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Abstract 

Web service composition enables the provision/reusing of existing services in different business processes to satisfy 

different business requirements without investing in new infrastructure. QoS-aware web service composition seeks to 

help users find the optimal solution with maximization of users’ satisfaction. A number of approaches based on 

Communicating Sequential Processes (CSP) have been proposed to model and verify properties of web service 

composition. However, little work has been done in verifying inputs, outputs and QoS criteria of web service 

composition. In this paper, we present a framework to model and verify QoS-aware web service composition by Timed 

CSP. It helps verify whether the service composition can accept inputs, generate outputs, and meet QoS requirements as 

specified. To do the verification, transformation rules that map QoS-aware web service composition to Timed CSP are 

defined. In order to explain the framework and transformation rules, we design a case study, where the model of QoS-

aware web service composition is transformed to the model of process composition in Timed CSP and the program in 

machine-readable CSP (CSPM). Furthermore, experiments are performed by using the Failure Divergence Refinement 

(FDR) tool to verify inputs, outputs, and QoS of the service composition. 

 

Keywords: QoS, service composition, Timed CSP, FDR. 
 

  

1. Introduction 

The evolution of the Information and Communication 

Technology is an important factor of the explosion of Cloud 

Computing. The era of Cloud Computing raises the importance 

of web services. Web services are software modules that can be 

published, located and invoked on the web [1]. Web services 

provide a set of distributed computing resources like 

computing, application and storage by integrating Internet 

resources. As part of Service Computing, web services bring 

the evolution of development and deployment of distributed 

software. However, an individual service may fail to meet 

user’s complicated requirement. Web Service Composition 

composes multiple web services together to fulfill complicated 

user requirement. To maximize user’s satisfaction, researchers 

introduce Quality of Service (QoS) to web service 

composition. By using QoS criteria, it is possible to determine 

the usability and utility of a web service. 
Recently, numerous formal approaches have been 

proposed to specify service compositions [2]. One of the major 

benefits of applying formal approaches is the possibility of 

verifying whether service compositions meet specific 

requirements and properties. Communicating Sequential 

Process (CSP) is a formal approach to specify concurrent 

systems [3], [4]. It has been suggested that CSP can be used to 

formally model and verify web services [5]. CSP makes it easy 

to specify and model message exchange between services, 

service composition, and other aspects [6]. 

Timed CSP is an extension to CSP by adding “real” time 

[7]. Timed CSP is the same language of CSP with the addition 

of a WAIT (t) statement that terminates successfully t time units 

after it has started. Roscoe introduced tock-CSP to verify 

discretely timed systems [8], where a special event tock 

represents the regular passage of time. Ouaknine theoretically 

connected tock-CSP to Timed CSP [9], which can translate 

Timed CSP into semantically equivalent tock-CSP. Timed CSP 

has been proved to be very successful in modelling and 

analyzing real-time concurrent system, and indeed has been 

used in numerous case studies [4], [10]. 

One of motivations of this work is to verify that, by 

providing inputs of a service composition, whether the 

composition can produce outputs with satisfied QoS in the 

specification. The other is that little research has been done on 

verifying QoS, specifically the response time, in web service 

composition based on CSP. Driven by the motivations, this 

paper aims to model and verify QoS-aware web service 

composition by Timed CSP. The key contributions of our work 

are as follows: a modeling and verification framework for 

QoS-aware web service composition is proposed, and 

transformation rules from QoS-aware web service composition 

to Timed CSP are defined. By using the framework and 

transformation rules, Timed CSP and the Failure Divergence 

Refinement (FDR) tool could verify whether inputs, outputs 

and QoS of service compositions conform to the requirements. 

mailto:zhu_ming@sdut.edu.cn
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The rest of this paper is organized as follows. Section 2 

and Section 3 describe preliminary knowledge and provide the 

background of this paper. The framework for modeling and 

verification of QoS-aware web service composition is given in 

Section 4. We present a case study and experimental results to 

illustrate the modeling and verification in Section 5. Section 6 

reviews related work and the conclusion is drawn in Section 7. 

