

 

618.1086 

 

568.976 

 

606.2582 

 

80 897.393 

 

837.343 

 

762.807 

 

793.582 

 

904.502 

 

846.8208 

 

772.284 

 

805.4295 

 

100 1001.40 

 

1010.34 

 

1013.98 

 

958.784 

 

1009.195 

 

1020.729 

 

1024.36 

 

971.7596 

 

120 1290.16 

 

1232.07 

 

1198.21 

 

1232.80 

 

1298.502 

 

1243.191 

 

1209.33 

 

1246.699 

 

140 1470.28 

 

1402.76 

 

1370.90 

 

1345.74 

 

1479.089 

 

1414.503 

 

1382.64 

 

1360.416 

 

160 1666.12 

 

1678.7 

 

1542.92 

 

1573.34 

 

1675.328 

 

1690.975 

 

1555.19 

 

1588.685 

 

180 1820.79 

 

1769.84 

 

1828.64 

 

1732.16 

 

1830.361 

 

1782.59 

 

1841.39 

 

1748.097 

 

200 2062.35 

 

1928.01 

 

1891.70 

 

1952.03 

 

2072.233 

 

1941.185 

 

1904.88 

 

1968.499 
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Figure 2a: AIC values for ARIMA (p, d, q) Models form a Non-normal Data 

 
Figure 2b: BIC values for ARIMA (p, d, q) Models form a Non-normal Data 

 

The Table shows the relative performance of 

the four fitted models on simulated data with 

1000 iterations at various sample sizes. The 

average values of AIC and BIC for each of the 

model are recorded in the table above and then 

plotted in figures 2a and 2b respectively. At 

sample sizes 20 both AIC and BIC picked 

ARIMA (1, 1,2) as the best, model, at 40, 60, 

80, 120, 160 and 200 they picked ARIMA 

(2,1,1) as the best. ARIMA (2,1,2) model was 

as the best picked for sample sizes 100, 140, 

and 180 respectively.  

Table 2: HQIC and FPE Values of ARIMA (p) Model for Stationary Non-Normal Data (Exponential 

distribution) 
 HQIC FPE 

Sample 

Sizes 

ARIMA 

(1,1,1, 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1, 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 152.2688 140.7831 143.1031 141.5175 90.37111 90.2353 92.35176 99.555 

40 337.2213 280.9719 276.2119 334.3026 183.4737 158.7165 190.8154 197.9144 

60 477.9384 479.3176 435.2176 445.0169 252.4362 260.2121 242.42 247.8514 

80 610.75 601.6651 579.3451 598.2001 317.9287 319.4961 319.0249 324.0521 

100 834.2687 735.9431 736.0431 726.8974 430.9812 385.8677 385.9208 383.1183 

120 990.184 930.176 880.176 883.0281 508.6366 483.9997 462.9741 465.2672 

140 1172.651 1059.286 1043.286 979.2616 600.0323 547.8361 539.4858 511.6659 

160 1231.997 1267.346 1148.686 1158.715 628.2627 652.8306 653.5262 662.2374 

180 1439.269 1433.004 1339.924 1330.918 732.4375 735.6807 687.5631 684.5005 

200 1571.83 1621.084 1493.924 1506.359 798.3897 830.0742 764.5578 776.9798 
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Figure 2c: HQIC values for ARIMA (p, d, q) Models form a Non-normal Data 

 

 
Figure 2d: FPE values for ARIMA (p, d, q) Models form a Non-normal Data 

 

Similarly, the Table above shows the relative 

performance of the four fitted models on the 

simulated data with 1000 iterations at various 

sample sizes. The average values of HQIC and 

FPE for each of the models are recorded in the 

table above and then plotted in figures 2c and 

2d respectively. At sample sizes 20 both AIC 

and BIC picked ARIMA (1, 1,2) as the best, 

model, at 40, 60, 80, 120, 160 and 200 they 

picked ARIMA (2,1,1) as the best. ARIMA 

(2,1,2) model was as the best picked for sample 

sizes 100, 140, and 180 respectively.
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Table 3: AIC and BIC Values of ARIMA (p) Model for Uniform Stationary Data 

 AIC BIC 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 102.756 

 

108.535 

 

110.195 

 

108.164 

 

105.59 

 

108.4151 

 

113.973 

 

