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Abstract. Here we report some results of a two-year study for grades 5-6 and 7-8 (dur-
ing the academic years 2001–03). The study included a quantitative survey for ap-
proximately 150 Finnish mathematics classes out of which 10 classes were selected to a
longitudinal part of the study. Additionally, 40 students from these classes participated
also a qualitative study. This paper will focus on students’ understanding of infinity
and the development of that understanding. The results show that most of the students
did not have a proper view of infinity but that the share of able students grew, as the
students got older.
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Most primary children are very interested in infinity, and they enjoy dis-

cussing the concept, if the teacher is only ready for it. On one hand, they have

a concrete view on the world around and mathematics and, on the other hand,

they are ready to play with numbers. Thus, questions on infinity may also come

into light. In the primary curriculum, the concept ‘infinity’ is implicitly present

in many of the topics, e.g. in arithmetic, when dealing with fractions, or in geom-

etry, e.g. when introducing the concept ‘straight line’. Infinity awakes curiosity

in children already before they enter school: “preschool and young elementary

school children show intuitions of infinity” [24]. However, this early interest is

not often met by school mathematics curriculum, and infinity remains mysterious

for most students throughout school years.

Copyright c© 2006 by University of Debrecen
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Infinity in mathematics

Actual and potential infinity

Infinity is an important concept in mathematics, especially in analysis, and we

encounter infinity already in, perhaps, the most basic of mathematical concepts,

namely in natural numbers. Consider the sequence of natural numbers 1, 2, 3, . . .

and think of continuing it on and on. There is no limit to the process of counting;

it has no endpoint. Such ongoing processes without an end are usually the first

examples of infinity for children; such processes are called potentially infinite.

In mathematics, such unlimited processes are quite common. Consider, for

example, drawing regular polygons with more and more sides inside a circle,

or counting more and more decimals of π. However, the interesting cases in

mathematics are, when infinity is conceptualised as a realised “thing” – the so-

called actual infinity. The set of all natural numbers is an example of actual

infinity, because it requires us to conceptualise the potentially infinite process of

counting more and more numbers as if it was somehow finished [11].

The question of infinity has its roots already in the mathematics of ancient

Greece, cf. for example, the famous paradox of Zenon [2]. However, the transi-

tion from potential to actual infinity includes a transition from (an irreversible)

process to a mathematical object. This step Greek mathematicians were unable

to accomplish [16]. In the history of mathematics, the exact definition of and

dealing with infinity is about one hundred years old. The foundation of infinity

as modern mathematics sees it was laid when Dedekind and Cantor solved the

problem of potential infinity at the end of the 19. century, and Cantor developed

his theory of cardinal numbers (e.g. [2], [16]).

We may distinguish different kinds of infinities in mathematical objects. For

example, the set of natural numbers has infinitely many elements, and it has no

upper bounds. Therefore, the numbers may become bigger and bigger. Whereas,

some sub-sets of rational numbers are different. For example, the set of ratio-

nal numbers between zero and one also has infinitely many elements, but it is

bounded. Furthermore, between any two rational numbers (however close they

are to each other) there are infinitely many rational numbers. This property of

rational numbers is called density.

When mathematicians write about counterintuitive nature of infinity, they

typically refer to actual infinity. For example, take the (actually infinite) set of

natural numbers {1, 2, 3, . . .} and compare it with its subset which includes only

all even numbers {2, 4, 8, . . .}. Intuitively, one would assume that the ‘number
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of elements’ in the latter would be smaller by half. However, the concept “equal

number of elements” in a set is generalized to infinite sets by saying that the two

sets have “equal number” of elements, if their elements can be put into one-to-one

correspondence with each other; thus we say that their cardinality is the same

(e.g. [2]).

Tsamir and Dreyfus [22] summarise the problems mathematicians have had

with actual infinity, as follows:

Actual infinity, a central concept in philosophy and mathematics, has

profoundly contributed to the foundation of mathematics and to the theo-

retical basis of various mathematical systems. It has long and persistently

been rejected by mathematicians and philosophers alike, and was highly

controversial even in the last century in spite of the comprehensive frame-

work provided for it by Cantorian set theory.

