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Abstract. Recently, Akiyama et al. introduced so-called shift radix systems. These

simple dynamical systems form a common generalization of several well-known notions

of number systems like beta numeration and canonical number systems. In the pre-

sent paper we generalize shift radix systems as follows: for (r1, . . . , rd) ∈ C
d we study

mappings Z[i]d → Z[i]d given by

(x1, . . . , xd) 7→ (x2, . . . , xd,−⌊r1x1 + · · ·+ rdxd⌋).

where for x ∈ C we set ⌊x⌋ = ⌊ℜx⌋ + i⌊ℑx⌋. We study basic dynamical properties of

this class of mappings and relate them to known notions of number systems.

1. Introduction

In 2005 Akiyama et al. [1] defined shift radix systems. Before recalling the

definition of these objects we define the floor function which assigns to each y ∈ R

the largest integer that is less than or equal to y and is denoted by ⌊y⌋. The shift
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radix system related to a vector r ∈ Rd is given by the function τr : Zd → Zd,

x = (x1, . . . , xd) 7→ (x2, . . . , xd,−⌊rx⌋), where rx denotes the scalar product of r

and x. Shift radix systems have many interesting dynamical properties and are

related to several notions of numeration (see [1] for details). In the recent years,

they have been investigated extensively.

Figure 1. An approximation of Pethő’s Loudspeaker G
(0)
1 .

The aim of the present note is to study a variant of shift radix systems for

Gaussian integers. To this matter, the floor function is extended to x ∈ C by the

complex floor function which is defined by

⌊x⌋ := ⌊ℜx⌋+ i⌊ℑx⌋,

i.e., by applying the floor function to the real and imaginary part of x separately.

With the help of this function we define Gaussian shift radix systems as follows.

Let r ∈ C
d be given. To r we associate the mapping γr : Z[i]d → Z[i]d which is

given by

x = (x1, . . . , xd) 7→ (x2, . . . , xd,−⌊rx⌋).

This mapping is called the Gaussian shift radix system (GSRS) associated with r.

We say that γr has the finiteness property if all orbits of γr end up in zero, i.e.,

if for each x ∈ Z[i] there exists a positive integer k such that the kth iterate of γr
applied to x satisfies γk

r (x) = 0.

As for classical shift radix systems, GSRS have relations to number systems

defined in rings of algebraic integers. In particular, we will see that Gaussian

numeration systems in the sense of Jacob and Reveilles [6] are special cases
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of GSRS. Moreover, the symmetric number systems in imaginary quadratic fields

studied in Kátai [8] are strongly related to them.

In the present paper we will study basic properties of γr. We will discuss their

relation to numeration and give first descriptions of the parameters r that give

rise to the finiteness property. We describe an algorithm that allows to decide

whether certain small parameter regions admit the finiteness property. Especially

the case d = 1 will be studied in some detail. This case deserves special interest.

Indeed, for classical shift radix systems the case d = 1 can easily be treated while

in case d = 2 the according problems become already very hard and are not

completely solved up to now. The one-dimensional case of GSRS seems to be

of an intermediate level of difficulty on the one side and reveals new interesting

properties on the other side.

In analogy to classical shift radix systems, the following sets will be of im-

portance in our investigations:

G
(0)
d := {r ∈ C

d : γr has the finiteness property} and

Gd := {r ∈ C
d : each orbit of γr is ultimately periodic}.

The fact that the case d = 1 is already of interest in the context of GSRS is

illustrated by Figure 1 which shows an approximation of the set G
(0)
1 (observe its

irregular structure on the right hand side). Because of its shape and in honor of

Attila Pethő we call this set Pethő’s Loudspeaker.

