
 Journal of Ubiquitous Systems & Pervasive Networks

Volume 11, No. 1 (2019) pp. 01-09

* Ming Zhu. Tel.: +86-15689080816

E-mail: zhu_ming@sdut.edu.cn ,

© 2019 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JUSPN.11.01.001
 1

Modeling and Verification of Response Time of QoS-aware Web Service

Composition by Timed CSP

Ming Zhu, Xiaoliu Cui, Guodong Fan

College of Computer Science and Technology, Shandong University of Technology, Zibo, China

Abstract

Web service composition enables the provision/reusing of existing services in different business processes to satisfy

different business requirements without investing in new infrastructure. QoS-aware web service composition seeks to

help users find the optimal solution with maximization of users’ satisfaction. A number of approaches based on

Communicating Sequential Processes (CSP) have been proposed to model and verify properties of web service

composition. However, little work has been done in verifying inputs, outputs and QoS criteria of web service

composition. In this paper, we present a framework to model and verify QoS-aware web service composition by Timed

CSP. It helps verify whether the service composition can accept inputs, generate outputs, and meet QoS requirements as

specified. To do the verification, transformation rules that map QoS-aware web service composition to Timed CSP are

defined. In order to explain the framework and transformation rules, we design a case study, where the model of QoS-

aware web service composition is transformed to the model of process composition in Timed CSP and the program in

machine-readable CSP (CSPM). Furthermore, experiments are performed by using the Failure Divergence Refinement

(FDR) tool to verify inputs, outputs, and QoS of the service composition.

Keywords: QoS, service composition, Timed CSP, FDR.

1. Introduction

The evolution of the Information and Communication

Technology is an important factor of the explosion of Cloud

Computing. The era of Cloud Computing raises the importance

of web services. Web services are software modules that can be

published, located and invoked on the web [1]. Web services

provide a set of distributed computing resources like

computing, application and storage by integrating Internet

resources. As part of Service Computing, web services bring

the evolution of development and deployment of distributed

software. However, an individual service may fail to meet

user’s complicated requirement. Web Service Composition

composes multiple web services together to fulfill complicated

user requirement. To maximize user’s satisfaction, researchers

introduce Quality of Service (QoS) to web service

composition. By using QoS criteria, it is possible to determine

the usability and utility of a web service.
Recently, numerous formal approaches have been

proposed to specify service compositions [2]. One of the major

benefits of applying formal approaches is the possibility of

verifying whether service compositions meet specific

requirements and properties. Communicating Sequential

Process (CSP) is a formal approach to specify concurrent

systems [3], [4]. It has been suggested that CSP can be used to

formally model and verify web services [5]. CSP makes it easy

to specify and model message exchange between services,

service composition, and other aspects [6].

Timed CSP is an extension to CSP by adding “real” time

[7]. Timed CSP is the same language of CSP with the addition

of a WAIT (t) statement that terminates successfully t time units

after it has started. Roscoe introduced tock-CSP to verify

discretely timed systems [8], where a special event tock

represents the regular passage of time. Ouaknine theoretically

connected tock-CSP to Timed CSP [9], which can translate

Timed CSP into semantically equivalent tock-CSP. Timed CSP

has been proved to be very successful in modelling and

analyzing real-time concurrent system, and indeed has been

used in numerous case studies [4], [10].

One of motivations of this work is to verify that, by

providing inputs of a service composition, whether the

composition can produce outputs with satisfied QoS in the

specification. The other is that little research has been done on

verifying QoS, specifically the response time, in web service

composition based on CSP. Driven by the motivations, this

paper aims to model and verify QoS-aware web service

composition by Timed CSP. The key contributions of our work

are as follows: a modeling and verification framework for

QoS-aware web service composition is proposed, and

transformation rules from QoS-aware web service composition

to Timed CSP are defined. By using the framework and

transformation rules, Timed CSP and the Failure Divergence

Refinement (FDR) tool could verify whether inputs, outputs

and QoS of service compositions conform to the requirements.

mailto:zhu_ming@sdut.edu.cn

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

2

The rest of this paper is organized as follows. Section 2

and Section 3 describe preliminary knowledge and provide the

background of this paper. The framework for modeling and

verification of QoS-aware web service composition is given in

Section 4. We present a case study and experimental results to

illustrate the modeling and verification in Section 5. Section 6

reviews related work and the conclusion is drawn in Section 7.

2. Web Service Composition and QoS

This section introduces the definitions of web service, web

service composition and QoS.

A web service w is defined as a tuple with the following

components:

 win is a finite set of typed input parameters of w. A web

service is invoked only when all its input parameters are

satisfied.

 wout is a finite set of typed output parameters of w.