2. Web Service Composition and QoS 

This section introduces the definitions of web service, web 

service composition and QoS. 

A web service w is defined as a tuple with the following 

components: 

 win is a finite set of typed input parameters of w. A web 

service is invoked only when all its input parameters are 

satisfied. 

 wout is a finite set of typed output parameters of w.  

 WQoS is a finite set of quality-of-service (QoS) values of 

w. The criteria for QoS are determined from users’ 

constraints and preferences. 

A web service composition problem can be represented by 

a tuple with the following components: 

 S is a finite set of services. 

 Cin is a finite set of typed input parameters. 

 Cout is a finite set of typed output parameters.  

 CQoS is a finite set of quality criteria. 

We use plug-in matching degree to match services: two 

services can be connected if the input of a service is a subset of 

the output of the other service. This semantic model, borrowed 

from [11], is consistent with many proposed service 

composition approaches [12]-[14]. 

Services are connected either in sequence or in flow 

control. Services in sequence are invoked one by one 

(w1;w2;…;wn). Services in a flow control are invoked in parallel 

(w1||w2||…||wn). 

For web service compositions, there are several QoS 

criteria, such as response time, throughput, cost, and so on. For 

illustrative purpose, we focus on response time and the overall 

response time of service composition can be calculated as 

follows [1], [11]: 

Response time (R): the interval between the receipt of an 

inquiry message and the beginning of the transmission of a 

response message. 

    R (w1;w2;…;wn)=∑R(wi) (1) 

R (w1||w2||…||wn)=maxR(wi) (2) 

3. Timed CSP 

In this section, Timed CSP, machine-readable CSP (CSPM ), 
and Failure Divergence Refinement (FDR) tool for analyzing 
CSP are introduced. 

3.1. Notations and Basic Concepts 

Timed CSP terms are constructed according to the following 

grammar rules [9]: 

2tt1

21212
B

12t12t1

21

≯expr≮

|.|;||||||||Π|□

|||)(||:

PP

PXPPPPPPPPPP

PaPPnWAITSKIPSTOPP

ttt

t

n

tttt


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These terms have the following intuitive interpretations: 

 STOPt is the deadlocked, stable process which is only 

capable of letting time pass; 

 SKIPt corresponds to the process √→t STOP, where √ 

is a special final event that the process performs. It means 

a process, at any time, is willing to terminate 

successfully, and then do nothing. 

 WAITt(n) is the process which idles for n time units, and 

then becomes SKIP. 

 
21 PP

n

t is the process that initially becomes P1 for n time 

units, after which it silently becomes P2 for no visible 

event occurs. 

 a →t P initially offers at any time to engage in the event 

a, and subsequently behaves like P. 

 P1 □t P2 denotes a process which is willing to have either 

like P1 or P2, at the choice of the environment.This 

decision is taken on the first visible event, and is 

nondeterministic only if this initial event is possible for 

both P1 and P2. 

 P1 Πt P2 represents the nondeterministic (or internal) 

choice between P1 and P2, which is independent of the 

environment. 

 

21|| PP
B
t

 is a parallel composition of P1 and P2 over the 

interface set B. It means that P1 and P2 agree and 

synchronize on all events of set B, and to behave 

independently of each other with respect to all other 

events 

 P1 |||t P2 is an interleaving between P1 and P2, which 

means each process behaves independently of the other 

without synchronization. 

 P1 ;t P2 corresponds to the sequential composition of P1 

and P2. It denotes a process which behaves like P1 until 

P1 chooses to terminate, at which point the process 

seamlessly starts to behave like P2. 

 μX.P represents the unique solution to the equation X=P, 

where the variable X appears freely in P. The operator μX 

binds every free occurrence of X in P. The condition 

ensures that the recursion is well-defined and has a 

unique solution. 

 P1 ≮t expr ≯t P2 represents that if expr then behaves as 

P1 else behaves as P2. 