2. Orbits of γr

Let r ∈ Cd be given and consider the mapping γr. If we take x = (x1, . . . , xd) ∈

Z[i]d as a starting point then, according to the definition of γr, we have

γr((x1, . . . , xd)) = (x2, . . . , xd+1)⇐⇒



































0 ≤ ℜ

(( d
∑

j=1

rjxj

)

+xd+1

)

< 1

and

0 ≤ ℑ

(( d
∑

j=1

rjxj

)

+xd+1

)

< 1.

(2.1)

Thus, calculating γr for a given value x amounts to solving a finite system of

linear inequalities.
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Let x1 = (x1, . . . , xd) be contained in a cycle π of γr. This means that there

is a positive integer p such that γp
r
(x1) = x1, i.e., x1 is γr-periodic. Thus, there

exist x2, . . . ,xp such that

x1
γr

−→ x2
γr

−→ . . .
γr

−→ xp
γr

−→ x1 (2.2)

where each arrow indicates an application of the mapping γr. According to the

definition of γr there exist xd+1, . . . , xd+p−1 ∈ Z[i] such that

xℓ = (xℓ, . . . , xℓ+d−1) (1 ≤ ℓ ≤ p).

Moreover, the fact that (2.2) is a cycle implies that xp+ℓ = xℓ for ℓ ∈ {1, . . . , d−1}.

Thus, the cycle in (2.2) is completely characterized by the sequence x1, . . . , xp.

Therefore we write this cycle as

π =

{

(x1, . . . , xd), if p ≤ d,

(x1, . . . , xd)xd+1, . . . , xp, otherwise.
(2.3)

The cycle 0
γr

−→ 0 occurs for each r ∈ Cd. It is called the trivial cycle. Each other

cycle is called nontrivial.

The set G
(0)
d can be constructed starting from the set Gd by removing all

points r that correspond to some non-trivial cycle π. For this reason, as in the

case of classical SRS we define

P(π) = {r ∈ Gd : π occurs as a cycle for the mapping γr}.

We will now show that, as in the classical case, the sets P(π) are polyhedra. In

particular, let1 π = (x1, . . . , xd)xd+1, . . . , xp be a given cycle. According to (2.1)

a parameter r is contained in P(π) if and only if

0 ≤ ℜ

(( d
∑

j=1

rjxℓ−1+j

)

+ xℓ+d

)

< 1 and

0 ≤ ℑ

(( d
∑

j=1

rjxℓ−1+j

)

+ xℓ+d

)

< 1 (2.4)

holds for all ℓ ∈ {1, . . . , p} (here we set xp+ℓ = xℓ for ℓ ∈ {1, . . . , d}). Since P(π)

is defined by the linear inequalities in (2.4) we see that it is a (half-open and

possibly degenerated) polyhedron.

1For a general cycle π we always use the second alternative of the notation introduced in (2.3).

This should cause no confusion.
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3. Fundamental properties of GSRS

For a matrix M ∈ C
d×d we denote its spectral radius by ρ(M). We need the

following result.

Lemma 3.1. Let d ∈ N, f : Cd → Cd a bounded function and M ∈ Cd×d

with ρ(M) > 1. Furthermore, let

F (x) = MxT + f(x)

for x ∈ Cd. Then there exists some x ∈ Cd such that the sequence (Fn(x))n∈N

given by the iterates of F is not ultimately periodic.

Proof. The proof of [1, Lemma 4.1] can easily be adapted. �

Remark 3.2. Note that Lemma 3.1 was established by Gilbert [5, Pro-

position 3] for real diagonalizable matrices. In particular, Gilbert showed this

statement for a bounded function f : Rd → R
d and F : Rd → R

d defined by

x 7→MxT + f(x) where M is a real diagonalizable d× d matrix.

For r = (r1, . . . , rd) ∈ Cd let

Rr :=



















0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 1

−r1 −r2 . . . . . . −rd



















∈ C
d×d. (3.1)

Lemma 3.3. Let r ∈ Cd. The n-th iterate γn
r (x) of the vector x ∈ Z[i]d is

γn
r
(x)T = Rn

r
xT +

n
∑

k=1

Rn−k
r

vT
k (3.2)

with vectors vk = (0, . . . , 0, {rγk−1
r (x)}) ∈ Cd and {z} := z − ⌊z⌋ for z ∈ C.