 WQoS is a finite set of quality-of-service (QoS) values of

w. The criteria for QoS are determined from users’

constraints and preferences.

A web service composition problem can be represented by

a tuple with the following components:

 S is a finite set of services.

 Cin is a finite set of typed input parameters.

 Cout is a finite set of typed output parameters.

 CQoS is a finite set of quality criteria.

We use plug-in matching degree to match services: two

services can be connected if the input of a service is a subset of

the output of the other service. This semantic model, borrowed

from [11], is consistent with many proposed service

composition approaches [12]-[14].

Services are connected either in sequence or in flow

control. Services in sequence are invoked one by one

(w1;w2;…;wn). Services in a flow control are invoked in parallel

(w1||w2||…||wn).

For web service compositions, there are several QoS

criteria, such as response time, throughput, cost, and so on. For

illustrative purpose, we focus on response time and the overall

response time of service composition can be calculated as

follows [1], [11]:

Response time (R): the interval between the receipt of an

inquiry message and the beginning of the transmission of a

response message.

 R (w1;w2;…;wn)=∑R(wi) (1)

R (w1||w2||…||wn)=maxR(wi) (2)

3. Timed CSP

In this section, Timed CSP, machine-readable CSP (CSPM),
and Failure Divergence Refinement (FDR) tool for analyzing
CSP are introduced.

3.1. Notations and Basic Concepts

Timed CSP terms are constructed according to the following

grammar rules [9]:

2tt1

21212
B

12t12t1

21

≯expr≮

|.|;||||||||Π|□

|||)(||:

PP

PXPPPPPPPPPP

PaPPnWAITSKIPSTOPP

ttt

t

n

tttt



 

These terms have the following intuitive interpretations:

 STOPt is the deadlocked, stable process which is only

capable of letting time pass;

 SKIPt corresponds to the process √→t STOP, where √

is a special final event that the process performs. It means

a process, at any time, is willing to terminate

successfully, and then do nothing.

 WAITt(n) is the process which idles for n time units, and

then becomes SKIP.


21 PP

n

t is the process that initially becomes P1 for n time

units, after which it silently becomes P2 for no visible

event occurs.

 a →t P initially offers at any time to engage in the event

a, and subsequently behaves like P.

 P1 □t P2 denotes a process which is willing to have either

like P1 or P2, at the choice of the environment.This

decision is taken on the first visible event, and is

nondeterministic only if this initial event is possible for

both P1 and P2.

 P1 Πt P2 represents the nondeterministic (or internal)

choice between P1 and P2, which is independent of the

environment.



21|| PP
B
t

 is a parallel composition of P1 and P2 over the

interface set B. It means that P1 and P2 agree and

synchronize on all events of set B, and to behave

independently of each other with respect to all other

events

 P1 |||t P2 is an interleaving between P1 and P2, which

means each process behaves independently of the other

without synchronization.

 P1 ;t P2 corresponds to the sequential composition of P1

and P2. It denotes a process which behaves like P1 until

P1 chooses to terminate, at which point the process

seamlessly starts to behave like P2.

 μX.P represents the unique solution to the equation X=P,

where the variable X appears freely in P. The operator μX

binds every free occurrence of X in P. The condition

ensures that the recursion is well-defined and has a

unique solution.

 P1 ≮t expr ≯t P2 represents that if expr then behaves as

P1 else behaves as P2.

A process can be defined as a set of traces. Each trace of

a process is a finite sequence of symbols recording the events

in which the process has engaged up to some moments in time

[3]. For example, process P has a trace ‹ event1, tock, event2›,

which indicates that P engages event1 first, then time passes 1

unit (1 tock), then P engages event2.

3.2. Failure Divergence Refinement (FDR) for Timed CSP

Failure Divergence Refinement (FDR) is a model checking

tool for analyzing CSP systems [15]. FDR support both CSP

and it’s extension Timed CSP. To use FDR to model and

verify timed CSP system, it requires programming in machine-

readable CSP namely CSPM , which combines the operators of

CSP with a functional programming language. The latest

version FDR 4.2.3 is released by Oxford University in Oct.