A process can be defined as a set of traces. Each trace of 

a process is a finite sequence of symbols recording the events 

in which the process has engaged up to some moments in time 

[3]. For example, process P has a trace ‹ event1, tock, event2›, 

which indicates that P engages event1 first, then time passes 1 

unit (1 tock), then P engages event2. 

3.2. Failure Divergence Refinement (FDR) for Timed CSP 

Failure Divergence Refinement (FDR) is a model checking 

tool for analyzing CSP systems [15]. FDR support both CSP 

and it’s extension Timed CSP. To use FDR to model and 

verify timed CSP system, it requires programming in machine-

readable CSP namely CSPM , which combines the operators of 

CSP with a functional programming language. The latest 

version FDR 4.2.3 is released by Oxford University in Oct. 

2017 [15]. In order to specify Timed CSP processes, CSPM 

includes a timed section that automatically translates CSP 

processes to Timed CSP. Table 1 shows the mapping rules 

between terms for Timed CSP and CSPM with timed section: 
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Table 1. Sample Mapping Rules Between Timed CSP And CSPM  

Terms of Timed CSP Terms within timed section of CSPM 

STOPt STOP 

SKIPt SKIP 

WAITt(n) WAIT(n) 

PP n

t
21
 (P1 [] (WAIT(n); trig->P2))\trig; 

a → t P a->P 

P1 □t P2 P1 [] P2 

PP
B
t 21||

 
P1 [|B|] P2 

P1 |||t P2 P1|||P2 

P1;t P2 P1; P2 

P1 ≮t expr ≯t P2 If expr then P1 else P2 
 

 

To illustrate the translation between Timed CSP and 

CSPM , we now introduce an example. Given a process P that 

first performs an event start, then waits 5 time units, and 

finally becomes P. P can be described in Timed CSP as P = 

start →t WAIT(5); P. According to Table 1, the representation 

of Timed CSP of P is able to be translated into a CSPM 

program as follows: 

 

channel tock,start 
AllZero(_) = 0 
Timed(AllZero) { 

P = start -> WAIT(5);P 
 

In CSPM, the key word channel is used to define events. 

There are two channels declared, tock and start. As stated 

before, tock is a special event to represent a time unit. start is 

an event that process P can accept. AllZero() is a function that 

defines the execution of each event in the timed section costs 0 

time unit. Timed(AllZero) with a pair of curly brackets defines 

the scope of timed section, where all the declarations are 

translated to Timed CSP. P = start ->WAIT(5); P is the CSPM 

translation of Timed CSP P = a→t WAITt(5);P. 

4. The Framework For Modeling And Verification Of 

QoS-aware(response time) Web Service Composition 

In this section, we establish the framework for modeling and 

verification of QoS-aware (response time) web service 

composition by Timed CSP, and then we define the 

transformation rules used in the framework for mapping QoS-

aware (response time) web service composition to Timed CSP. 

4.1. The Framework for Modeling and Verification 

The framework consists of the following steps (Figure 1). 

 
 
Fig.1. The Framework 

 
1) Transform the models of BPEL with QoS (response 

time) descrpition to the models of Timed CSP. 

2) Transform the models of Timed CSP to programs in 

CSPM with timed section. 

3) Derive CSPM assertions based on the models of Timed 

CSP and the requirements of BPEL with QoS (response 

time) description. 

4) Use FDR to verify the programs in CSPM against the 

assertions, and generate verification results. 

4.2. Transformation from Models of BPEL with 

QoS(response time) to the models of Timed CSP and CSPM 

To transform the models of BPEL with QoS (response time) 

description to the models of Timed CSP, corresponding 

transformation rules needs to be defined. In PBEL V2.0, the 

major building blocks of BPEL processes are activities, which 

include basic activities and structured activities [16]. As BPEL 

orchestrations in composing services do not evaluate the QoS 

properties of specific services, we associated QoS properties of 

services with BPEL activities using them. In this section, we 

detail our formulations to QoS (response time) for some basic 

and structured BPEL activities. 