Proof. Using induction this is an immediate consequence of the definitions.

�

If γr satisfies the finiteness property then each x ∈ Z[i]d admits a represen-

tation of the form

xT =

n
∑

k=1

R−k
r (−vT

k ) =

n−1
∑

k=0

R−k
r (−R−1

r vT
k+1)

=
n−1
∑

k=0

R−k
r

(−R−1
r

(0, . . . , 0, {rγk
r
(x)})T ). (3.3)
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This is reminiscent of a radix representation with base R−1
r and digits

−R−1
r

(0, . . . , 0, {rγk
r
(x)})T . We will come back to this interpretation in Section 5.

In the next proposition we formulate some results on Gd.

Proposition 3.4. The following assertions hold.

(i) Let r ∈ Cd. If the spectral radius ρ(Rr) of Rr is less than 1 then r ∈ Gd and

the set of γr-periodic elements is finite. More precisely, for every norm ‖ · ‖

on Cd there exists a constant c ∈ R such that ‖a‖ ≤ c for every γr-periodic

a ∈ Z[i]d.

(ii) We have Ed ⊆ Gd ⊆ cl(Ed) where cl denotes the topological closure.

(iii) The boundary of Gd is given by ∂Gd = {r ∈ Cd : ρ(Rr) = 1}.

Proof. (i) For r = 0 the assertion is trivially true. Thus we may assume

that 0 < ρ(Rr) < 1. In this case we may choose ρ̃ ∈ (ρ(Rr), 1) and construct a

norm ‖ · ‖ρ̃ on Cd with the property

‖Rrx
T ‖ρ̃ ≤ ρ̃‖x‖ρ̃

(see e.g. [9, formula (3.2)]). Using Lemma 3.3, the proof of the first part of [1,

Lemma 4.2] shows

‖γk
r (x)‖ρ̃ ≤ ρ̃k‖x‖ρ̃ +

1

1− ρ̃
.

for k ∈ N, hence, there is some k > 0 such that

‖γk
r (x)‖ρ̃ ≤

1

1− ρ̃
+ 1. (3.4)

In view of the equivalence of norms on Cd the proof can easily be completed.

(ii) The first inclusion follows from (i) while the second one is an immediate

consequence of Lemma 3.3 (with n = 1) and Lemma 3.1.

(iii) This follows in the same way as [1, Lemma 4.3]. Just take complex

instead of real polynomials. �

Because of this result we will concentrate on contracting polynomials. More

precisely, we see that the set Gd is intimately related to the set of all parameters r

whose accompanying matrixRr (see (3.1)) has spectral radius less than 1. Looking

at the characteristic polynomial of Rr these parameters are given by the Schur-

Cohn region

Ed := {(r1, . . . , rd) ∈ C
d : all roots of Xd + rdX

d−1 + . . .

+ r1 are inside the unit circle}.

This region has been characterized by Schur [12] as follows.
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Proposition 3.5 ([12, Satz XVII]). The zeros of the polynomial

Xd + rdX
d−1 + · · ·+ r2X + r1 ∈ C[X ]

are all contained in the unit disk if and only if

det































1 0 . . . 0 r1 r2 . . . rν+1

rd 1 . . . 0 0 r1 . . . rν
...

. . .
...

. . .
...

rd−ν+1 rd−ν+2 . . . 1 0 0 . . . r1
r1 0 . . . 0 1 rd . . . rd−ν+1

r2 r1 . . . 0 0 1 . . . rd−ν+2

...
. . .

...
. . .

...

rν+1 rν . . . r1 0 0 . . . 1































> 0 (0 ≤ ν ≤ d− 1).

