Modelling a quantitative ensilability index adapted to forages from wet temperate areas

  • A. Martinez-Fernandez Department of Animal Nutrition, Grassland and Forages, Regional Institute of Agro-food, Research and Development (SERIDA), PO Box 13. 33300 Villaviciosa (Asturias)
  • A. Soldado Department of Animal Nutrition, Grassland and Forages, Regional Institute of Agro-food, Research and Development (SERIDA), PO Box 13. 33300 Villaviciosa (Asturias)
  • B. de-la-Roza-Delgado Department of Animal Nutrition, Grassland and Forages, Regional Institute of Agro-food, Research and Development (SERIDA), PO Box 13. 33300 Villaviciosa (Asturias)
  • F. Vicente Department of Animal Nutrition, Grassland and Forages, Regional Institute of Agro-food, Research and Development (SERIDA), PO Box 13. 33300 Villaviciosa (Asturias)
  • M. A. Gonzalez-Arrojo Department of Animal Nutrition, Grassland and Forages, Regional Institute of Agro-food, Research and Development (SERIDA), PO Box 13. 33300 Villaviciosa (Asturias)
  • A. Argamenteria Department of Animal Nutrition, Grassland and Forages, Regional Institute of Agro-food, Research and Development (SERIDA), PO Box 13. 33300 Villaviciosa (Asturias)
Keywords: dry matter, water soluble carbohydrates, buffer capacity, silage

Abstract

Forage ensilability mainly depends on dry matter (DM), water soluble carbohydrates (WSC) and buffer capacity (BC) values at harvest time. According to these parameters, and based on a collection of 208 forages of known ensilability characteristics including short and long term meadows for grazing, italian ryegrass, maize, triticale, soybean, faba bean crops, and samples coming from cereal-legume associations, the objective of this study has been to define a quantitative ensilability index (EI) based on a relationship between DM, WSC and BC contents at harvest date, adapted to the characteristics of fodder from wet temperate areas. For this purpose, a discriminant procedure was used to define this EI based on a linear combination of DM, WSC and BC of forages at harvest time. The quantitative calculated indexes distinguish five successive ranges of ensilability: high ensilability (EI>+28), medium high ensilability (+9<EI<+28), medium ensilability (-28<EI< +9), medium low ensilability (-47<EI<-28) and low ensilability (EI<-47). This quantitative index was externally evaluated and 100% of samples were successfully classified.

Downloads

Download data is not yet available.

References

Dinic B, Radovié J, Jevtié G, 2010a. Procedures for improvement of the quality of fermentation process and increase of nutritive value of silages. Biotechnology in Animal Husbandry 26 (special issue): 261-274. 
Dinic B, Dorvedic N, Andelkovic B, Sokolovic D, Tercic D, 2010b. Management of fermentation process in ensilages livestock feed. Biotechnology in Animal Husbandry 26 (1-2): 105-115.
http://dx.doi.org/10.2298/BAH1002105D 

Haigh PM, 1990. Effect of herbage water soluble carbohydrate content and weather conditions at ensilage on the fermentation of grass silages made on comercial farms. Grass For Sci 45: 263-271.
http://dx.doi.org/10.1111/j.1365-2494.1990.tb01949.x 

Haigh PM, 1999. Effluent production from grass silages treated with additives and made in large-scale bunker silos. Grass For Sci 54: 208-218.
http://dx.doi.org/10.1046/j.1365-2494.1999.00172.x 

Haigh PM, Parker JWG, 1985. Effect of silage additives and wilting on silage fermentation, digestibility and intake, and on liveweight change of young cattle. Grass For Sci 40: 429-436.
http://dx.doi.org/10.1111/j.1365-2494.1985.tb01774.x 

Hoffman WS, 1937. A rapid photoelectric method for the determination of glucose in blood and urine. J Biol Chem 120:51-55. 

Jaster EH, 1995. Legume and grass silage preservation. In: Post-hartvest physiology and preservation of forages (Moore KJ, Peterson MA, eds). CSSA Special Publ. 22. Am Soc Agron Inc; Crop Sci Soc of America Inc, Madison, WI, USA. pp: 91-115. 

Kaiser E, Weiss K, 1997. Fermentation process during the ensiling of green forage low in nitrate. 2. Fermentation process after supplementation of nitrate, nitrite, lactic-acid bacteria and formic acid. Arch Anim Nutr 50: 187-200. 

Kaiser AG, Piltz JW, 2002. Silage production from tropical forages in Australia. Proc XIII Int Silage Conf. Available in http://www.fao.org/ag/AGP/AGPC/doc/silage/kaiserpaper/kaisersilage.htm [10/11/2011]. 

Martínez-Fernández A, 2003. Ensilabilidad de especies pratenses en Asturias y su interacción con el uso de aditivos. Doctoral Thesis. Univ. Oviedo, Asturias, Spain. 