Basic Activities. In research [17], it suggests that all basic 

activities except invoke complete instantaneously when they 

start, which don’t need to be analyzed with QoS properties. In 

this paper, we focus on response time for invoke activity. The 

invoke activity is used to call a web service provided by a 

partner. An invoke activity includes two type, one-way activity 

and request-response activity. The QoS (response time) for the 

invoke activity is specified using the Web Service Level 

Agreements (WSLA). 

1. one-way invoke  
An one-way invoke activity requires an input variable, then 

executes with the process logic without waiting for the reply. 

Given an one-way activity serviceA in BPEL along with its 

QoS (response time) 10 in WSLA as follows: 

 
<invoke name="serviceA" 

operation="serviceAOperation" 
inputVariable="Input" /> 

 
<SLAParameter> 

AverageResponseTimeServiceA 
</SLAParameter> 

<Value > 10 </ Value > 
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A one-way invoke activity of BPEL can be transformed into a 

process with an Input action along with time section WAITt in 

Timed CSP. This process first accepts Input through channel 

serviceAOperation, then it waits for 10 time units which 

represents the QoS (response time), and end successfully. The 

CSP transformation is show as follows: 

serviceAOperation?Input →t  WAITt(10)  →t  SKIPt 

The one-way invoke activity is represented as follows in CSPM: 

serviceAOperation?Input ->  WAIT(10)  -> SKIP 

 

2. request-response invoke  
A request-response invoke activity requires both an input and 

output variable, and it would block the process until it receives 

a response from the partner service. Given a request-response 

activity serviceB in BPEL along with it’s QoS (response time) t 

in WSLA as follows: 

 
<invoke name="serviceB" 

operation="serviceBOperation" 
inputVariable="Input" 
outputVariable="Output" /> 

 
<SLAParameter> 

AverageResponseTimeServiceB 
</SLAParameter> 

<Value > 10 </ Value > 

 
A request-response invoke activity of BPEL can be 

transformed into a process with an Input action and an Output 

action along with time section WAITt in Timed CSP. This 

process first accepts Input through channel serviceBOperation, 

then it waits for 10 time units which represents the QoS 

(response time), generates Output through channel 

serviceBOperation, and ends successfully. The CSP 

transformation is show as follows: 

serviceBOperation?Input →t  WAITt(10); 

serviceBOperation!Output ->  SKIPt 

The request-response invoke activity is represented as follows 

in CSPM : 

serviceBOperation?Input ->  WAIT(10); 

serviceBOperation!Output   -> SKIP 

Structured Activities. This kind of activities can contain 

other activities and define the business logic between them. In 

this paper, we discuss the transformation from sequence, if-

else, while, pick and flow activities to the corresponding Timed 

CSP representations respectively. 

1. sequence  
A sequence structured activity is used to define a collection of 

activities which are executed sequentially in predefined order. 

Given a sequence structured activity in BPEL as follows: 

 

<sequence name=...> 
<...activity1.../> 
<...activity2.../> 

... 
<...activityN.../> 

</sequence> 
 

For each activityi (1 ≤ i ≤ N)inside sequence, given that the 
corresponding QoS (response time) is ti. In the process of the 
transformation, the above-mentioned sequence structured 
activity can be transformed to a sequence of processes in 
Timed CSP, where each activityi with QoS (response time) ti 
can be transformed to a process Pi with corresponding waiting 
time ti, and the order between activities is as same as the order 
between corresponding processes. The CSP transformation is 
show as follows: 
 

P1;t WAITt (t1);t 
P2;t WAITt (t2);t 
...;t 
PN ;t WAITt (tN) 

 

The sequence activity is represented as follows in CSPM : 

 
P1;WAIT(t1); 
P2;WAIT(t2); 
...; 
PN;WAIT(tN) 
 