In particular, in this case |rk| <
(

d
k−1

)

holds for each k ∈ {1, . . . , d}.

Obviously, E1 = {r ∈ C : |r| < 1}. Moreover, one checks that

E2 = {(r1, r2) ∈ C
2 : |r1| < 1 and (1− |r1|

2)2 + 2ℜ(r1r
2
2) > (1 + |r1|

2)|r2|
2}.

Now we turn to results on G
(0)
d . We will need the following notation. For

s = (s1, . . . , sd) ∈ Cd let s = (s1, . . . , sd) be the vector containing the complex

conjugates of the entries of s.

We start with the following symmetry lemma.

Lemma 3.6. Let r = (r1, . . . , rd) ∈ Gd. Then r ∈ G
(0)
d if and only if r ∈ G

(0)
d .

Proof. Let x1 = (x1, . . . , xd) and x2 = (x2, . . . , xd+1) and assume that

γr(x1) = x2 then, according to (2.1), we have

0≤ℜ

(( d
∑

j=1

rjxj

)

+xd+1

)

< 1 and 0≤ℑ

(( d
∑

j=1

rjxj

)

+xd+1

)

< 1. (3.5)

If we replace rj (1 ≤ j ≤ d) and xk (1 ≤ k ≤ d + 1) in (3.5) by rj and ixk,

respectively, the first chain of inequalities in (3.5) becomes the second one and
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vice versa. Indeed,

ℜ

(( d
∑

j=1

rj ixj

)

+ ixd+1

)

=ℜ

(( d
∑

j=1

(ℜrj − iℑrj)(ℑxj+ iℜxj)

)

+ℑxd+1+ iℜxd+1

)

=

( d
∑

j=1

(ℜrjℑxj + ℑrjℜxj)

)

+ ℑxd+1

= ℑ

(( d
∑

j=1

rjxj

)

+ xd+1

)

shows that the first chain becomes the second one by this replacement. The fact

that the second one transforms to the first one is shown likewise. Thus

γr(x1) = x2 ⇐⇒ γr(ix1) = ix2.

In particular, the cylce (x1, . . . , xd)xd+1, . . . , xp is a nontrivial cycle for γr if and

only if the cycle (ix1, . . . , ixd)ixd+1, . . . , ixp is nontrivial for γr. Thus γr admits a

nontrivial cycle if and only if γr does. This implies the lemma. �

Remark 3.7. Figure 1 shows that r ∈ G
(0)
d does not imply that ℑr belongs

to D
(0)
d (see [1, p. 211]).

We use Lemma 3.6 for a result on G
(0)
1 .

Lemma 3.8. If r ∈ G
(0)
1 then ℜr ≥ 0.

Proof. In view of Lemma 3.6 it suffices to exhibit a nontrivial period of γr
for each r = s + it with −1 < s < 0 and 0 ≤ t < 1. Since for these r we have

⌊r⌋ = −1 we get γr(1) = −⌊r⌋ = 1. Thus 1 → 1 is a nontrivial period and the

lemma is proved. �

4. Algorithms

In this section we present algorithms that allow to exhibit points and small

regions in Gd which belong to G
(0)
d . We start with an efficient algorithm to decide

whether γr has the finiteness property for a given vector r ∈ Cd. It is an obvious

generalization of the analogous result in [1, Theorem 5.1]. For convenience we

denote by e1, . . . , ed the canonical basis vectors of Cd considered as a vector space

over C. Furthermore, we use the notations

S1f(x) = f(x), S2f(x) = −f(−x),

S3f(x) = f(x), S4f(x) = −f(−x). (4.1)
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Theorem 4.1. Let r ∈ Cd and denote by Zr the set of elements in Z[i]d

whose orbits of γr end up in zero. Suppose that there exists a subset V of Zr

satisfying the following two properties.