They also cite Davis & Hersh who warned that “the infinite has turned out

to be the hiding place of much that is strange and paradoxical” ([4, p. 155]), and

Fishbein [7] who explained that

when dealing with actual infinity – namely with infinite sets – we are

facing situations which may appear intuitively unacceptable . . . we are

intuitively not equipped to deal with actually given infinite sets. Their

logic is not our logic, which is rooted in our practical experience ([7, p.

92]).

Hence, although the concept of infinity as a potentiality is relatively easy for

mathematicians, the concept of actual infinity is counterintuitive and difficult.

Students’ conceptions of infinity

Infinity has been an inspiring, but difficult concept for mathematicians. It is

no wonder, that also students have had difficulties with it, although they might

be fascinated about it. Previous research has identified typical problems and

constructive teaching approaches to cardinality of infinite sets. Students use in-

tuitively the same methods for the comparison of infinite sets as they use for the

comparison of finite sets. Although students have no special tendency to use the

Cantorian method of “one-to-one correspondence”, they are prone to visual cues

that highlight the correspondence. For example, students tend to match the set

{1, 2, 3, . . .} more easily with the set {12, 22, 32, . . . } than with the set {1, 4, 9, . . .}

[22].
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One issue that was raised already by Piaget [19], is the cognitive development

of grasping infinitely large and infinitely dense. Wheeler [24] considered these

questions, as follows:

Our decimal numeration system provides two perspectives of infinity:

counting leads to a consideration of numbers that continue to get bigger

without bounds, whereas successive partitionings of an interval lead to a

consideration of numbers that continue to get smaller and are bounded.

Does a hierarchical relationship exist between understanding the decimal

system and understanding of the other? [24]

Wistedt and Martinsson [25] have challenged Swedish 5th graders (11 years

old) with a realistic problem of dividing a one meter long piece of wood into three

equal parts. Mathematically, the task can be reduced to dividing 100 with 3.

Since the students could only think of finite or potentially infinite decimals, they

obtained either numbers that are not exactly equal or their sum is not exactly

100.

Fishbein, Tirosh and Hess inquired students’ view of infinite partitioning

through using successive halving of a number segment [8]. They concluded that

students on grades 5-9 seem to have a finitist rather than a nonfinitist or an

infinitist point of view in questions of infinity.

Even at the university level, the concept of infinity of real numbers is not

clear for all students [15]. For example, Wheeler [24] points out that university

students distinguished between 0.999 . . . and 1, because “the three dots tell you

the first number is an infinite decimal”.

Metaphorical thinking

Metaphorical thought

The view exposed here is based on an understanding of mathematical thinking

as embodied [11]. Embodiment of mathematical thinking means an acceptance

of biological grounding of thinking in human brain, an effort to accept and adopt

results from neurosciences to human thinking. One important cognitive process

that is well grounded in modern cognitive science and that can explain a lot of

mathematical thinking is metaphorical thought.

“For the most part, human beings conceptualize abstract concepts in con-

crete terms, using ideas and modes of reasoning grounded in the sensory-

motor system.” ([11, p. 5])
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This process is called conceptual metaphor, and Lakoff & Núñez [11] de-

scribe how these metaphors underlie mathematical thinking. In their terminol-

ogy metaphor is not “simply a linguistic phenomenon, a mere figure of speech”

(ibid p. 6). Rather, a conceptual metaphor is a cognitive mechanism that is

– in technical terms – a “grounded inference-preserving cross-domain mapping”

(ibid p. 6). Cross-domain mapping means that the mechanism applies a cogni-

tive domain (e.g. motion) to reason about another domain (e.g. time). Because of

inference-preservation we, for example, tend to think of time as going slow or fast.

Grounding metaphors use our everyday experience of perception and action, like

addition as adding objects to a collection. Linking metaphors use metaphorical

ideas of one domain to reason about another domain. We use a linking metaphor,

for example, when we think of numbers as points on a line.

