
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 8, No. 2 (2017) pp. 15-20

* Yemna SAYEB. Tel.: +216 98 521 335
E-mail: ysayeb.recherche@gmail.com
© 2017 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.08.02.003

15

From Relational Database to Big Data: Converting Relational to graph
database, MOOC database as example

Yemna Sayeb*, Radhouane Ayari, Sarra Naceur, Henda Ben Ghezala

University of Manouba, RIADI, National School of computer science, Manouba campus, Manouba 2010, Tunisia

Abstract
Existing graph database management systems provide an efficient solution to data storage where graph models are
widely used, the conversion of an existing application from a relational to graph data can be convenient but it is usually
a hard task for database administrators. In this work, we propose a conversion tool from a relational to graph database.
The approach supports the conversion of the schema and the data.

Keywords: NoSQL; Migration; Relational Database; Graph database.

1. Introduction

Face to the growing need for performance and availability
relational databases quickly reach their limits and adding
hardware servers does not increase performance enough.
Following this, new technologies have emerged such as
NoSQL databases which are radically changing the architecture
of the database. With these technologies we can increase
performance and improve availability of services [1]. So,
several projects have found themselves facing the necessity to
migrate to this new technology.
Thus, Google has migrated to NoSQL in 2004 with the engine
BigTable. It was followed by the giants of the social web to
know Facebook, Twitter and LinkedIn. These companies have
migrated all or part of their information system of relational
databases to NoSQL databases. Also, this technology is a new
concept and there are many research work improving existing
approach and migration tools. In this case we have seen useful
to propose an approach to migrate a relational database to a
NoSQL database. To do this we began by studying the
limitations of relational databases which are facing problems of
large volumes of data, then we present advantages of NoSQL
databases, finally we present an approach to migrate a
relational to a NoSQL database.

2. Big Data advantages [2]

With Big Data databases, enterprises can save money, grow
revenue, and achieve many other business objectives, in any
vertical. It might allow a company to collect billions of
real-time data points on its products, resources, or

customers and then repackage that data instantaneously to
optimize customer experience or resource utilization.
Big data technologies can replace highly-customized,
expensive legacy systems with a standard solution that runs on
commodity hardware. And because many big data technologies
are open source, they can be implemented far more cheaply
than proprietary technologies.
Big data can help businesses act more nimbly, allowing them
to adapt to changes faster than their competitors. And it allows
businesses and other organizations to more rapidly and
accurately respond to customer demand by increasing the
amount of data shared within the organization and the
speed with which it is updated.

3. NOSQL Databases

3.1. What is a NoSQL (Not Only SQL) Database? [3]

A NoSQL (Not-only-SQL) database is one that has been
designed to store, distribute and access data using methods that
differ from relational databases (RDBMS’s). NoSQL
technology was originally created and used by Internet leaders
such as Facebook, Google, Amazon, and others who required
database management systems that could write and read data
anywhere in the world, while scaling and delivering
performance across massive data sets and millions of users.
Today, almost every company and organization has to deliver
cloud applications that personalize their customer’s experience
with their business, with NoSQL being the database technology
of choice for powering such systems.
A NoSQL database offers the following benefits over other
database management system:

Sayeb et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 15-20

 16

• Continuously Available: A database that stays online
even in the face of the most devastating infrastructure
outages.

• Geographically Distributed: Fully active data,
everywhere you need it.

• Operationally Low Latency: Response times fast
enough for most intense operational cloud
applications.

• Linearly Scalable: Predictably scale to meet the
current and future data needs of cloud applications.

• Immediately Decisive: Full range of data
manipulation capabilities tightly integrated into a
single system.

As enterprises shift to the Digital Economy enabled by cloud,
mobile, social media, and big data technologies, developers
and operations teams have to build and maintain web, mobile,
and Internet of Things (IoT) applications faster and faster, and
at greater scale. NoSQL is increasingly the preferred database
technology to power today’s web, mobile, and IoT
applications.
With NoSQL, enterprises are better able to both develop with
agility and operate at any scale, and to deliver the performance
and availability required to meet the demands of their business
objectives.
To see closely the NoSQL databases we have seen useful to
study the types of NoSQL database.

3.2. NoSQL Databases types [4]

NoSQL databases can broadly be categorized in four types:

3.2.1. Key-value databases

3.2.1.1 What is key-value database?

The key-value data stores are simplistic, but are quiet efficient
and powerful model. It allows the user to store data in a
schema less manner. The data is usually some kind of data type
of a programming language or an object. The data consists of
two parts, a string which represents the key and the actual data
which is to be referred as value thus creating a “key-value”
pair. These stores are similar to hash tables where the keys are
used as indexes, thus making it faster than RDBMS Thus the
data model is simple: a map or a dictionary that allows the user
to request the values according to the key specified. The
modern key value data stores prefer high scalability over
consistency. Hence ad-hoc querying and analytics features like
joins and aggregate operations have been omitted. High
concurrency, fast lookups and options for mass storage are
provided by key-value stores. One of the weaknesses of key
value data sore is the lack of schema which makes it much
more difficult to create custom views of the data. Key value
data stores can be used in situations where you want to store a
user’s session or a user’s shopping cart or to get details like
favorite products. Key value data stores can be used in forums,
websites for online shopping etc. Although key-value data
stores existed for long time ago, the development of large
number of recent key value data store was influenced by the
introduction of Amazon’s Dynamo.