2. if-else 

A if-else structured activity allows exactly one choice of 

activity from a given set of choices to be selected. For each 

choice, the behavior is to check a condition and if that 

condition evaluates to true, the associated branch is executed, 

otherwise an alternative path is taken. Given a if-else structured 

activity in BPEL as follows: 
 

<if name="choices"> 
<condition> 

condition1 
</condition> 
<...activity1.../> 
<elseif> 

<condition> 
condition2 

</condition> 
<...activity2... /> 

</elseif> 
<else> 

<...activity3 ... /> 
</else> 

</if> 
 
For each activityi (1 ≤ i ≤ 3) inside if-else, given that the 
corresponding QoS (response time) is ti. In the process of the 
transformation, the above-mentioned if-else structure can be 
transformed to conditional choices in Timed CSP, where each 
activityi with QoS (response time) ti can be transformed to a 
process Pi with corresponding waiting time ti, and a conditionj 
(1 ≤ j ≤ 2) can be transformed to a conditional expression exprj. 
The CSP transformation is show as follows: 

 
(p1; t WAITt(t1)) 

≮t expr1≯t 

(((p2;t WAITt(t2)) 

≮t expr2≯t 

(p3;t WAITt(t3))) 
  

The if-else activity is represented as follows in CSPM : 
 

if expr1 
then P1;WAIT(t1) 
else if expr2 

then P2;WAIT(t2) 
else P3;WAIT(t3) 

 

3. while 

A while structured activity has a child activity nested within. It 

allows the child activity to be executed repeatedly as long as a 

given condition evaluates to true. The condition is specified on 

the while activity and gets evaluated at the beginning of each 

iteration. Given a while structured activity in BPEL as follows: 

 

<while> 
<condition> 

condition 
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</condition> 
<...activity ... /> 

</while> 
 

For the activity inside while, given that the corresponding QoS 

(response time) is t. In the transformation, the abovementioned 

while structured activity can be transformed to a recursion with 

a conditional choice in Timed CSP. If the conditional choice is 

true, the recursion continues. Otherwise, the recursion ends 

successfully. The activity can be transformed to a process P 

with corresponding waiting time t, and the condition can be 

transformed to a conditional expression expr. The CSP 

transformation is show as follows: 

μP.((P;WAITt(t))≮t exper ≯t SKIPt) 

The while activity is represented as follows in CSPM: 

X = if expr 
then P;WAIT(t);X 
else SKIP 

4. pick 

A pick structured activity has includes several onMessage 

elements, one of which will be triggered to execute after the 

structure receives the corresponding message. Each onMessage 

element points to an activity and to a variable that holds the 

received message. Given a pick structured activity in BPEL as 

follows: 

 

<pick> 
<onMessage ... 

...activity1... 
variable="var1"> 

</onMessage> 
<onMessage ... 

...activity2... 
variable="var2"> 

</onMessage> 
... 
<onMessage ... 

...activityN... 
variable="varN"> 

</onMessage> 
</pick> 
 
For each activityi (1 ≤ i ≤ N) inside pick, given that the 

corresponding QoS (response time) is ti. In the transformation, 

the above-mentioned pick structured activity can be 

transformed to deterministic choices in Timed CSP, where 

each activityi with QoS (response time) ti can be transformed to 

a process Pi with corresponding waiting time ti, and the 

relationship between activityi can be transformed to 

deterministic choices between Pi. The CSP transformation is 

show as follows: 

(P1;t WAITt (t1)) □t 
(P2;t WAITt (t2)) □t 
... □t 
(PN ;t WAITt (tN)) 

The pick activity is represented as follows in CSPM: 

(P1;WAIT(t1)) [ ] 
(P2;WAIT(t2)) [ ] 
... [ ] 
(PN;WAIT(tN)) 

5. flow 

A flow structured activity allows child activities to be executed 

in parallel. Given a flow structured activity in BPEL as follows: 

 