2017 [15]. In order to specify Timed CSP processes, CSPM

includes a timed section that automatically translates CSP

processes to Timed CSP. Table 1 shows the mapping rules

between terms for Timed CSP and CSPM with timed section:

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

3

Table 1. Sample Mapping Rules Between Timed CSP And CSPM

Terms of Timed CSP Terms within timed section of CSPM

STOPt STOP

SKIPt SKIP

WAITt(n) WAIT(n)

PP n

t
21
 (P1 [] (WAIT(n); trig->P2))\trig;

a → t P a->P

P1 □t P2 P1 [] P2

PP
B
t 21||

P1 [|B|] P2

P1 |||t P2 P1|||P2

P1;t P2 P1; P2

P1 ≮t expr ≯t P2 If expr then P1 else P2

To illustrate the translation between Timed CSP and

CSPM , we now introduce an example. Given a process P that

first performs an event start, then waits 5 time units, and

finally becomes P. P can be described in Timed CSP as P =

start →t WAIT(5); P. According to Table 1, the representation

of Timed CSP of P is able to be translated into a CSPM

program as follows:

channel tock,start
AllZero(_) = 0
Timed(AllZero) {

P = start -> WAIT(5);P

In CSPM, the key word channel is used to define events.

There are two channels declared, tock and start. As stated

before, tock is a special event to represent a time unit. start is

an event that process P can accept. AllZero() is a function that

defines the execution of each event in the timed section costs 0

time unit. Timed(AllZero) with a pair of curly brackets defines

the scope of timed section, where all the declarations are

translated to Timed CSP. P = start ->WAIT(5); P is the CSPM

translation of Timed CSP P = a→t WAITt(5);P.

4. The Framework For Modeling And Verification Of

QoS-aware(response time) Web Service Composition

In this section, we establish the framework for modeling and

verification of QoS-aware (response time) web service

composition by Timed CSP, and then we define the

transformation rules used in the framework for mapping QoS-

aware (response time) web service composition to Timed CSP.

4.1. The Framework for Modeling and Verification

The framework consists of the following steps (Figure 1).

Fig.1. The Framework

1) Transform the models of BPEL with QoS (response

time) descrpition to the models of Timed CSP.

2) Transform the models of Timed CSP to programs in

CSPM with timed section.

3) Derive CSPM assertions based on the models of Timed

CSP and the requirements of BPEL with QoS (response

time) description.

4) Use FDR to verify the programs in CSPM against the

assertions, and generate verification results.

4.2. Transformation from Models of BPEL with

QoS(response time) to the models of Timed CSP and CSPM

To transform the models of BPEL with QoS (response time)

description to the models of Timed CSP, corresponding

transformation rules needs to be defined. In PBEL V2.0, the

major building blocks of BPEL processes are activities, which

include basic activities and structured activities [16]. As BPEL

orchestrations in composing services do not evaluate the QoS

properties of specific services, we associated QoS properties of

services with BPEL activities using them. In this section, we

detail our formulations to QoS (response time) for some basic

and structured BPEL activities.

Basic Activities. In research [17], it suggests that all basic

activities except invoke complete instantaneously when they

start, which don’t need to be analyzed with QoS properties. In

this paper, we focus on response time for invoke activity. The

invoke activity is used to call a web service provided by a

partner. An invoke activity includes two type, one-way activity

and request-response activity. The QoS (response time) for the

invoke activity is specified using the Web Service Level

Agreements (WSLA).

1. one-way invoke
An one-way invoke activity requires an input variable, then

executes with the process logic without waiting for the reply.

Given an one-way activity serviceA in BPEL along with its

QoS (response time) 10 in WSLA as follows:

<invoke name="serviceA"

operation="serviceAOperation"
inputVariable="Input" />

<SLAParameter>

AverageResponseTimeServiceA
</SLAParameter>

<Value > 10 </ Value >

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

4

A one-way invoke activity of BPEL can be transformed into a

process with an Input action along with time section WAITt in

Timed CSP. This process first accepts Input through channel

serviceAOperation, then it waits for 10 time units which

represents the QoS (response time), and end successfully. The

CSP transformation is show as follows:

serviceAOperation?Input →t WAITt(10) →t SKIPt

The one-way invoke activity is represented as follows in CSPM:

serviceAOperation?Input -> WAIT(10) -> SKIP

2. request-response invoke
A request-response invoke activity requires both an input and

output variable, and it would block the process until it receives

a response from the partner service. Given a request-response

activity serviceB in BPEL along with it’s QoS (response time) t

in WSLA as follows:

<invoke name="serviceB"

operation="serviceBOperation"
inputVariable="Input"
outputVariable="Output" />

<SLAParameter>

AverageResponseTimeServiceB
</SLAParameter>

<Value > 10 </ Value >

A request-response invoke activity of BPEL can be

transformed into a process with an Input action and an Output

action along with time section WAITt in Timed CSP. This

process first accepts Input through channel serviceBOperation,

then it waits for 10 time units which represents the QoS

(response time), generates Output through channel

serviceBOperation, and ends successfully. The CSP

transformation is show as follows:

serviceBOperation?Input →t WAITt(10);

serviceBOperation!Output -> SKIPt

The request-response invoke activity is represented as follows

in CSPM :

serviceBOperation?Input -> WAIT(10);

serviceBOperation!Output -> SKIP

Structured Activities. This kind of activities can contain

other activities and define the business logic between them. In

this paper, we discuss the transformation from sequence, if-

else, while, pick and flow activities to the corresponding Timed

CSP representations respectively.