3.2.1.2 Scalability and reliability

Key-value stores scale out by implementing partitioning
(storing data on more than one node), replication and auto

recovery. They can scale up by maintaining the database in
RAM and minimize the effects of ACID guarantees (a
guarantee that committed transactions persist somewhere) by
avoiding locks, latches and low-overhead server calls.

3.2.2. Document Databases

3.2.2.1 What is Document database?

Document Store Databases refers to databases that store their
data in the form of documents. Document stores offer great
performance and horizontal scalability options. Documents
inside a document-oriented database are somewhat similar to
records in relational databases, but they are much more flexible
since they are schema less. The documents are of standard
formats such as XML, PDF, JSON etc. In relational databases,
a record inside the same database will have same data fields
and the unused data fields are kept empty, but in case of
document stores, each document may have similar as well as
dissimilar data. Documents in the database are addressed using
a unique key that represents that document. These keys may be
a simple string or a string that refers to URI or path. Document
stores are slightly more complex as compared to key-value
stores as they allow to encase the key-value pairs in document
also known as key-document pairs. Document oriented
databases should be used for applications in which data need
not be stored in a table with uniform sized fields, but instead
the data has to be stored as a document having special
characteristics. Document stores serve well when the domain
model can be split and partitioned across some documents.
Document stores should be avoided if the database will have a
lot of relations and normalization. They can be used for content
management system, blog software etc.

3.2.2.2 Characteristics

Document database systems, are characterized by their schema-
free organization of data.

That means:
• Records do not need to have a uniform structure, i.e.

different records may have different columns.
• The types of the values of individual columns can be

different for each record.
• Columns can have more than one value (arrays).
• Records can have a nested structure.

3.2.3. Column family stores

Column stores in NO SQL are actually hybrid row/column
store unlike pure relational column databases. Although it
shares the concept of column-by-column storage of columnar
databases and columnar extensions to row-based databases,
column stores do not store data in tables but store the data in
massively distributed architectures. In column stores, each key
is associated with one or more attributes (columns). A Column
store stores its data in such a manner that it can be aggregated
rapidly with less I/O activity. It offers high scalability in data
storage. The data which is stored in the database is based on
the sort order of the column family. Column oriented databases
are suitable for data mining and analytic applications, where
the storage method is ideal for the common operations
performed on the data.

Sayeb et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 15-20

 17

The following concepts are critical to understand how
column databases work:

• Column family
• Super columns
• Column

Columns and super columns in a column database are spare,
meaning that they take exactly 0 bytes if they don’t have a
value in them. Column families are the nearest thing that we
have for a table, since they are about the only thing that you
need to define upfront. Unlike a table, however, the only thing
that you define in a column family is the name and the key sort
options (there is no schema).

A Column family is how the data is stored on the disk. All the
data in a single column family will sit in the same file. A
column family can contain super columns or columns.

A super column is a dictionary, it is a column that contains
other columns (but not other super columns).

A column is a tuple of name, value and timestamp.

3.2.4. Graph databases

3.2.4.1 What are Graph databases?

Graph databases are databases which store data in the form of a
graph. The graph consists of nodes and edges, where nodes act
as the objects and edges act as the relationship between the
objects. The graph also consists of properties related to nodes.
It uses a technique called index free adjacency meaning every
node consists of a direct pointer which points to the adjacent
node. Millions of records can be traversed using this technique.
In a graph databases, the main emphasis is on the connection
between data. Graph databases provides schema less and
efficient storage of semi structured data. The queries are
expressed as traversals, thus making graph databases faster
than relational databases. It is easy to scale and whiteboard
friendly. Graph databases are ACID compliant and offer
rollback support. Graph databases can be used for a variety of
applications like social networking applications,
recommendation software, bioinformatics, content
management, security and access control, network and cloud
management etc. Graph databases are difficult to cluster.

3.2.4.1 Graph databases properties

• Performance: data volume will definitely increase in
the future, but what’s going to increase at an even
faster clip is the connections (or relationships)
between data. With traditional databases, relationship
queries will come to a grinding halt as the number
and depth of relationships increase. In contrast, graph
database performance stays constant even as data
grows year over year.

• Flexibility: With graph databases, IT and data
architect teams move at the speed of business
because the structure and schema of a graph model
flex as solutions and industry change. Enterprise’s
teams doesn’t have to exhaustively model their
domain ahead of time; instead, they can add to the

existing structure without endangering current
functionality.

• Agility: Developing with graph databases aligns
perfectly with today’s agile, test-driven development
practices, allowing graph-database-backed
application to evolve with changing business
requirements.