Lakoff & Núñez [11] present four grounding metaphors for arithmetic that

include a conceptualisation of numbers. The numbers are conceptualised as col-

lections of objects, as objects of different size, as segments of a measuring stick,

and as point-locations on a path. Through linking metaphors numbers can also

be conceptualised in terms of geometry (points on a line), symbols (sequences

of numerals) and set theory (elements in a set). Different metaphors allow us

different extensions of number system beyond the natural numbers. For exam-

ple, the metaphor of numbers as locations on a path or a line, leads us easily to

conceptualise negative numbers as locations left from the origin.

Metaphors for infinity

Our brains are finite, and our everyday experience consists solely of finite

processes. Lakoff & Núñez [11] have tried to answer how we yet can conceptualise

infinity. The conceptual metaphor of infinity is embodied in the neural system

that controls movement – the motor control system. This neural structure is not

used only for motor control, but it can be used also to reason about events and

actions. We conceptualise some actions to include their end (‘to jump’) and other

actions to have their completion external to the act (‘to fly’). Potential infinity is

conceptualised through iterative processes that may be repeated on and on, and

the completion of this process is external to the act. We can count numbers on

and on, and we know that there is no boundary for the counting process.

However, when we use The Basic Metaphor of Infinity ([11, p. 159]), we take

this iterative process that has no end, and metaphorically think of it in terms

of a process that includes its completion and has a resulting state. This is a

paradoxical thought – a process that goes on and on, and yet has a final state.
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Using this metaphor for natural numbers, we can conceptualise the process of

counting to be completed and we have the set of all natural numbers. We can

also conceptualise ‘the final resultant state’ of counting, ∞, which is unique and

bigger than all integers. Actual infinity “∞” cannot be conceptualised through

potentially infinite process alone, but it requires the conceptualisation of an end

point of the process [11].

Potential infinity can be used also to construct an unlimited number of dec-

imal numbers between any given two numbers. However, actual infinity is re-

quired to conceptualise the size of the set as infinite. The difference between

potential and actual infinity becomes crucial in the understanding of the state-

ment 0.9999 . . . = 1. When the number 0.999 . . . is conceptualised as potentially

infinite, it differs from one although the difference decreases as the process of

adding new decimals continues. However, when it is conceptualised as actually

infinite, the difference has disappeared as the end result of the process and there-

fore 0.999 . . . equals one.

The metaphors for numbers and infinity are not arbitrarily chosen, but re-

stricted by two main conditions. Firstly, they have plausible ultimate embodied

groundings and evidence for it (e.g. cross-linguistic studies and spontaneous ges-

tures). For example, humans have an innate capacity to subitize – to instantly

recognize the number of up to three items. Cognitive capacities needed in order

to count beyond three objects include grouping, ordering, pairing, memory, and

exhaustion detection. Secondly, the embodied groundings

“must have just the right inferential structure and the hypothesized meta-

phors must have just the right mapping structure to account all the rel-

evant mathematical inferences and all of the properties of the branch of

mathematics studied” ([11, p. 101]).

If we accept the fundamental nature of conceptual metaphors in human think-

ing, then learning new mathematical ideas can be understood as a change of

metaphor to be used for reasoning in one domain. For example, the learning of

rational numbers can be seen as a shift from a conceptual metaphor of numbers

as ‘collections of objects’ into a metaphor of numbers as ‘points on a line’. Fur-

thermore, in order to conceptualise real numbers there is need to apply other

metaphors, like irrational numbers as infinite sequences of numerals.

In a study of the 5th graders, Boero, Douek & Garuti [1] distinguished three

source domains for metaphors used in argumentation about infinity: another

mathematical domain (typically geometry), everyday life experiences (a mortal

woman giving birth to girl who will grow into a woman who will give birth to a



i

i

“hannula” — 2007/2/15 — 13:51 — page 323 — #7
i

i

i

i

i

i

Levels of students’ understanding on infinity 323

girl etc. thus producing infinitely long life), and religious ideas (eternity of God

and/or soul).

Focus of the paper

We want to find out what is the level of students’ understanding on infinity in

Finnish comprehensive school, and how this understanding develops from grade 5

to grade 7. We will distinguish three levels of students understanding of infinity.