(i) V contains the 4d-element set

V1 = {±e1, . . . ,±ed,±ie1, . . . ,±ied}. (4.2)

(ii) For each a ∈ V the elements Sℓγr(a) (1 ≤ ℓ ≤ 4) belong to V .

Then r ∈ G
(0)
d .

Proof. We follow the proofs of [1, Theorem 5.1] and [13, Theorem 2.6] and

observe that

⌊x+ y⌋ ∈
{

⌊x⌋+ ⌊y⌋ , ⌊x⌋ − ⌊−y⌋ , ⌊x⌋+ ⌊y⌋, ⌊x⌋ − ⌊−y⌋
}

= {⌊x⌋+ Sℓ(⌊y⌋) : 1 ≤ ℓ ≤ 4}

for x, y ∈ C. Using the definition of γr we deduce

γr(a+ b) ∈ {γr(a) + Sℓγr(b) : 1 ≤ ℓ ≤ 4}

for a,b ∈ Z[i]d. Therefore, by (ii) for all a ∈ Z[i]d and b ∈ V there is some c ∈ V

such that

γr(a+ b) = γr(a) + c.

Using induction, for every n ∈ N we find some c ∈ V with

γn
r
(a+ b) = γn

r
(a) + c.

Now let a ∈ Zr. Then there exists n ∈ N with γn
r (a) = 0 and, hence,

γn
r
(a+ b) ∈ V,

and we deduce a + b ∈ Zr. By (i) the proof can now easily be completed induc-

tively. �

Let us assume that all roots of the polynomial

Xd + rdX
d−1 + rd−1X

d−2 + · · ·+ r1 ∈ C[X ]

lie inside the open unit disk, i.e., ρ(Rr) < 1 with r = (r1, . . . , rd) ∈ Cd. Then

similarly as explained in [1, p. 223 f.] our results provide an efficient algorithm

to determine whether r belongs to G
(0)
d or not: define inductively

Vn+1 = Vn ∪ {Sℓγr(a) : a ∈ Vn, 1 ≤ ℓ ≤ 4}
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with V1 given by (4.2). Set mn := max{‖v‖ : v ∈ Vn}. Observe that, choosing ρ̃

as in the proof of Proposition 3.4 (i), we get

max {‖Sℓγr(v)‖ : v ∈ Vn, 1 ≤ ℓ ≤ 4} ≤ ρ̃mn +
1

1− ρ̃
. (4.3)

Thus mn+1 ≤ max
{

mn, ρ̃mn + 1
1−ρ̃

}

which implies that the sequences (mn) and

(Vn) are uniformly bounded. Thus there must be some n such that Vn+1 ⊆ Vn.

Now, if Vn ⊂ Zr then we know r ∈ G
(0)
d by Theorem 4.1, otherwise Vn contains a

nonzero γr-periodic element, and we conclude r /∈ G
(0)
d .

This algorithm was used to construct the approximation of G
(0)
1 in Figure 1.

According to Lemmas 3.6 and 3.8 it suffices to consider only parameters whose

real and imaginary parts are greater than or equal to zero. By (2.4) each explicitly

given nontrivial period π cuts out a polygon form G1. For instance, the period

π : 1− i→ −1→ 1 + i→ 1− i

cuts out the set

P(π) = {r = s+ it ∈ C : s2 + t2 ≤ 1, 1− s ≤ t < 2− s, s < t < 1 + s}

from G1. Thus this set has empty intersection with G
(0)
1 .

Analogously as in [1, Section 5] we generalize Theorem 4.1 and provide an

efficient method to determine a small subregion of G
(0)
d contained in a given convex

polyhedron inside the interior of Gd.

Theorem 4.2. Let r1, . . . , rk be points of Gd and denote by

H = conv(r1, . . . , rk) the convex hull of r1, . . . , rk. If H is contained in the

interior of Gd and if the diameter of H is sufficiently small then there exists an

algorithm to create a finite digraph (V,E) with vertices V ⊂ Z[i]d and edges

E ∈ V × V with the following properties:

(i) V ⊃ V1 with V1 as defined in (4.2).