112.887 

 

40 202.937 

 

188.239 

 

212.130 

 

187.926 

 

207.9285 

 

194.8939 

 

218.785 

 

196.2447 

 

60 292.051 

 

278.122 

 

290.181 

 

274.508 

 

298.2836 

 

286.4323 

 

298.491 

 

284.8965 

 

80 373.930 

 

360.644 

 

358.135 

 

357.878 

 

381.0387 

 

370.1222 

 

367.613 

 

369.7259 

 

100 463.040 

 

458.664 

 

448.306 

 

441.796 

 

470.8255 

 

469.0448 

 

458.686 

 

454.7721 

 

120 570.121 

 

521.541 

 

543.579 

 

537.352 

 

578.4584 

 

532.6576 

 

554.696 

 

551.2484 

 

140 614.511 

 

597.187 

 

624.306 

 

584.610 

 

623.3148 

 

608.9254 

 

636.044 

 

599.2827 

 

160 726.655 

 

712.008 

 

712.051 

 

681.150 

 

735.8625 

 

724.2845 

 

724.326 

 

696.4951 

 

180 822.195 

 

765.903 

 

782.957 

 

729.186 

 

831.758 

 

778.6526 

 

795.707 

 

745.1232 

 

200 898.535 

 

850.923 

 

861.888 

 

853.599 

 

908.4151 

 

864.097 

 

875.061 

 

870.0656 

 

 

 
Figure 3a: AIC values for ARIMA (p, d, q) Models from a Non-normal Data 
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Figure 3b: BIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

Table 3 above shows the relative performance 

of the four fitted models on the simulated data 

with 1000 iterations at various sample sizes. 

The average values of AIC and BIC for each of 

the model are recorded in the table above and 

then plotted in figures 3a and 3b respectively. 

At sample sizes 20, ARIMA (1,1,1) was 

selected as the best fit. ARMA (2, 1, 2) was the 

best fit at sample sizes 40, 60, 80,140, 160, 180 

and 200 respectively. While ARIMA (1, 1, 2) 

was the best fit at 120 

 

 

Table 3: HQIC and FPE Values of ARIMA (p) Model for Stationary Uniform Non-normal Data 
 HQIC FPE 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 98.4687 102.163 109.063 92.5975 53.64235 64.65706 69.3247 56.70176 

40 196.121 192.831 192.431 190.682 126.1213 107.5 107.267 102.3827 

60 267.178 277.857 287.237 273.896 144.5353 148.8789 154.062 145.1321 

80 391.59 357.765 352.845 366.100 207.8665 188.0435 185.391 190.9431 

100 478.188 452.143 455.803 463.097 250.6404 235.1904 237.133 239.3847 

120 556.144 532.496 575.216 541.568 289.0395 274.9628 297.418 287.5723 

140 640.450 616.526 616.186 620.641 330.9145 316.7607 316.583 317.2408 

160 723.697 696.066 702.806 697.454 372.3045 356.2744 359.773 355.3089 

180 806.649 767.843 772.523 780.898 413.5903 391.8268 394.246 396.8722 

200 888.189 854.864 857.964 815.899 454.1842 435.2959 436.893 413.5017 
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Figure 3c: HQIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

 
Figure 3d: FPE values for ARIMA (p, d, q) Models from a Non-normal Data 

 

Similarly, table 3 above shows the relative 

performance of the four fitted models on the 

simulated data with 1000 iterations at various 

sample sizes. The average values of HQIC and 

FPE are recorded and then plotted in figures 3c 

and 3d. At sample sizes 20, ARIMA (1, 1, 1) 

was selected as the best fit. ARMA (2, 1, 2) was 

the best fit at sample sizes 40, 60, 80,140, 160, 

180 and 200 respectively. While ARIMA (1, 1, 

2) was the best fit at 120 
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Table 4: AIC and BIC Values of ARIMA (p) Model for Non-Stationary Data from Normal distribution 