The lowest level is when they do not understand infinity, but use only finite

numbers. In the intermediate level, the students understand potential infinity,

and use processes that have no end. Those students, who have reached the third

level, are able to conceptualise actual infinity and the final resultant state of the

infinite process.

Methods

The paper describes some partial results of the research project “Develop-

ment of Understanding and Self-confidence in Mathematics”, implemented at the

University of Turku (Finland), directed by professor Erkki Pehkonen, and finan-

cially supported by the Academy of Finland (project #51019). The project was a

two-year longitudinal investigation during the academic years 2001–03 on grades

5-8. More results of the project are to be found in the papers [10] and [12].

In order to measure the level of students’ self-confidence and understanding

of number concept in grades 5 and 7 of the Finnish comprehensive school, we

designed a survey. The representative random sample of students consisted of

1154 fifth-graders (11 to 12 years of age) and 1902 seventh-graders (13 to 14

years of age) from different parts of Finland. The response rate of schools was

72%. The survey was administered by teachers during a normal 45-minute lesson

in the fall 2001. The questionnaire consisted of five parts: student background,

19 mathematics tasks, success expectation for each task, solution confidence for

each task, and a mathematical belief scale.

The students’ confidence was measured with three different measures. Before

the students did the actual tasks, they estimated on a 5-point Likert scale whether

they think that they can solve the task or not (‘success expectation’). After

solving each task they answered on another 5-point Likert scale on their confidence

on their solution (‘solution confidence’). In addition, we had a mathematical belief
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scale with 25 items of which 10 were measuring students’ self-confidence (adopted

from Fennema-Sherman mathematics attitude scales [6]).

In the 19 mathematical questions, there were three that measured students’

understanding of infinity (tasks 5, 7 and 8). Task 5 measured understanding of

infinitely large natural numbers. The two other tasks measured understanding of

the density of the rational numbers.

Task 5. Write the largest number that exists. How do you know that it

is the largest?

Task 7. How many numbers are there between numbers 0.8 and 1.1?

Task 8. Which is the largest of numbers still smaller than one? How

much does it differ from one?

Here we will concentrate on the results of these three infinity tasks.

After the survey was completed, five classes from each grade were selected,

i.e. five grade 5 and five grade 7 classes. Furthermore, 40 students were selected

to the qualitative part of the study, 20 students from each grade in question. The

40 students consisted of four students from each of the five grade 5 classes and

of the five grade 7 classes. The students were interviewed, and they did some

mathematical tasks in a group. In these situations, we returned to question 7 of

the survey. This was done in order to get deeper insight of students’ thinking.

Results

Survey results of competence

We categorized student responses to the infinity tasks according to how proper

we deemed answers to be. In each question, we can find answers that remain

on the level of finite numbers, answers that describe processes that do not end

(potential infinity) as well as some answers that indicate that the student has an

understanding of a final state of the infinite process (actual infinity).

To give a general description of the development from fifth grade to seventh

grade we compared the answer distributions in each item. In Figures 1–3 we can

see, that tasks were demanding and most students scored only zero or one point

per task (maximum being 4-5 points). As expected, seventh graders gave better

answers.
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Task 5. Write the largest number that exists. How do you know that it is the largest?

Answer categories (and scoring):

• Actual infinity 2: There is no largest number (4 points)

• Actual infinity 1: Infinity, ∞ (3 points)

• Potential infinity: Unending number, e.g. 9999 . . . (2 points)

• Finite: A number larger than one million, e.g. 99999999999999999, centillion
(1 point)

• Incorrect: No answer or a number not exceeding one million (0 points)

Figure 1. Students’ scoring for task 5. Frequency of each answer cat-
egory in grades 5 and 7

In task 5 (infinitely large), the development consisted mainly of the decrease

of finite numbers as answers and of increase of different types of infinite answers.

Task 7. How many numbers are there between the numbers 0.8 and 1.1?