(ii) For each pair (v,v′) ∈ V 2 there exists an edge from v to v′ if and only if

there is some h ∈ H with

v′ ∈ {Sℓγh(v) : 1 ≤ ℓ ≤ 4} ,

where Sℓ is defined as in (4.1).

(iii) H ∩ G
(0)
d = H \

⋃

π∈C P(π), where C is the set of all nonzero simple cycles2

of (V,E).

2See [10, Definition 2.2.11] for the definition of a simple cycle.
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Proof. SinceH ⊂ int(Gd), Proposition 3.4 implies the existence of a positive

δ < 1 such that for each h ∈ H the spectral radius of the matrix Rh is less than δ.

Then for all h′ in a sufficiently small neighborhood of h, the maps

z 7→ Sℓγh′(z) (1 ≤ ℓ ≤ 4)

are contractive with respect to a suitable norm (see the proof of Proposition 3.4 (i)).

Therefore, assuming that the diameter of H is sufficiently small we may choose a

norm on C
d such that for all h ∈ H the matrix Rh is contractive with respect to

this norm.

For z = (z1, . . . , zd) ∈ Z[i]d we define

L(ℓ)
z =

{

w ∈ Z[i]d : H(ℓ)
z (w) 6= ∅

}

with H(ℓ)
z

(w) = {h ∈ H : Sℓγh(z) = w} (1 ≤ ℓ ≤ 4).

For convenience for a, b ∈ C we write a ≤ b if ℜa ≤ ℜb and ℑa ≤ ℑb. Moreover,

we use the notation

max{aj ∈ C : 1 ≤ j ≤ k}

= max{ℜaj ∈ C : 1 ≤ j ≤ k}+ imax{ℑaj ∈ C : 1 ≤ j ≤ k}.

Note that it is easy to check that w = (z2, . . . , zd+1) ∈ L
(ℓ)
z implies

−M (ℓ)(−z) ≤ zd+1 ≤M (ℓ)(z)

where we set

M (ℓ)(z) = max{Sℓ(−⌊rjz⌋) : 1 ≤ j ≤ k}.

In other words, setting

K(ℓ)
z

= {(z2, . . . , zd, zd+1) : zd+1 ∈ Z[i], −M (ℓ)(−z) ≤ zd+1 ≤M (ℓ)(z)}

we get L
(ℓ)
z ⊆ K

(ℓ)
z . Thus

L(ℓ)
z = {w ∈ K(ℓ)

z : H(ℓ)
z (w) 6= ∅}.

As H
(ℓ)
z (w) is a polytope, the sets L

(ℓ)
z are effectively computable.

For n ≥ 1 we define inductively

Vn+1 = Vn ∪ {Sℓγh(a) : h ∈ H, a ∈ Vn, 1 ≤ ℓ ≤ 4} .

In the same way as in the remarks after the proof of Theorem 4.1 (see especially

equation (4.3)) we get Vn+1 ⊆ Vn for some n. For this n we set V := Vn.
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Algorithm 1 Determination of G
(0)
d ∩ conv{r1, . . . , rk}

Input: r1, . . . , rk ∈ Ed, overflow ∈ N.

Output: G := G
(0)
d ∩ conv{r1, . . . , rk} or “overflow”