 AIC BIC 

Sample 

Sizes 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

20 140.364 130.160 127.066 137.136 143.198 133.938 130.844 141.8587 

40 255.331 240.914 233.835 239.384 260.3224 247.5683 240.489 247.7023 

60 393.303 356.778 360.112 353.028 399.5357 365.0889 368.422 363.4158 

80 492.361 469.736 446.010 450.587 499.4699 479.2144 455.488 462.4345 

100 627.858 581.449 564.311 554.318 635.6438 591.8303 574.691 567.2944 

120 747.513 696.462 650.353 683.09 755.8512 707.5794 661.470 696.9856 

140 840.989 811.896 830.548 810.532 849.7925 823.6345 842.286 825.2046 

160 993.802 898.386 912.704 901.088 1003.009 861.3004 924.979 916.4332 

180 1076.67 1014.99 1003.49 1021.39 1086.239 1027.747 1016.24 1037.332 

200 1172.33 1118.48 1126.40 1862.39 1182.21 1131.658 1191.51 1142.873 

 
Figure 4a: AIC values for ARIMA (p, d, q) Models from a Non-normal Data 
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Figure 4b: BIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

Table 4. above shows the relative performance 

of the four fitted models on the simulated data 

with 1000 iterations at various sample sizes. 

The average values of AIC and BIC for each 

model are recorded in the table above and then 

plotted in figures 4.a and 4b respectively. It was 

observed that the values of both AIC and BIC 

increases with increasing sample sizes of the 

simulated data. At sample sizes 20, 40, 80, 120 

and 180 ARIMA (2,1,1) was selected as the 

best fit. ARIMA (1, 1, 2) was the best fit at 

sample sizes160 and 200. While at sample sizes 

60, 100 and 140 ARIMA (2, 1, 2) was the best 

fit respectively 

 

Table 4: HQIC and FPE Values of ARIMA (p) Model for Non-Stationary Data from Normal 

distribution 

 HQIC FPE 

Sample 

Sizes 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

20 138.748 128.743 125.643 135.9175 82.10889 82.63765 80.5405 95.355 

40 254.561 240.751 233.671 239.8226 137.7932 135.3454 131.231 140.1767 

60 392.938 357.237 360.577 354.2969 207.0052 192.7468 194.592 196.0114 

80 492.27 470.605 446.885 452.4001 255.6508 248.8599 236.075 243.4784 

100 627.968 582.603 565.483 556.5374 323.621 304.4553 295.365 294.84 

120 747.784 697.856 651.756 685.6281 383.3281 361.8828 337.650 359.7603 

140 841.370 813.486 832.126 813.3216 429.5912 419.5536 429.281 423.8153 

160 994.297 896.639 914.446 904.0749 506.4038 508.9146 469.637 468.3882 

180 1077.26 1016.88 1005.38 1024.578 547.3701 520.5678 514.622 528.6864 

200 1173.01 1120.48 1180.34 1129.578 594.9512 572.1509 602.992 583.5727 
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Figure 4c: BIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

 
Figure 4d: BIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

Similarly, the table above shows the relative 

performance of the four fitted models on the 

simulated data with 1000 iterations at various 

sample sizes. The average values of HQIC and 

FPE are recorded in the table above and plotted 

in figures 4c and 4d respectively. It was 

observed that the values of both HQIC and FPE 

increases with increase in sample sizes of the 

simulated data. At sample sizes 20, 40, 80, 120 

and 180 ARIMA (2, 1,1) was selected as the 

best fit. ARIMA (1, 1,2) was the best fit at 

sample sizes160 and 200. While at sample sizes 

60, 100 and 140 ARIMA (2,1,2) was the best fit 

respectively. 
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Table 5: AIC and BIC Values of ARIMA (p) Model for Non-Stationary Data from exponential 

distribution 

 AIC BIC 

Sample 

Sizes 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

20 197.686 191.440 195.023 195.162 200.5196 195.2184 198.801 199.8845 

40 393.476 369.337 401.665 401.779 398.4676 375.9919 408.32 410.097 

60 585.7 552.005 636.099 561.930 591.9327 560.3152 644.409 572.3185 

80 776.789 791.514 815.798 793.706 783.8978 800.9925 825.275 805.5538 

100 981.896 991.670 996.828 991.304 989.6818 1002.051 1007.20 1004.28 

120 1190.92 1171.79 1229.73 1178.32 1199.261 1182.907 1240.85 1192.221 

140 1394.64 1347.05 1390.95 1367.75 1403.445 1358.797 1402.69 1382.427 

160 1583.81 1594.5 1592.70 1543.15 1593.024 1606.776 1717.90 1558.498 

180 1759.24 1722.50 1769.28 1785.05 1768.809 1735.252 1782.03 1800.988 

200 2029.57 1987.58 2002.85 1962.51 2039.457 2000.763 2016.03 1978.977 

 

 
Figure 5a: AIC values for ARIMA (p, d, q) Models from a Non-normal Data 
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Figure 5b: AIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

Table 5 above shows the relative performance 

of the four fitted models on the simulated data 

with 1000 iterations at various sample sizes. 