<flow ...> 
<...activity1... /> 

<...activity2... /> 
... 
<...activityN... /> 

</flow> 
 

For each activityi (1 ≤ i ≤ N)inside flow, given that the 

corresponding QoS (response time) is ti. In the process of the 

transformation, the above-mentioned flow structured activity 

can be transformed to parallel comosition in Timed CSP, 

where each activityi with QoS (response time) ti can be 

transformed to a process Pi with corresponding waiting time ti., 

and the relationship between activityi can be transformed to 

parallel between Pi. If it is necessary to synchronize between 

some of these activities, the synchronized information can be 

represented as a set of events associated with parallel. The 

CSP transformation is show as follows: 

 

(P1; WAIT (t1 )) ||t  
(P2; WAIT (t2 )) ||t 

 ...||t 
(PN ; WAIT (tN )) 

 

The flow activity is represented as follows in CSPM : 

 

(P1;WAIT(t1))|| 
(P2;WAIT(t2))|| 
...|| 
(PN;WAIT(tN)) 

 

5. Case Study 

In this section, we introduce a case study to illustrate the 

application of the framework and the transformation rules for 

modeling and verifying inputs, outputs, and QoS of web 

service composition.  

5.1. A Web Service Composition 

Let’s consider an online booking system for the travelling 

agency to book tickets and hotels. The system contains has four 

collaborative web services: AgReq, AgRcv, Al and Htl. The 

travelling agency uses AgReq to send service requests, and uses 

AgRcv to receive service responses. Al is used for booking a 

flight with an airline, and Htl is used for booking a room in a 

hotel. The services information is shown in Table 2. The 

service composition example is shown in Figure 2. 

 
Table 2. Services Information 

Service Inputs Outputs R1 

AgReq flightInfo,horeInfo agFlight,agHotel 2 
Al agFlight flightResult 4 

Htl agHotel hotelResult 3 

AgRcv flightResult,hotelResult result 1 
1 R:response time(ms) 
 

 
Fig.2. The Online Booking System 
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5.2. Timed CSP Model for QoS-aware Web Service 

Composition 

When QoS-aware web service compositions are obtained, we 

can construct the corresponding Timed CSP models. 

Service AgReq is represented as the process AgReqP. 

AgReqP = AgReqPIn;t AgReqPOut 

AgReqPIn =flightInfo →t hotelInfo →t AgReqPQoS 

□thotelInfo →t flightInfo →t AgReqPQoS 

AgReqPQoS = WAITt(2) 

AgReqPOut =agFlight →t agHotel →t AgReqP 

□tagHotel →t agflight →t AgReqP 

 

Service Al is represented as the process AlP. 

Alp = AlPIn;t AlPOut 

AlPIn = agFlight →t AlPQoS 

AlPQoS = WAITt(4) 

AlPOut = flightResult →t AlP 

 

Service Htl is represented as the process HtlP. 

HtlP = HtlPIn;t HtlPOut 

HtlPIn = agHotel →t HtlPQoS 

HtlPQoS = WAITt(3) 

HtlPOut = hotelResult →t HtlP 

 

Service AgRcv is represented as the process AgRcvP. 

AgRcvP = AgRcvPIn;t AgRcvPOut 

AgRcvPIn =flightResult →t hotelResult →t AgRcvPQoS 

□thotelResult →t flightResult →t AgRcvPQoS 

AgRcvPQoS = WAITt(1) 

AgRcvPOut = result →t AgRcvP 

 

The web service compositions Al||Htl, AgReq; (Al||Htl), and 

AgReq; (Al||Htl); AgRcv can be represented as process 

compositions as follows: 

 Service composition Al||Htl is a represented as the 

process composition AlHtl=AlP|||tHtlP. 

 Servide composition AgReq;(Al||Htl) is represented as the 

process composition AgReqAlHtl=

agHotel}{agFlight,
t
AlHtlAgReqP||

. 

 Service composition AgReq;(Al||Htl);AgRcv is represent-

ted as the process composition AgReqAlHtl 

AgRcv=

t}hotelResulult,{flightRes
t
AgRcvAgReqAlHtl||

. 