1. sequence
A sequence structured activity is used to define a collection of

activities which are executed sequentially in predefined order.

Given a sequence structured activity in BPEL as follows:

<sequence name=...>
<...activity1.../>
<...activity2.../>

...
<...activityN.../>

</sequence>

For each activityi (1 ≤ i ≤ N)inside sequence, given that the
corresponding QoS (response time) is ti. In the process of the
transformation, the above-mentioned sequence structured
activity can be transformed to a sequence of processes in
Timed CSP, where each activityi with QoS (response time) ti
can be transformed to a process Pi with corresponding waiting
time ti, and the order between activities is as same as the order
between corresponding processes. The CSP transformation is
show as follows:

P1;t WAITt (t1);t
P2;t WAITt (t2);t
...;t
PN ;t WAITt (tN)

The sequence activity is represented as follows in CSPM :

P1;WAIT(t1);
P2;WAIT(t2);
...;
PN;WAIT(tN)

2. if-else

A if-else structured activity allows exactly one choice of

activity from a given set of choices to be selected. For each

choice, the behavior is to check a condition and if that

condition evaluates to true, the associated branch is executed,

otherwise an alternative path is taken. Given a if-else structured

activity in BPEL as follows:

<if name="choices">
<condition>

condition1
</condition>
<...activity1.../>
<elseif>

<condition>
condition2

</condition>
<...activity2... />

</elseif>
<else>

<...activity3 ... />
</else>

</if>

For each activityi (1 ≤ i ≤ 3) inside if-else, given that the
corresponding QoS (response time) is ti. In the process of the
transformation, the above-mentioned if-else structure can be
transformed to conditional choices in Timed CSP, where each
activityi with QoS (response time) ti can be transformed to a
process Pi with corresponding waiting time ti, and a conditionj
(1 ≤ j ≤ 2) can be transformed to a conditional expression exprj.
The CSP transformation is show as follows:

(p1; t WAITt(t1))

≮t expr1≯t

(((p2;t WAITt(t2))

≮t expr2≯t

(p3;t WAITt(t3)))

The if-else activity is represented as follows in CSPM :

if expr1
then P1;WAIT(t1)
else if expr2

then P2;WAIT(t2)
else P3;WAIT(t3)

3. while

A while structured activity has a child activity nested within. It

allows the child activity to be executed repeatedly as long as a

given condition evaluates to true. The condition is specified on

the while activity and gets evaluated at the beginning of each

iteration. Given a while structured activity in BPEL as follows:

<while>
<condition>

condition

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

5

</condition>
<...activity ... />

</while>

For the activity inside while, given that the corresponding QoS

(response time) is t. In the transformation, the abovementioned

while structured activity can be transformed to a recursion with

a conditional choice in Timed CSP. If the conditional choice is

true, the recursion continues. Otherwise, the recursion ends

successfully. The activity can be transformed to a process P

with corresponding waiting time t, and the condition can be

transformed to a conditional expression expr. The CSP

transformation is show as follows:

μP.((P;WAITt(t))≮t exper ≯t SKIPt)

The while activity is represented as follows in CSPM:

X = if expr
then P;WAIT(t);X
else SKIP

4. pick

A pick structured activity has includes several onMessage

elements, one of which will be triggered to execute after the

structure receives the corresponding message. Each onMessage

element points to an activity and to a variable that holds the

received message. Given a pick structured activity in BPEL as

follows:

<pick>
<onMessage ...

...activity1...
variable="var1">

</onMessage>
<onMessage ...

...activity2...
variable="var2">

</onMessage>
...
<onMessage ...