The average values of AIC and BIC are 

recorded in the table above and then plotted in 

figures 5a and 5b respectively. It was observed 

that the values of both AIC and BIC increases 

with increasing sample sizes of the simulated 

data. At sample sizes 20, 40, 60, 120, 140 and 

180 ARIMA (1, 1, 2) was selected as the best 

fit. ARIMA (1, 1, 1) was the best fit at sample 

sizes 80 and 100 respectively. While at sample 

sizes 160 and 200 ARIMA (2, 1, 2) was the best 

fit  

 

Table 5: HQIC and FPE Values of ARIMA (p) Model for Non-Stationary Data from exponential 

distribution 

 HQIC FPE 

Sample 

Sizes 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

ARMA 

(1,1,1) 

ARMA 

(1,1,2) 

ARMA 

(2,1,1) 

ARMA 

(2,1,2) 

20 196.0688 187.8288 193.6031 191.7431 117.1378 112.1022 126.5135 138.87 

40 392.7013 366.5613 401.4919 402.2226 214.1337 209.9678 228.7484 239.4211 

60 585.3384 549.6384 636.557 563.2169 309.8397 300.6316 347.1079 315.3943 

80 776.69 792.3851 816.6651 795.5201 405.1536 422.2868 435.3727 433.0974 

100 982.0087 992.8431 997.9831 993.5174 507.8663 522.2631 524.9921 531.5375 

120 1191.184 1173.196 1231.136 1180.848 612.5434 611.741 642.1967 624.4469 

140 1395.031 1348.646 1392.546 1370.542 714.4452 698.8525 721.7638 718.8141 

160 1584.317 1596.246 1590.959 1546.155 808.8824 823.5653 802.697 805.8918 

180 1759.829 1724.384 1771.164 1788.238 896.3193 886.3093 910.4922 927.8723 

200 2030.25 1989.584 2004.864 1965.859 1032.23 1019.936 1027.809 1016.107 
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Figure 5c: HQIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

 
Figure 5d: FPE values for ARIMA (p, d, q) Models from a Non-Normal Data 

 

Similarly, Table above shows the relative 

performance of the four fitted models on the 

simulated data with 1000 iterations at various 

sample sizes. The average values of AIC and 

BIC are recorded in the table above and then 

plotted in figures 5c and 5 d respectively. It was 

observed that the values of both AIC and BIC 

increases with increasing sample sizes of the 

simulated data. At sample sizes 20, 40, 60, 120, 

140 and 180 ARIMA (1, 1, 2) was selected as 

the best fit. ARIMA (1, 1, 1) was the best fit at 

sample sizes 80 and 100 respectively. While at 

sample sizes 160 and 200 ARIMA (2, 1, 2) was 

the best fit  

CONCLUSION  

The best orders for the ARIMA at different 

sample sizes were assessed. It was observed 

that for the ARMA the order stocked to the 

principle of parsimony i.e., models with lower 

order selected at most of the sample sizes 

considered.  At the middle to the larger sample 

(100 to 200) the models have close 

performance. Similarly, the effect of different 

levels of parameters (0.3, 0.6, and -0.3, -0.6) at 

the sample size of 20, 40, 60, 80, 100, 120, 140, 

160, 180 and 200 which represent to small, 

moderate and large sample sizes respectively 

on the simulated data from the stationary 

normal and non-normal data. Therefore, we 
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conclude in general that the selections of the 

order for the models considered in this study 

are tied more to the underlying distribution of 

the series in relation to the Stationarity and non-

Stationarity of the series as it will lead to 

identification of proper model.  Since the 

selection are almost identical in the stationary 

and non-stationary from both normal and non-

normal data structure but varies with the 

variation in the distribution of the series. The 

need to develop a methodology for model 

selection that combines both objective and 

subjective techniques is strongly 

recommended. 
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