Based on the Timed CSP representations of web services 

and service compositions, we can build a CSPM program as 

follows: 

 

channel tock,flightInfo,hotelInfo,  
channel agFlight,agHotel  
channel flightResult,hotelResult  
channel result 

 

AllZero(_)=0 
 
Timed(AllZero){ 
AgReqP=AgReqPIn;AgReqPOut 
AgReqPIn=hotelInfo->flightInfo->AgReqPQos 

[]flightInfo->hotelInfo->AgReqPQos 
AgReqPQos=WAIT(2) 
AgReqPOut=agFlight->agHotel->AgReqP 

[]agHotel->agFlight->AgReqP 
 
AgRcvP=AgRcvPIn;AgRcvPOut 
AgRcvPIn=flightResult->hotelResult->AgRcvPQos 

[]hotelResult->flightResult->AgRcvPQos 
AgRcvPQos=WAIT(1) 
AgRcvPOut=result->AgRcvP 
 
AlP=AlPIn;AlPOut 
AlPIn=agFlight->AlPQos 
AlPQos=WAIT(4) 
AlPOut=flightResult->AlP 
 
HtlP=HtlPIn;HtlPOut 
HtlPIn=agHotel->HtlPQos 
HtlPQos=WAIT(3) 
HtlPOut=hotelResult->HtlP 
 
AlHtl=AlP|||HtlP 
AgReqAlHtl=AgReqP[|{agFlight,agHotel}|]AlHtl 
AgReqAlHtlAgRcv=AgReqAlHtl 

[|{hotelResult,flightResult}|]AgRcvP 

5.3. Experimental Evaluation 

Based on the CSPM code generated previously, FDR can use 

the Has Trace Assertions to verify inputs, outputs, and QoS 

(response time) of processes and process compositions that 

represent the corresponding web services and web service 

compositions respectively.  
Our experiments are implemented on a personal computer 

with a Windows 10 64-bit operating system, 8 GB RAM 

memory, Intel Core i5-7200U processor. The version of FDR 

used in the experiments is 4.2.3 (Windows 64-bit) released on 

26/10/2017.  
For each process or composition implemented in CSPM , 

FDR can generate a transition diagram for it to help 

understand its behaviors. For example, the transition diagrams 

of AgReqP and AgRcvP are illustrated in Figure 3 and Figure 4 

respectively. 

We build a trace in Timed CSP and use Has Trace 

Assertions to verify the process composition 

AgReqAlHtlAgRcv. 

 

 
Fig.3. The Transition Diagram of AgReqP 
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Fig.4. The Transition Diagram of AgRcv 

 

 We construct a trace T according to the specification of 

process composition AgReqAlHtlAgRcv and its 

corresponding web service composition, ‹ flightInfo, 

hotelInfo, tock, tock, agFlight, agHotel, tock, tock, tock, 

hotelResult, tock, flightResult, tock, result ›. This trace 

means flightInfo and hotelInfo occur at the beginning; 

after 2 time units (2 tocks), messages agFlight and 

agHotel occur; then, time passes 3 units (3 tocks); after 

that, message hotelResult appears; 1 time unit (1 tock) 

later, message flightResult occurs; and after 1 time unit (1 

tock), message result is generated. 

 We make an assertion for AgReqAlHtlAgRcv in FDR 

based on the trace T, assert AgReqAlHtlAgRcv :[has 

trace]: < flightInfo, hotelInfo, tock, tock, agFlight, 

agHotel, tock, tock, tock, hotelResult, tock, flightResult, 

tock, result >. 

Figure 5 from FDR shows that the assertion passes, and 

the verification finishes in 0.11s. This indicates that by offering 

flightInfo and hotelInfo as the input messages, the composition 

can produce result in 7 time units. The result of executing the 

assertion in FDR confirms that with the specified inputs, the 

web service composition AgReq; (Al||Htl); AgRcv can generate 

specified outputs with QoS response time satisfied. 