...activityN...
variable="varN">

</onMessage>
</pick>

For each activityi (1 ≤ i ≤ N) inside pick, given that the

corresponding QoS (response time) is ti. In the transformation,

the above-mentioned pick structured activity can be

transformed to deterministic choices in Timed CSP, where

each activityi with QoS (response time) ti can be transformed to

a process Pi with corresponding waiting time ti, and the

relationship between activityi can be transformed to

deterministic choices between Pi. The CSP transformation is

show as follows:

(P1;t WAITt (t1)) □t
(P2;t WAITt (t2)) □t
... □t
(PN ;t WAITt (tN))

The pick activity is represented as follows in CSPM:

(P1;WAIT(t1)) []
(P2;WAIT(t2)) []
... []
(PN;WAIT(tN))

5. flow

A flow structured activity allows child activities to be executed

in parallel. Given a flow structured activity in BPEL as follows:

<flow ...>
<...activity1... />

<...activity2... />
...
<...activityN... />

</flow>

For each activityi (1 ≤ i ≤ N)inside flow, given that the

corresponding QoS (response time) is ti. In the process of the

transformation, the above-mentioned flow structured activity

can be transformed to parallel comosition in Timed CSP,

where each activityi with QoS (response time) ti can be

transformed to a process Pi with corresponding waiting time ti.,

and the relationship between activityi can be transformed to

parallel between Pi. If it is necessary to synchronize between

some of these activities, the synchronized information can be

represented as a set of events associated with parallel. The

CSP transformation is show as follows:

(P1; WAIT (t1)) ||t
(P2; WAIT (t2)) ||t

 ...||t
(PN ; WAIT (tN))

The flow activity is represented as follows in CSPM :

(P1;WAIT(t1))||
(P2;WAIT(t2))||
...||
(PN;WAIT(tN))

5. Case Study

In this section, we introduce a case study to illustrate the

application of the framework and the transformation rules for

modeling and verifying inputs, outputs, and QoS of web

service composition.

5.1. A Web Service Composition

Let’s consider an online booking system for the travelling

agency to book tickets and hotels. The system contains has four

collaborative web services: AgReq, AgRcv, Al and Htl. The

travelling agency uses AgReq to send service requests, and uses

AgRcv to receive service responses. Al is used for booking a

flight with an airline, and Htl is used for booking a room in a

hotel. The services information is shown in Table 2. The

service composition example is shown in Figure 2.

Table 2. Services Information

Service Inputs Outputs R1

AgReq flightInfo,horeInfo agFlight,agHotel 2
Al agFlight flightResult 4

Htl agHotel hotelResult 3

AgRcv flightResult,hotelResult result 1
1 R:response time(ms)

Fig.2. The Online Booking System

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

6

5.2. Timed CSP Model for QoS-aware Web Service

Composition

When QoS-aware web service compositions are obtained, we

can construct the corresponding Timed CSP models.

Service AgReq is represented as the process AgReqP.

AgReqP = AgReqPIn;t AgReqPOut

AgReqPIn =flightInfo →t hotelInfo →t AgReqPQoS

□thotelInfo →t flightInfo →t AgReqPQoS

AgReqPQoS = WAITt(2)

AgReqPOut =agFlight →t agHotel →t AgReqP

□tagHotel →t agflight →t AgReqP

Service Al is represented as the process AlP.

Alp = AlPIn;t AlPOut

AlPIn = agFlight →t AlPQoS

AlPQoS = WAITt(4)

AlPOut = flightResult →t AlP

Service Htl is represented as the process HtlP.

HtlP = HtlPIn;t HtlPOut

HtlPIn = agHotel →t HtlPQoS

HtlPQoS = WAITt(3)

HtlPOut = hotelResult →t HtlP

Service AgRcv is represented as the process AgRcvP.

AgRcvP = AgRcvPIn;t AgRcvPOut

AgRcvPIn =flightResult →t hotelResult →t AgRcvPQoS

□thotelResult →t flightResult →t AgRcvPQoS

AgRcvPQoS = WAITt(1)

AgRcvPOut = result →t AgRcvP

The web service compositions Al||Htl, AgReq; (Al||Htl), and

AgReq; (Al||Htl); AgRcv can be represented as process

compositions as follows:

 Service composition Al||Htl is a represented as the

process composition AlHtl=AlP|||tHtlP.

 Servide composition AgReq;(Al||Htl) is represented as the

process composition AgReqAlHtl=

agHotel}{agFlight,
t
AlHtlAgReqP||

.

 Service composition AgReq;(Al||Htl);AgRcv is represent-

ted as the process composition AgReqAlHtl

AgRcv=

t}hotelResulult,{flightRes
t
AgRcvAgReqAlHtl||

.