Answer categories (and scoring):

• Actual infinity: Infinitely many (5 points)

• Potential infinity: Unending number, e.g. 9999 . . . (4 points)

• Finite 3: A finite number larger than one million, e.g. 9999999999999 (3 points)

• Finite 2: Working with more than one decimal, a number between 20 and one
million (2 points)

• Finite 1: Working on one decimal level (even incorrectly), 2, 3 or 4 (1 point)

• Incorrect: Working on integral level (i.e. 1), no answer or other incorrect answers
(e.g. 0.3) (0 points)
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Figure 2. Students’ scoring for task 7. Frequency of each answer cat-
egory in grades 5 and 7

In task 7 (infinitely many), the decrease was mainly in completely incorrect

answers (typically 0.3) and in single decimal thinking, and the biggest increase

was in correct answers (infinitely many).

Task 8. Which is the largest of numbers still smaller than one? How much does it
differ from one?

Answer categories (and scoring):

• Actual infinity: There is no such number (5 points)

• Potential infinity 2: Such number cannot be written (4 points)

• Potential infinity 1: 0.999 . . . (3 points)

• Finite 2: 0.999; three or more decimals (2 points)

• Finite 1: 0.9; 0.99 (1 point)

• Incorrect: Working on natural number level (i.e. 0), no answer or other incorrect
answers (e.g. negative infinity) (0 points)

In task 8 (infinitely close), the decrease was mainly in completely incorrect

answers (typically ‘zero’ or ‘minus infinity’), and a significant increase was in

answers (0.999 . . . ) that require understanding of potential infinity, but not actual

infinity.

The chi square test revealed significant gender differences in task 5 (infinitely

large) on fifth grade, and in tasks 7 (infinitely many) and task 8 (infinitely close)

on seventh grade, in all cases boys giving significantly more frequently answers of

infinite nature than girls.
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Figure 3. Students’ scoring for task 8. Frequency of each answer cat-
egory in grades 5 and 7

Summary of competence results

In the fifth grade 20 percent of the students had some understanding of the

infinity of natural numbers, but few had any understanding of density of numbers.

The situation is not much better in the seventh grade. Yet, there is an obvious

development from grade 5 to grade 7 in student levels of answering these questions.

Infinity of natural numbers is understood earlier than infinity of subsets rational

(real) numbers, and potential infinity is understood earlier than actual infinity.

Boys perform much better than girls in these tasks dealing with infinity.

Survey results of confidence

Next we shall look at how student’s expectation of success and confidence in

own solution relate to actual performance. As a general tendency students tended

to use the upper end of both these scales indicating that most students had rea-

sons for their answer and the results were not randomly picked. In earlier analyses

it was observed that both average success expectation and average solution confi-

dence had a moderate correlation with overall mathematical self-confidence (0.49

and 0.50, respectively), while correlation with overall achievement in test was

lower (0.33 and 0.40, respectively). Below we shall report more detailed analyses

on task-level.

According to the chi square test both students’ success expectation and so-

lution confidence related to their answers (with an exception of the fifth grade

boys’ success expectation). In tasks 5 and 8, the students’ solution confidence



i

i

“hannula” — 2007/2/15 — 13:51 — page 328 — #12
i

i

i

i

i

i

328 Markku S. Hannula, Erkki Pehkonen, Hanna Maijala and Riitta Soro

increased, as their answers got better. In task 7 (infinitely many), however, the

relationship between answer and confidence was more complex (Table 1). Stu-

dents who gave 0- or 1-point answers were modestly uncertain, while solution

confidence was much lower for 2-point answers. Confidence remained low for 3-

and 4-point answers and was high for 5-point answers. Students who operate on

one decimal level seem to be confident on their answers, while those more ad-

vanced students who move beyond that level have lower confidence. Only when

they realize that there are infinitely many numbers within the given interval, they

regain high confidence.