H ← conv{r1, . . . , rk}

V1 ← {±e1, . . . ,±ed,±ie1, . . . ,±ied}

n← 1

repeat

W = ∅

for z = (z1, . . . , zd) ∈ Vn do

for ℓ = 1, . . . , 4 do

M (ℓ)(z)← max{Sℓ(−⌊rjz⌋) : 1 ≤ j ≤ k}; {Sℓ as in (4.1)}

K
(ℓ)
z ← {(z2, . . . , zd, zd+1) : zd+1 ∈ Z[i], −M (ℓ)(−z) ≤ zd+1 ≤M (ℓ)(z)}

for w ∈ K
(ℓ)
z do

H
(ℓ)
z (w)← {h ∈ H : Sℓγh(z) = w}

end for

L
(ℓ)
z ← {w ∈ K

(ℓ)
z : H

(ℓ)
z (w) 6= ∅}

end for

W ←W ∪ L
(1)
z ∪ L

(2)
z ∪ L

(3)
z ∪ L

(4)
z

end for

Vn+1 ← Vn ∪W

n← n+ 1

until Vn ⊆ Vn−1 or n > overflow

if Vn ⊆ Vn−1 then

V ← Vn

G← H

for π in the set of simple cycles in (V,E) do

G← G \P(π)

end for

return G

else

return “overflow”

end if

Now we define the edges E by (ii). Then it is clear that (V,E) is a finite

digraph with properties (i) and (ii).

We are left to show (iii). It is obvious that H \
⋃

π∈C P(π) ⊃ H ∩ G
(0)
d . Let

h ∈ H . The construction after Theorem 4.1 delivers a subgraph of (V,E). If
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h ∈ H \ G
(0)
d then by Theorem 4.1 there exists a nontrivial simple cycle π in the

graph (V,E) and h ∈ P (π). �

This theorem gives an effective algorithm to obtain H ∩G
(0)
d for H being the

convex hull of finitely many points lying in the interior of Gd, see Algorithm 1.

Observe that the number of simple cycles of a finite digraph is finite (see e.g. [7]

for an algorithm that finds all simple cycles of a finite digraph).

In practice, to apply Theorem 4.2, there is no need to take care of the “suffi-

ciently small” condition. Just choose a small convex hull inside the interior of Gd
and try this algorithm to see whether the emerging process terminates or yields

“overflow” in a certain prescribed time. If it terminates we get H ∩ G
(0)
d . If not,

then we have to try again by a smaller convex hull.

5. Relations to Gaussian numeration systems

In the present section we show that our new notion of GSRS contains Gauss-

ian numeration systems in the sense of Jacob and Reveilles [6] as special cases.

First we recall the definition of these objects.

Let β ∈ Z[i] \ {0} be a Gaussian integer and set

C =

{

c ∈ Z[i] :

⌊

c

β

⌋

= 0

}

. (5.1)

The pair (β, C) is called a Gaussian numeration system if each x ∈ Z[i] can be

written uniquely in the form

x = c0 + c1β + · · ·+ cnβ
n (5.2)

with ci ∈ C and cn 6= 0 for n 6= 0. Note that the digits ci are unique because C

is a complete set of representatives of cosets of Z[i]/βZ[i]. In [6, Theorem 3] the

elements β ∈ Z[i] that give rise to a Gaussian numeration system are characteri-

zed.

In the following lemma we show that for d = 1 certain GSRS mappings γr
can be used to calculate the digits in (5.2).

Proposition 5.1. Let β ∈ Z[i] \ {0} be given and define C as in (5.1). Then

(β, C) is a Gaussian numeration system if and only if −1/β ∈ G
(0)
1 . In particular,

the digits in the representation (5.2) of x are given by

ck = β

{

−
1

β
γk
−1/β(−x)

}

(k ∈ N). (5.3)

Note that ck = 0 for k > n.
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Proof. Let − 1
β ∈ G

(0)
1 and x ∈ Z[i]. Then there exists n ∈ N such that

γn+1
−1/β(−x) = 0. In view of (3.3) we can write

x =

n
∑

k=0

βk

(

β

{

−
1

β
γk
−1/β(−x)

})

=

∞
∑

k=0

βk

(

β

{

−
1

β
γk
−1/β(−x)

})

. (5.4)

Since
⌊{

− 1
β γ

k
−1/β(−x)

}⌋

= 0, the elements β
{

− 1
βγ

k
−1/β(−x)

}

belong to C.

