Acta Gymnica 2015, 45(4):187-193 | DOI: 10.5507/ag.2015.022

System of gait analysis based on ground reaction force assessment

František Vaverka1, Milan Elfmark2, Zdeněk Svoboda2, Miroslav Janura2
1 Pedagogical Faculty, University of Ostrava, Ostrava, Czech Republic
2 Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic

Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF) recorded on two force plates.

Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps.

Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t), Fy(t) and Fz(t) curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes.

Results: The method allows quantification of temporal variables of the extremes of the Fx(t), Fy(t), Fz(t) functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry) which can serve as a basis for further research and diagnostics.

Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

Keywords: gait, kinetic analysis, force plate, time variables, force variables, symmetry indices

Received: May 26, 2015; Accepted: July 20, 2015; Prepublished online: September 24, 2015; Published: December 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vaverka, F., Elfmark, M., Svoboda, Z., & Janura, M. (2015). System of gait analysis based on ground reaction force assessment. Acta Gymnica45(4), 187-193. doi: 10.5507/ag.2015.022
Download citation

References

  1. Becker, H. P., Rosenbaum, D., Kriese, T., Gerngross, H., & Claes, L. (1995). Gait asymmetry following successful surgical treatment of ankle fractures in young adults. Clinical Orthopaedics and Related Research, 311, 262-269.
  2. Branco, M., Santos-Rocha, R., Aguiar, L., Vieira, F., & Veloso, A. (2013). Kinematic analysis of gait in the second and third trimesters of pregnancy. Journal of Pregnancy, 2013, 718095. doi:10.1155/2013/718095 Go to original source... Go to PubMed...
  3. Cigali, B. S., Ulucam, E., Yilmaz, A., & Cakiroglu, M. (2004). Comparison of asymmetries in ground reaction force patterns between normal human gait and football players. Biology of Sport, 21, 241-248.
  4. Cook, T. M., Farrell, K. P., Carey, I. A., Gibbs, J. M., & Wiger, G. E. (1997). Effects of restricted knee flexion and walking speed on the vertical ground reaction force during gait. Journal of Orthopaedic and Sports Physical Therapy, 25, 236-244. Go to original source... Go to PubMed...
  5. Ferber, R., McClay Davis, I., Williams, D. S., & Laughton, C. (2002). A comparison of within- and between-day reliability of discrete 3D lower extremity variables in runners. Journal of Orthopaedic Research, 20, 1139-1145. doi:10.1016/S0736-0266(02)00077-3 Go to original source... Go to PubMed...
  6. Fortin, C., Nadeau, S., & Labelle, H. (2008). Inter-trial and test-retest reliability of kinematic and kinetic gait parameters among subjects with adolescent idiopathic scoliosis. European Spine Journal, 17, 204-216. doi:10.1007/s00586-007-0469-9 Go to original source... Go to PubMed...
  7. Gross, R., Delporte, L., Arsenault, L., Revol, P., Lefevre, M., Clevenot, D., … Luauté, J. (2014). Does the rectus femoris nerve block improve knee recurvatum in adult stroke patients? A kinematic and electromyographic study. Gait and Posture, 39, 761-766. doi:10.1016/j.gaitpost.2013.10.008 Go to original source... Go to PubMed...
  8. Hamill, J., & Selbie, S. (2004). Three-dimensional kinetics. In G. E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen, & S. Whittlesey (Eds.), Research methods in biomechanics (pp. 145-162). Champaign, IL: Human Kinetics.
  9. Inman, V. T., Ralston, H. J., & Todd, F. (1981). Human walking. Baltimore, MD: Williams & Wilkins.
  10. Kadaba, M. P., Ramakrishnan, H. K., Wootten, M. E., Gainey, J., Gorton, G., & Cochran, G. V. B. (1989). Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Journal of Orthopaedic Research, 7, 849-860. doi:10.1002/jor.1100070611 Go to original source... Go to PubMed...
  11. Kim, M. K., & Lee, Y. S. (2013). Kinematic analysis of the lower extremities of subjects with flat feet at different gait speeds. Journal of Physical Therapy Science, 25, 531-533. doi:10.1589/jpts.25.531 Go to original source... Go to PubMed...
  12. Kodesh, E., Kafri, M., Dar, G., & Dickstein, R. (2012). Walking speed, unilateral leg loading, and step symmetry in young adults. Gait and Posture, 35, 66-69. doi:10.1016/j.gaitpost.2011.08.008 Go to original source... Go to PubMed...