Based on the Timed CSP representations of web services

and service compositions, we can build a CSPM program as

follows:

channel tock,flightInfo,hotelInfo,
channel agFlight,agHotel
channel flightResult,hotelResult
channel result

AllZero(_)=0

Timed(AllZero){
AgReqP=AgReqPIn;AgReqPOut
AgReqPIn=hotelInfo->flightInfo->AgReqPQos

[]flightInfo->hotelInfo->AgReqPQos
AgReqPQos=WAIT(2)
AgReqPOut=agFlight->agHotel->AgReqP

[]agHotel->agFlight->AgReqP

AgRcvP=AgRcvPIn;AgRcvPOut
AgRcvPIn=flightResult->hotelResult->AgRcvPQos

[]hotelResult->flightResult->AgRcvPQos
AgRcvPQos=WAIT(1)
AgRcvPOut=result->AgRcvP

AlP=AlPIn;AlPOut
AlPIn=agFlight->AlPQos
AlPQos=WAIT(4)
AlPOut=flightResult->AlP

HtlP=HtlPIn;HtlPOut
HtlPIn=agHotel->HtlPQos
HtlPQos=WAIT(3)
HtlPOut=hotelResult->HtlP

AlHtl=AlP|||HtlP
AgReqAlHtl=AgReqP[|{agFlight,agHotel}|]AlHtl
AgReqAlHtlAgRcv=AgReqAlHtl

[|{hotelResult,flightResult}|]AgRcvP

5.3. Experimental Evaluation

Based on the CSPM code generated previously, FDR can use

the Has Trace Assertions to verify inputs, outputs, and QoS

(response time) of processes and process compositions that

represent the corresponding web services and web service

compositions respectively.
Our experiments are implemented on a personal computer

with a Windows 10 64-bit operating system, 8 GB RAM

memory, Intel Core i5-7200U processor. The version of FDR

used in the experiments is 4.2.3 (Windows 64-bit) released on

26/10/2017.
For each process or composition implemented in CSPM ,

FDR can generate a transition diagram for it to help

understand its behaviors. For example, the transition diagrams

of AgReqP and AgRcvP are illustrated in Figure 3 and Figure 4

respectively.

We build a trace in Timed CSP and use Has Trace

Assertions to verify the process composition

AgReqAlHtlAgRcv.

Fig.3. The Transition Diagram of AgReqP

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

7

Fig.4. The Transition Diagram of AgRcv

 We construct a trace T according to the specification of

process composition AgReqAlHtlAgRcv and its

corresponding web service composition, ‹ flightInfo,

hotelInfo, tock, tock, agFlight, agHotel, tock, tock, tock,

hotelResult, tock, flightResult, tock, result ›. This trace

means flightInfo and hotelInfo occur at the beginning;

after 2 time units (2 tocks), messages agFlight and

agHotel occur; then, time passes 3 units (3 tocks); after

that, message hotelResult appears; 1 time unit (1 tock)

later, message flightResult occurs; and after 1 time unit (1

tock), message result is generated.

 We make an assertion for AgReqAlHtlAgRcv in FDR

based on the trace T, assert AgReqAlHtlAgRcv :[has

trace]: < flightInfo, hotelInfo, tock, tock, agFlight,

agHotel, tock, tock, tock, hotelResult, tock, flightResult,

tock, result >.

Figure 5 from FDR shows that the assertion passes, and

the verification finishes in 0.11s. This indicates that by offering

flightInfo and hotelInfo as the input messages, the composition

can produce result in 7 time units. The result of executing the

assertion in FDR confirms that with the specified inputs, the

web service composition AgReq; (Al||Htl); AgRcv can generate

specified outputs with QoS response time satisfied.

Fig.5. The Verification Result of Original Composition

AgReqAlHtlAgRcv

We give a counterexample to show that a web service

composition fails to generate outputs within specified response

time. Let’s modify the response time of service Al to 6, while

the travelling agency still expect the service’s response time to

be 4. By following the framework and transformation rules, the

modified service composition can be transformed to a process

composition with process AlP waiting 6 time units, and the

corresponding program in CSPM can be generated. The

assertion used previously can represent the travelling agency’s

expectation. When using FDR to verify the program against the

assertion, Figure 6 from FDR shows that the assertion fails this

time, and the verification finishes in 0.13s. This indicates that

by offering flightInfo and hotelInfo as the inputs, the

composition cannot produce result as output within the

expected response time. It fails to meet the requirements of

inputs, outputs, and QoS of the travelling agency.

Fig. 6. The Verification Result of Original Composition

AgReqAl-HtlAgRcv with WAIT(6)in AlP

By using FDR’s debug functionality, we can further

examine the reason of the assertion failure. Figure 7 shows that

the event flightResult cannot be generated in 4 time units in

process AlP after accepting the event agFlight, while the

assertion requires the event agFlight to be generated in 4 time

units.

Fig. 7. Counterexample Exhibition

6. Related Work

The goal of QoS-aware service composition is to select

competitive services and optimize the whole QoS value. In this

process, optimization algorithms are utilized to reduce the

search space, minimize the search time and enhance accuracy

of obtained solutions. Paper [18] presents a hybrid artificial bee

colony (HABC) algorithm to solve the cloud manufacturing

service optimal selection problem. In this process, chaotic

ergodic search is applied to avoid premature of the algorithm.