Thus, in view of the uniqueness of the digit representation (5.2), the expansion

in (5.4) is the one in (5.2) which proves (5.3). Moreover, since x was arbitrary,

this implies that (β, C) is a Gaussian numeration system.

Now assume that (β, C) is a Gaussian numeration system and x ∈ Z[i]. Then

x has a representation of the form (5.2). We see by induction that γ
(n)
−1/β(−x) = 0.

Indeed, note that

γ−1/β(−x) = γ−1/β(−c0 − c1β − · · · − cnβ
n) = −

⌊

c0 + c1β + · · ·+ cnβ
n

β

⌋

= −

⌊

c0
β

⌋

−
⌊

c1 + · · ·+ cnβ
n−1

⌋

= −c1 − · · · − cnβ
n−1.

Since x was arbitrary this implies − 1
β ∈ G

(0)
1 . �

Observe that G
(0)
d contains much more elements than those which are in

correspondence with Gaussian numeration systems.

6. Perspectives

In the present paper we started the investigations on GSRS by proving some

basic results. Many things remain to be done. In what follows, we list some

further problems and possible research directions related to this new class of

dynamical systems.

(i) Is it true that (r1, . . . , rd) ∈ G
(0)
d implies that ℜr1 ≥ 0 ? Lemma 3.8 shows

that this is true for d = 1. In case of shift radix systems the analogous

question has been answered affirmatively in [3, Theorem 2.1]. In the case of

GSRS the situation seems to be more difficult.

(ii) Is 1 a critical point of G
(0)
1 ? If so, is it the only critical point? For a definition

of a critical point see [1, Section 7]. This definition carries over to GSRS in

a natural way.
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(iii) What can we say about the topology of G
(0)
d ? For instance, are these sets

connected or simply connected? These questions are already interesting for

the case d = 1. In this case there is some hope to get a complete description

of G
(0)
1 .

(iv) What can we say about the geometry of G
(0)
d ? For instance, Figure 1 indicates

that G
(0)
1 is starlike. What is the Hausdorff dimension of the boundary of

G
(0)
d ?

(v) The interior of Gd is equal to the Schur–Cohn region Ed. However, it is not

clear which part of the boundary Gd belongs to Gd. For classical shift radix

systems the analogous problem was studied for instance in [2], [11]. In the

classical case it is solved completely only in dimension one.

(vi) Define and study GSRS tiles (see [4] for tiles related to shift radix systems).

The example r = 2
3 (1 + i), x = −1 + i shows that the preimage of γr can be

empty, i.e., that γ−1
r (x) = ∅. As this cannot occur for classical shift radix

systems, it would be interesting to study the effect of this property on the

underlying tiles.

(vii) Lemma 3.3 and Proposition 5.1 indicate that GSRS are related to radix

representations. What kinds of numeration are hidden behind the notion of

GSRS? In Section 5 we established a relation to Gaussian numeration systems

in the sense of [6]. This should be generalized to higher dimensions. In

particular, we think that GSRS are related to number systems defined in the

rings Z[i]/pZ[i] where p ∈ Z[i][X ] (see [1, Section 3] for the relation between

shift radix systems and canonical number systems). Moreover, it would be

interesting to find an analogue to beta numeration related to GSRS. Here

we suggest to study the complex beta transformation Tβ : C/Z[i] → C/Z[i]

defined by x 7→ {βx} for each β ∈ C (see [1, Section 2] for shift radix systems

and beta expansions).

(viii) Define and study generalizations of shift radix systems for other orders Z[α].

Moreover, analogously to Surer [13] one can define and study “ε-GSRS”. It

seems that for ε = 1/2 these generalized GSRS contain the number systems

in imaginary quadratic fields studied by Kátai [8].

The first author wishes to express his heartfelt thanks to the Chair of Ma-

thematics and Statistics of the University of Leoben for their hospitality during

the preparation of this manuscript.
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