 

 
Fig.5. The Verification Result of Original Composition 

AgReqAlHtlAgRcv 

 

We give a counterexample to show that a web service 

composition fails to generate outputs within specified response 

time. Let’s modify the response time of service Al to 6, while 

the travelling agency still expect the service’s response time to 

be 4. By following the framework and transformation rules, the 

modified service composition can be transformed to a process 

composition with process AlP waiting 6 time units, and the 

corresponding program in CSPM can be generated. The 

assertion used previously can represent the travelling agency’s 

expectation. When using FDR to verify the program against the 

assertion, Figure 6 from FDR shows that the assertion fails this 

time, and the verification finishes in 0.13s. This indicates that 

by offering flightInfo and hotelInfo as the inputs, the 

composition cannot produce result as output within the 

expected response time. It fails to meet the requirements of 

inputs, outputs, and QoS of the travelling agency. 

 
Fig. 6. The Verification Result of Original Composition 

AgReqAl-HtlAgRcv with WAIT(6)in AlP 

 

By using FDR’s debug functionality, we can further 

examine the reason of the assertion failure. Figure 7 shows that 

the event flightResult cannot be generated in 4 time units in 

process AlP after accepting the event agFlight, while the  

assertion requires the event agFlight to be generated in 4 time 

units. 

 
Fig. 7. Counterexample Exhibition 

6. Related Work 

The goal of QoS-aware service composition is to select 

competitive services and optimize the whole QoS value. In this 

process, optimization algorithms are utilized to reduce the 

search space, minimize the search time and enhance accuracy 

of obtained solutions. Paper [18] presents a hybrid artificial bee 

colony (HABC) algorithm to solve the cloud manufacturing 

service optimal selection problem. In this process, chaotic 

ergodic search is applied to avoid premature of the algorithm. 

In our previous work, we propose the application of a skyline 

operator to reduce the search space and improve the scalability. 

We also present a partial pre-composing approach which stores 

popular paths for fast delivery [14]. Zheng et al. demonstrate 

that QoS values are not the same to different consumers even 

when calling the same service [19]. Under this consideration, 

QoS prediction approaches are proposed [20], [21]. Research 

[22] proposes a local search enhanced hybrid artificial bee 

colony algorithm (HABC) for solving the multi-objective 

flexible task scheduling problem in Cloud computing system. 

In recent years, there are a number of initiatives tend to 

use the CSP to model and verify web service composition. S. 
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Ripon et al. combine compensating CSP and Finite State 

Process to handle faults in long running transactions in web 

services, and verify properties of composition and execution of 

compensations [6]. Xu et al. use CSP to formalize the 

specifications based on web service choreography description 

language (CDL) [23]. Y. Zhu et al. propose a framework that 

transform Business Process Execution Language (BPEL) to 

CSP, and use FDR to verify deadlock, liveness, and safety of 

compositions [24]. Most of the work focuses on verifying the 

liveness, safety, deadlock and other properties of service 

composition, while little research has been done in verifying 

QoS of service composition. 

7. Conclusion 

This paper proposes a framework by using Timed CSP based 

on model transformation. Firstly, the modeling and verification 

framework between QoS-aware web service composition and 

Timed CSP is introduced. Secondly, transformations rules from 

QoS-aware Web Service Composition to Timed CSP are 

defined in details. Thirdly, to illustrate the framework and the 

transformation rules, a case study of online booking system is 

developed. In doing so, it shows that models of QoS-aware 

service composition can be transformed to models of process 

composition in Timed CSP and programs in CSPM with timed 

section. By using the framework and transformation rules, the 

approach verifies whether inputs, outputs and QoS of service 

compositions conform to the requirements. Furthermore, the 

experiments indicate that inputs, outputs and response time in 

web service compositions can be verified by the tool FDR with 

CSPM assertions. In future, more details on verification of QoS-

aware web service composition and more case studies will be 

discussed. 
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