Table 1. The means of solution confidence for responses of task 7

Points

for task

7

N

Success

expectation

mean

Std.

deviation
N

Solution

confidence

mean

Std.

deviation

0 561 4.06 1.06 539 3.42 1.35

1 1933 4.15 0.94 1922 3.68 1.16

2 171 3.99 0.94 169 2.91 1.19

3 109 3.54 1.28 104 3.10 1.56

4 42 3.88 1.11 40 3.18 1.52

5 210 4.07 1.16 210 3.92 1.12

Total 3026 4.09 1.00 2984 3.58 1.24

Looking at the results on an individual level (not presented here), we can

see that most typical relationship between success expectation and solution con-

fidence is that they are equal. However, among students who gave two-point

answers most were less confident than their expectation had been, and there were

hardly any students whose confidence after the task was higher than the expec-

tation they had before solving it. We can assume, that most students who moved

beyond ‘one decimal thinking’, had not realized the complexity of the task before

actually beginning to solve it. Among students who gave three-point answers, the

pattern was similar, although less extreme.

The relationship between answer and its success expectation was slightly dif-

ferent from the relationship between answer and its solution confidence presented

above. For task 5 (infinitely large) those students who gave 3-point answers (“in-

finity”) had highest expectations, for task 8 (infinitely close) expectations were

highest when the answer got 2 or 3 points (“0.999”, three or more decimals or
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“0.999 . . .”, respectively). This suggests that those who gave the best answers

did not know the right answer beforehand, but they had to produce it during

the test. Furthermore, for task 7 (infinitely many) only those students who gave

3-point answers (a large finite number) had much lower expectations than oth-

ers. Especially those students who gave a 2-point answer (20 – one million) had

roughly as high expectations as others (cf. Figure 4).

Figure 4. Comparison of the means in success expectation and in so-
lution confidence in different levels of solutions (Task 7)

In all cases, the students’ success expectation was higher than their solution

confidence. In the result group 2 (Working with more than one decimal, a number

between 20 and one million), the difference was the biggest one, and in the best

answers (group 5) the smallest one.

Summary of confidence results

Students’ confidence both before and after solving the task is related to the

success they have. That is what we should expect to find. However, those who

gave the most sophisticated answers were not the most confident in their expec-

tations.
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In the task (task 7) where we asked how many numbers there are between

0.8 and 1.1, students’ confidence had even more complex relationship with suc-

cess. Many of the students indicated strong false confidence in their one-decimal

thinking of numbers. Furthermore, when their thinking begun to advance, their

confidence dropped. Sometimes they even had an initial expectation of success

before they begun to solve the task but this confidence fell after they had tried

to solve the task. Confidence was reassured when they reached the level where

they had an understanding of the density of numbers.

Qualitative results

In the qualitative part of the study, students were asked the same question

about the number of numbers between 0.8 and 1.1 as in the test, and they were

also asked to explain their reasoning. One of the students (grade 7) simply knew

immediately that there are infinitely many numbers. He was also able to reason

why this was the case. He was the only one to reason with actual infinity.

From the students’ explanations we found four interesting phenomena that we

shall describe below: (1) transformation of the decimal numbers into whole num-

bers, (2) ability to find more numbers within the interval when further prompted,

(3) assumed finiteness of a bounded interval, (4) reasoning based on the concretely

drawn number line.

(1) Some students talked about whole numbers 9, 10 and 11. To our under-

standing, this reflects that they were reasoning about the decimals as natural

numbers. Cf. the following episodes from the 5th grade classes1

S1: Thrrrree. Three.

S2: Four. 8, 9, 0, 1.

S4: I know, three.

S6: Three.

I: What do you others think??

S7: Three.

S8: {Nods }.

S6: 9, 10, 11. . . But no, 2: 9 and 10.

I: Well how many numbers do you think that there are then?

S8: In between you mean?

1In the transcripts the following conventions are used: [text in square brackets indicates over-

lapping speech]; “<” marks an interrupted flow of speech; text in ellipses indicates nonverbal

information



i

i

“hannula” — 2007/2/15 — 13:51 — page 331 — #15
i

i

i

i

i

i

Levels of students’ understanding on infinity 331

I: Yes.

S8: 2.

I: Well, what numbers are there then?

S6: 9 and 10.

S8: 0.9 and 1.0.

Others agree.