In our previous work, we propose the application of a skyline

operator to reduce the search space and improve the scalability.

We also present a partial pre-composing approach which stores

popular paths for fast delivery [14]. Zheng et al. demonstrate

that QoS values are not the same to different consumers even

when calling the same service [19]. Under this consideration,

QoS prediction approaches are proposed [20], [21]. Research

[22] proposes a local search enhanced hybrid artificial bee

colony algorithm (HABC) for solving the multi-objective

flexible task scheduling problem in Cloud computing system.

In recent years, there are a number of initiatives tend to

use the CSP to model and verify web service composition. S.

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

8

Ripon et al. combine compensating CSP and Finite State

Process to handle faults in long running transactions in web

services, and verify properties of composition and execution of

compensations [6]. Xu et al. use CSP to formalize the

specifications based on web service choreography description

language (CDL) [23]. Y. Zhu et al. propose a framework that

transform Business Process Execution Language (BPEL) to

CSP, and use FDR to verify deadlock, liveness, and safety of

compositions [24]. Most of the work focuses on verifying the

liveness, safety, deadlock and other properties of service

composition, while little research has been done in verifying

QoS of service composition.

7. Conclusion

This paper proposes a framework by using Timed CSP based

on model transformation. Firstly, the modeling and verification

framework between QoS-aware web service composition and

Timed CSP is introduced. Secondly, transformations rules from

QoS-aware Web Service Composition to Timed CSP are

defined in details. Thirdly, to illustrate the framework and the

transformation rules, a case study of online booking system is

developed. In doing so, it shows that models of QoS-aware

service composition can be transformed to models of process

composition in Timed CSP and programs in CSPM with timed

section. By using the framework and transformation rules, the

approach verifies whether inputs, outputs and QoS of service

compositions conform to the requirements. Furthermore, the

experiments indicate that inputs, outputs and response time in

web service compositions can be verified by the tool FDR with

CSPM assertions. In future, more details on verification of QoS-

aware web service composition and more case studies will be

discussed.

References

[1] M. Papazoglou, Web Services: Principles and

Technology. Prentice Hall, 2011.

[2] G. M. M. Campos, N. S. Rosa, and L. F. Pires, “A survey

of formalization approaches to service composition,” in

Services Computing (SCC), 2014 IEEE International

Conference on, June 2014, pp. 179–186.

https://doi.org/10.1109/SCC.2014.32

[3] C. A. R. Hoare, Communicating sequential processes. En-

glewood Cliffs, United States: Prentice-Hall, 1985.

Proceedings of the 1st MIT conference on CFSM.

Cambridge, MA, 2001.

[4] A. W. Roscoe, Understanding concurrent systems.

London, United Kingdom: Springer, 2010.

https://doi.org/10.1007/978-1-84882-258-0

[5] G. Salaun, L. Bordeaux, and M. Schaerf, “Describing and

reasoning on web services using process algebra,” in Pro-

ceedings. IEEE International Conference on Web

Services, July 2004, pp. 43–50.

https://doi.org/10.1109/ICWS.2004.1314722

[6] S. Ripon, F. Sultana, and F. Rahman, “Verification of

service composition and compensation by using process

algebra,” Journal of Advances in Computer Networks, vol.

4, no. 4, pp. 193–200, 2016.

[7] G. Reed and A. Roscoe, “A timed model for

communicating sequential processes,” Theoretical

Computer Science, vol. 58, no. 1-3, pp. 249-261, 1988.

https://doi.org/10.1016/0304-3975(88)90030-8

[8] A. W. Roscoe, The Theory and Practice of Concurrency.

Prentice Hall, 1998.

[9] J. Ouaknine, “Discrete analysis of continuous behaviour in

real-time concurrent systems,” Ph.D. dissertation,

University of Oxford, Michaelmas, United Kingdom,

2000.

[10] J. Ouaknine and S. Schneider, “Timed csp: A

retrospective,” Electronic Notes in Theoretical Computer

Science, vol. 162, pp. 273-276, 2006.

https://doi.org/10.1016/j.entcs.2005.12.093

[11] S. Bleul, T. Weise, and K. Geihs, “The web service

challenge - a review on semantic web service

composition,” Electronic Communications of the EASST,

vol. 17, 2008.

[12] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z.