  13. Martinásková, E., Gallo, J., Kamínek, P., & Janura, M. (2014). Ground reaction force in patients after total hip arthroplasty revision - a pilot study. In D. Milanović & G. Sporiš (Eds.), 7th International Scientific Conference on Kinesiology "Fundamental and Applied Kinesiology - Steps Forward": Proceedings (pp. 174-176). Zagreb, Croatia: University of Zagreb.
  14. Michalski, R., Wit, A., & Gajewski, J. (2011). Use of artificial neural networks for assessing parameters of gait symmetry. Acta of Bioengineering and Biomechanics, 13, 65-70.
  15. Miyaguchi, K., & Demura, S. (2010). Specific factors that influence deciding the takeoff leg during jumpingmovements. Journal of Strength and Conditioning Research, 24, 2516-2522. doi:10.1519/JSC.0b013e3181e380b5 Go to original source... Go to PubMed...
  16. Paquet, J. M., Auvinet, B., Chaleil, D., & Barrey, E. (2003). Analyse des troubles de la marche par une méthode accélérométrique dans la maladie de Parkinson [Analysis of gait disorders in Parkinson's disease assessed with an accelerometer]. Revue Neurologique, 159, 786-789. Go to PubMed...
  17. Racic, V., Pavic, A., & Brownjohn, J. M. W. (2009). Experimental identification and analytical modelling of human walking forces: Literature review. Journal of Sound and Vibration, 326, 1-49. doi:10.1016/j.jsv.2009.04.020 Go to original source...
  18. Sadeghi, H., Allard, P., Prince, F., & Labelle, H. (2000). Symmetry and limb dominance in able-bodied gait: A review. Gait and Posture, 12, 34-45. Go to original source... Go to PubMed...
  19. Shorter, K. A., Polk, J. D., Rosengren, K. S., & Hsiao-Wecksler, E. T. (2008). A new approach to detecting asymmetries in gait. Clinical Biomechanics, 23, 459-467. doi:10.1016/j.clinbiomech.2007.11.009 Go to original source... Go to PubMed...
  20. Steinwender, G., Saraph, V., Scheiber, S., Zwick, E. B., Uitz, C., & Hackl, K. (2000). Intrasubject repeatability of gait analysis data in normal and spastic children. Clinical Biomechanics, 15, 134-139. Go to original source... Go to PubMed...
  21. Svoboda, Z., Janura, M., Cabell, L., & Elfmark, M. (2012). Variability of kinetic variables during gait in unilateral transtibial amputees. Prosthetics and Orthotics International, 36, 225-230. doi:10.1177/0309364612439572 Go to original source... Go to PubMed...
  22. Tao, W., Liu, T., Zheng, R., & Feng, H. (2012). Gait analysis using wearable sensors. Sensors, 12, 2255-2283. doi:10.3390/s120202255 Go to original source... Go to PubMed...
  23. Vanicek, N., Strike, S., McNaughton, L., & Polman, R. (2009). Gait patterns in transtibial amputee fallers vs. non-fallers: Biomechanical differences during level walking. Gait and Posture, 29, 415-420. doi:10.1016/j.gaitpost.2008.10.062 Go to original source... Go to PubMed...
  24. VanZant, R. S., McPoil, T. G., & Cornwall, M. W. (2001). Symmetry of plantar pressures and vertical forces in healthy subjects during walking. Journal of the American Podiatric Medical Association, 91, 337-342. Go to original source... Go to PubMed...
  25. Wang, Y., & Watanabe, K. (2012). Limb dominance related to the variability and symmetry of the vertical ground reaction force and center of pressure. Journal of Applied Biomechanics, 28, 473-478. Go to original source... Go to PubMed...
  26. Wentink, E. C., Prinsen, E. C., Rietman, J. S., & Veltink, P. H. (2013). Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. Journal of NeuroEngineering and Rehabilitation, 10, 87. doi:10.1186/1743-0003-10-87 Go to original source... Go to PubMed...
  27. White, R., Agouris, I., Selbie, R. D., & Kirkpatrick, M. (1999). The variability of force platform data in normal and cerebral palsy gait. Clinical Biomechanics, 14, 185-192. doi:10.1016/S0268-0033(99)80003-5 Go to original source... Go to PubMed...
  28. White, S. C., Gilchrist, L. A., & Wilk, B. E. (2004). Asymmetric limb loading with true or simulated leg-length differences. Clinical Orthopaedics and Related Research, 421, 287-292. Go to original source... Go to PubMed...
  29. Winter, D. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken, NJ: John Wiley & Sons. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.