(2) Several 5th graders thought first on decimal level and suggested only two,

three or four numbers. However, when they were further prompted, some

students either suggested isolated numbers (“1.05”; “1.09”) or answered that

there are also hundredths and thousandths. Some other students thought of

fractions (“fractions of fractions of fractions”) as existing between decimals.

However, only one 5th grader even pondered the possibility of infinitely many

numbers.

S6: Well, fractions at least and then they decrease into fractions of

fractions of fractions and so on. And then they become smaller all

the time.

I: How small can they become?

S6: I don’t know how small they can become.

Similar thinking was common even on the 7th grade.

S21: There could be hundredths, too.

I: Give an example.

S21: Well, for example 0.81.

I: And anything else?

S22: Thousandths.

I: What are they like?

S22: Well, for example 0.938.

(3) There was one clear example of mistaking boundedness to be the same as

finiteness. One seventh-grader (S25) refused to accept her peers’ reasoning

that there would be infinitely many numbers within a bounded interval of

the number line.

S25: that there are almost infinite.

S26: {whispers to S27 } (five)

S28: (Well, there) is that infinity. It can’t be, in a way, almost

infinity, because it, when [isn’t < (its not ≤)].

S25: [Yes it can.] Think about it. Infinity is so, that it doesn’t end

[ever, you know.]
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S28: [That’s not a number.]

S25: But because there are two numbers there, and in-between them,

so it will end some time.

S27: No it doesn’t.

S26: It does not end. 0.8888 blablabla

S27: 0.00[00000]

S25: [Well, yes, but] it will end where is the point {points to the

number 1.1 } where it has to end.

(4) Students sometimes reasoned about the task using a mental image of a num-

ber line. In one interview seventh grade students also expressed views that

indicate that they draw inferences from the properties of concretely drawn

number lines – specifically that each number needs some space.

S29: There would be at least m< at least more< in principle more<

must be 20 000 numbers, maybe.

S30: But those all cannot fit into there!

S29: Well, yes.

S30: Well, of course in a way.

S29: In a way, but one could no way squeeze them into a number

line like this.

Summarizing results from interview data

There was quite clear evidence that at least some students use natural num-

bers to reason about decimal numbers. Some even erroneously talk about whole

numbers instead of decimal numbers. Although most students initially answered

that there was two or three numbers between 0.8 and 1.1, many were able to

produce further numbers when prompted to reconsider.

There was also evidence for blending of concrete and abstract number line

models. Some reasoned that infinitely many numbers cannot ‘fit’ within a bounded

interval. Based on our results, we suggest that students who answered that there

was more than three numbers (but not infinitely many), had an intuition that

they had not found the end of the process, and therefore their solution confidence

was low. Furthermore, when they first had read the task, their success expec-

tation had been high. This suggests that these students realized that they need

to move beyond the one decimal level while they were solving the task. In order

to understand that there are infinitely many numbers between 0.8 and 1.1, the

students needed to realize that the process of constructing more and more num-

bers within the given interval is potentially infinite. Furthermore, they need to
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use the basic metaphor of infinity to conceptualise the final resultant state of the

process – infinitely many numbers. Only when they would reach that level they

would feel confident.

Most students who understood that there are infinitely many numbers within

the interval seemed to find that solution through reasoning a potentially infinite

process. Only one student immediately reasoned with actual infinity. We might

say that the former represents an approach of constructing a solution through a

process, while the latter represents deduction from a known property (density) of

a number line.

Conclusions

Discussion

In the fifth grade most students have no clue of infinity, and the situation

is not much better in the seventh grade. Yet, there is an obvious development

from grade 5 to grade 7 in student levels of answering these questions. Infinity

is, indeed, a difficult concept and students have difficulties with it, even in high

school [13] and at the university level [15].

In international comparative studies the gender difference in mathematics

achievement among 15-year olds has disappeared in many countries, Finland being

one of those countries [17], [18]. However, in this representative large sample boys

gave significantly better answers than girls in tasks dealing with infinity. This

finding can be understood in the light of the general conclusion made by Fennema

and Hart [5]. According to them, gender differences in mathematics still remain

within the most difficult topics. The test used can be regarded as an example

of a very challenging one that is likely to produce large gender differences even

in countries where overall gender differences in mathematics achievement have

disappeared.