Martínez-Fernández A, Soldado A, Vicente F, Martínez A, de la Roza-Delgado B, 2010. Wilting and inoculation of Lactobacillus buchneri on intercropped triticale-fava silage: effects on nutritive, fermentative and aerobic stability characteristics. Agric Food Sci 19: 302-312.
http://dx.doi.org/10.2137/145960610794197597 

McDonald P, Henderson AR, Heron SJE, 1991. The biochemistry of silage. Chalcombe Publications, UK. 

Meeske R, Van Der Merwe GD, Greyling JF, Cruywagen CW, 2002. The effect of adding and enzyme containing lactic acid bacterial inoculant to big round bale oat silage on intake, milk production and milk composition of Jersey cows. Anim Feed Sci Technol 97: 159-167.
http://dx.doi.org/10.1016/S0377-8401(01)00352-2 

Muck RE, O'Kiely P, Wilson RK, 1991. Buffering capacities in permanent pasture grasses. Irish J Agr Res 30: 129-141. 

Oude Elfernick SJWH, Driehuis F, Gottschal JC, Spolestra SF, 2000. Silage fermentation processes and their manipulation. In: Silage making in the tropics with particular emphasis on smallholders. Proc of the FAO Electron Conf on Tropical Silage, 1 September-15 December 1999. Edited by L.'t Mannetje. Rome. Paper 2.0. 

Pahlow G., Weissbach F, 1996. Effect of numbers of epiphytic lactic acid bacteria (LAB) and of inoculation on the rate of pH-decline in direct cut and wilted grass silages. XI Int Silage Conf, Aberystwyth, pp: 104-107. 

Pi-eiro J, Pérez M, 1992. Mezclas pratenses para la Espa-a húmeda. Hoja divulgativa 8/92 HD. Ministerio de Agricultura, Pesca y Alimentación, Madrid, 45 pp. 

Playne MJ, McDonald P, 1966. The buffering constituents of herbage and of silage. J Sci Food Agric 17: 264-268.
http://dx.doi.org/10.1002/jsfa.2740170609 

Pys J, Migdal W, Pucek T, Zivkovic B, Fabjan M., Kosovac O, Radovic C, 2002. Effect of lactic acid bacterial inoculant with enzyme and rolled barley additive on the chemicals composition and protein degradation of alfalfa silage. Biotechnology in Animal Husbandry 18: 1-56.
http://dx.doi.org/10.2298/BAH0204033P 

Pries M, 2004. Mais ritchig silieren. Landwirtschaftskammer Nordrhein-Westfalen. Available in http://www.lkl.de/landwirstchaft/tierproduktion/rinderhaltung/fuetterung/maissilage.htm [08/11/2010]. 

SAS, 1999. User's guide. Release 8.2. SAS Institute, Inc. 10 Cary, NC, USA. 

Spoelstra SF, 1983. Inhibition of clostridial growth by nitrate during the early phase of silage fermentation. J Sci Food Agr 34: 145-152.
http://dx.doi.org/10.1002/jsfa.2740340206 

Spoelstra SF, 1985. Nitrate in silage: A review. Grass For Sci 40: 1-11.
http://dx.doi.org/10.1111/j.1365-2494.1985.tb01714.x 

Staudacher W, Pahlow G, Honig H, 1999. Certification of silage additives in Germany by DLG. Proc 12th Silage Conf, Uppsala (Sweden), July, pp: 239-240. 

Tobía C, Villalobos E, Rojas A, Soto H, Moore KJ, 2008. Nutritional value of soybean (Glycine max L. Merr.) silage fermented with molasses and inoculated with Lactobacillus brevis 3. Livest Res Rural Develop 20(7): Article 106. 

Weissbach F, 1999. Consequences of grassland de-intensification for ensilability and feeding value of herbage. In: Contributions of grassland and forage research to the development of systems of sustainable land use. Institute of Crop and Grassland Science of the Federal Agriculture Research Centre (FAL), Braunschwig, Germany. pp: 41-53. 

Weissbach F, Honig H, 1996. Über die Vorhersage und Steuerung des arungsverlaufs bei der Silierung von Grunfutter aus extensivem Anbau. Landbauforsch Volk 1: 10-17. 

Woolford MK, 1984. The silage fermentation. Marcel Dekker Inc, New York and Basel. 350 pp.

Published
2013-04-25
How to Cite
Martinez-Fernandez, A., Soldado, A., de-la-Roza-Delgado, B., Vicente, F., Gonzalez-Arrojo, M. A., & Argamenteria, A. (2013). Modelling a quantitative ensilability index adapted to forages from wet temperate areas. Spanish Journal of Agricultural Research, 11(2), 455-462. https://doi.org/10.5424/sjar/2013112-3219
Section
Plant production (Field and horticultural crops)