Liu, “QSynth: A tool for QoS-aware automatic service

compo-sition,” in Web Services (ICWS), 2010 IEEE

International Conference on, July 2010, pp. 42-49.

https://doi.org/10.1109/ICWS.2010.38

[13] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “A

dynamic QoS-aware semantic web service composition

algorithm,” in Service-Oriented Computing, ser. Lecture

Notes in Computer Science, C. Liu, H. Ludwig, F.

Toumani, and Q. Yu, Eds. Springer Berlin Heidelberg,

2012, vol. 7636, pp. 623-630. https://doi.org/10.1007/978-

3-642-34321-6_48

[14] J. Li, Y. Yan, and D. Lemire, “Scaling up web service

composition with the skyline operator,” in IEEE

International Conference on Web Services, 2016, pp. 147–

154. https://doi.org/10.1109/ICWS.2016.27

[15] FDR manual.

https://www.cs.ox.ac.uk/projects/fdr/manual/

cited[12/25/2018].

[16] Web services business process execution language.

https://www.oasis-open.org/committees/tc_home.php?wg

abbrev=wsbpel cited[2/25/2018].

[17] D. Mukherjee, P. Jalote, and M. Nanda, “Determining qos

of ws-bpel compositions,” in International Conference on

Service-Oriented Computing 2008. Germany: Springer

Berlin, 2008, pp. 378–393. https://doi.org/10.1007/978-3-

540-89652-4_29

[18] J. Zhou and X. Yao, “A hybrid artificial bee colony

algorithm for optimal selection of qos-based cloud

manufacturing service composition,” The International

Journal of Advanced Manufacturing Technology, vol. 88,

no. 9, pp. 3371-3387, Feb 2017. [Online]. Available:

https://doi.org/10.1007/ s00170-016-9034-1.

https://doi.org/10.1007/s00170-016-9034-1

[19] Z. Zheng, Y. Zhang, and M. Lyu, “Investigating QoS of

real-world web services,” Services Computing, IEEE

Transactions on, vol. 7, no. 1, pp. 32-39, Jan 2014.

https://doi.org/10.1109/TSC.2012.34

https://doi.org/10.1109/SCC.2014.32
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1109/ICWS.2004.1314722
https://doi.org/10.1016/0304-3975(88)90030-8
https://doi.org/10.1016/j.entcs.2005.12.093
https://doi.org/10.1109/ICWS.2010.38
https://doi.org/10.1007/978-3-642-34321-6_48
https://doi.org/10.1007/978-3-642-34321-6_48
https://doi.org/10.1109/ICWS.2016.27
https://doi.org/10.1007/978-3-540-89652-4_29
https://doi.org/10.1007/978-3-540-89652-4_29
https://doi.org/10.1007/s00170-016-9034-1
https://doi.org/10.1109/TSC.2012.34

Ming Zhu et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2010) 01-09

9

[20] H. Wang, H. Sun, and Q. Yu, “Reliable service

composition via automatic qos prediction,” in Proceedings

-IEEE 10t International Conference on Services

Computing, SCC 2013, 06 2013, pp. 200-207.

https://doi.org/10.1109/SCC.2013.45

[21] R. Karim, C. Ding, and A. Miri, “End-to-end QoS

prediction of vertical service composition in the cloud,” in

Cloud Com-puting (CLOUD), 2015 IEEE 8th

International Conference on, June 2015, pp. 229-236.

https://doi.org/10.1109/CLOUD.2015.39

[22] J. Li, Y. Han, C. Wang, “A Hybrid Artificial Bee Colony

Algorithm to Solve Multi-objective Hybrid Flowshop in

Cloud Computing Systems,” in The 3rd International

Conference on Cloud Computing and Security, Nanjing,

China, pp. 68-73, 2017 https://doi.org/10.1007/978-3-319-

68505-2_18

[23] D. Xu, Z. Lei, W. Li, and B. Zhang, “Model checking web

services choreography in process analysis toolkit,” Journal

of Shanghai University (English Edition), vol. 14, no. 1,

pp. 45-49, Feb 2010. https://doi.org/10.1007/s11741-010-

0109-3

[24] Y. Zhu, Z. Huang, and H. Zhou, “Modeling and

verification of web services composition based on model

transformation,” Journal of software practice and

experience, vol. 47, no. 5, pp. 709-730, 2016.

https://doi.org/10.1002/spe.2434

https://doi.org/10.1109/SCC.2013.45
https://doi.org/10.1109/CLOUD.2015.39
https://doi.org/10.1007/978-3-319-68505-2_18
https://doi.org/10.1007/978-3-319-68505-2_18
https://doi.org/10.1007/s11741-010-0109-3
https://doi.org/10.1007/s11741-010-0109-3
https://doi.org/10.1002/spe.2434