In most cases students who gave better answers were also more confident of

their answers. This is what we would have expected. However, findings for task 7

confront this expected tendency. Also Merenluoto [13] has found similar results,

where there was a general tendency for confidence to increase as the answers got

better, but also some topics where this was not the case.

Our empirical evidence supports some of the ideas we presented in the begin-

ning. The nature of non-linearity in students’ solution confidence supports the
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view that learning infinity requires a conceptual change. Furthermore, our inter-

view data supports the view that many students reason about decimal numbers

with a linking metaphor to natural numbers. Students who work on a single dec-

imal level are confident of their answer. They have assimilated tenths into their

concept of natural numbers. When students realise that it is possible to generate

more decimals, hundredths, thousandths, etc., it is like opening a Pandora’s box.

The logic of natural numbers is challenged: is the successor of 0.8 0.9, 0.81, or

0.80001? Even if they still produce a finite answer, they are uncertain of their

answers, because they are aware of the alternatives. Only when their conception

of (rational) numbers has changed to include the idea of density, can they again

gain confidence.

Regarding metaphors, we found clear evidence that students used natural

numbers to reason about decimal numbers. Another metaphor that we found

evidence for was the number line metaphor. At least some students draw from

this metaphor the incorrect inference that each number would occupy a space on

the number line. However, unlike in the study by Boero et al. [1] we found no

reference to God or chain of generations as source metaphors for infinity. This

suggests that some metaphors are culture-dependent.

Some final comments

Mathematics is often considered to form a hierarchical structure where all

new concepts logically follow from prior ones, which allows students to enrich

their knowledge step by step. This hierarchy of structures was most clearly seen

in the bourbakist way of compiling mathematics according the structures (cf. [2]).

Such a structural way of learning mathematics can, however, be dangerous, since

in some cases old structures may disturb the adaptation of new and more general

ones. The very fundamental idea of a successor, for example, is necessary for

learning the notion of natural numbers. The idea is, however, later on seriously

conflicting with the understanding of the character of both rational and real

numbers. According to the theories on conceptual change (cf. [3], [23], [14]) the

relationship between learners’ prior knowledge and new information to be learned

is one of the most crucial factors in determining the quality of learning.

Theories of conceptual change focus especially to those processes where an

earlier way of thinking is challenged by new knowledge to be learned (e.g. [13],

[14]). Since learning can happen, at least, in two different ways – using the

Piagetian language: through accommodation or through adaptation – we have

also two categories of conceptual change theories. Enrichment (cf. assimilation) is
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an easier process, where old knowledge remains mainly valid, and new knowledge

is added to the slightly modified knowledge structure. The second category of

conceptual change (cf. accommodation) is a more complicated one, since it needs a

drastic revision or restructuring of old knowledge. Moving from potential infinity

to actual infinity of natural numbers is an example of enrichment, and some

students can handle this already at grade five. A more radical restructuring is

necessary for grasping the density of rational (real) numbers. It requires moving

beyond the logic of natural numbers where each number has a successor and this

seems to be more difficult for students. In another analysis of the longitudinal

development of student competence in number concept, we noticed that proper

understanding of fractions as numbers is an important predictor of learning the

density of numbers [9]. This suggests that learning fractions is an important

opportunity for this challenging conceptual change.

In our opinion the results are not satisfactory. Majority of students seemed to

think purely on the level of finite processes. The basic idea of potential infinity is

not difficult to introduce to students. Usually children are very interested about

these questions. Are teachers afraid of this topic as too difficult? In school we

should teach mathematics and not only to master routine tasks of the textbook.

This means that the main mathematical ideas should be discussed in the class,

too. Infinity is one of the mathematical ‘Fundamental Ideas’ that need to be

introduced to children early on [21]. That infinity is introduced relatively late

in the curriculum, may be especially harmful for female students, who tend to

rely more on the ideas taught in school. Students need experiences that allow

them to develop rich images of the topic, which will function as the basis for a

formalisation at a later stage [20].
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