4. Related Works

The need to handle increasingly larger data volumes is
one factor driving the adoption of a new class of non-
relational “NoSQL” databases: Big Data and especially
NoSQL Databases are emerging technologies and several
solutions have been proposed to support migration from
relational to NoSQL databases. Some of them focus on schema
and data migration algorithms and transformation technics.
Other approaches focus on queries transformation. Many of
other proposals focus on mapping, algorithms and approaches.
On the other hand, some approaches have been proposed to the
general problem of database translation between different data
models but, to the best of our knowledge, all of them are
commercial and there is no free tool that offers a complete
solution with an approach, algorithm and a tool for migration.

5. Adopted Architecture

We have developed our tool in a Java environment.
Experiments were conducted on MOOC database which is a
MySQL database and we opted for the Neo4j which is an open-
source NoSQL graph database implemented in Java and Scala.

5.1. Neo4j [5]

Neo4j is used today by hundreds of thousands of companies
and organizations in almost all industries. Use cases include
matchmaking, network management, software analytics,
scientific research, routing, organizational and project
management, recommendations, social networks, and more.
It implements the Property Graph Model efficiently down to
storage level. As opposed to graph processing or in-memory
libraries, Neo4j provides full database characteristics
including ACID transaction compliance, cluster support,
and runtime failover, making it suitable to use graph data in
production scenarios.
The property graph contains connected entities (the nodes)
which can hold any number of attributes (key-value-pairs).
Nodes can be tagged with labels representing their different
roles in your domain. In addition to contextualizing node and
relationship properties, labels may also serve to attach
metadata—index or constraint information—to certain nodes.
Relationships provide directed, named semantically relevant
connections between two node-entities. A relationship always
has a direction, a type, a start node, and an end node. Like
nodes, relationships can have any properties. In most cases,
relationships have quantitative properties, such as weights,
costs, distances, ratings, time intervals, or strengths. As
relationships are stored efficiently, two nodes can share any
number or type of relationships without sacrificing
performance.
Neo4j implements the Property Graph Model efficiently
down to the storage level. As opposed to graph

Sayeb et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 15-20

 18

processing or in-memory libraries, Neo4j provides full
database characteristics including ACID transaction
compliance, cluster support, and runtime failover,
making it suitable to use graph data in production
scenarios.

Some particular features make Neo4j very popular
among users, developers, and DBAs:

• Materializing of relationships at creation time,
resulting in no penalties for complex runtime
queries

• Constant time traversals for relationships in the
graph both in depth and in breadth due to
efficient representation of nodes and
relationships

• All relationships in Neo4j are equally important
and fast, making it possible to materialize and
use new relationships later on to “shortcut” and
speed up the domain data when new needs arise

• Compact storage and memory caching for
graphs, resulting in efficient scale-up and
billions of nodes in one database on moderate
hardware

• Written on top of the JVM

5.2. MOOC [6]

MOOC (Massive Open Online Courses) is a new paradigm of
education for anyone, anywhere, anytime. It came up with
numerous opportunities both for students as well as teachers.

• MOOC creates the opportunity for sharing ideas &
knowledge and also helps improving lifelong learning skills by
providing easy access to global resources.

• It improves cross cultural relationships which lead to
collaboration between institution educators and learners locally
and internationally.

• It gives an idea where I stand in the course in the current
world as large number of students all over the globe would
have registered for the same course on the same common
platform and participate in the activities and discussion in the
study group.

• MOOC enhances active learning. Research shows that
students learn more through active learning (i.e. when they
have assignments or discussion on an issue) rather than through
listening to lectures.

MOOCs offer the entire learning community equal rights
to education. People can choose from the varied range of
programs and enroll for the course of their choice from
the convenience of their homes without spending a dime.
Although students study independently in these courses,
they at the same time collaborate with their peers from
different parts of the world.
MOOCs are a boon for people who have faced obstacles
in pursuing education due to lack of funds, no proper
opportunities, un-accessible geographical location, etc.

Pedagogically, MOOCs are designed to be extremely
interactive. It uses all the interactive media available on
the internet to engage students. The various tools used
are blogs, videos, podcasts and forums that are
embedded into the programs seamlessly. These tools
collaborate learners and help them solve real world
problems rather than discussing hypothetical material.
Real discussion of ideas, theories and concepts are an
integral part of a MOOC and are used for peer review
and assessment.

6. Data Conversion

This section describes our method for converting a
relational database into a graph database, for the sake of
simplicity, we consider an intermediate step in which we map
the components of a relational database to a graph database
component. The joins represented by foreign key relationships
will be a factor, but most relationships in a relational database
are encoded into table schemas. Each cell in a table becomes an
edge, then that edge connects to its column name and to one or
more of the other fields of its row. Then, the graph model is
automatically generated.

The algorithm could be as (for each table):

• Extract table structure

• Read the table data and find distinct values

• For each row in a table create edges from the value
for the key in the table to other non-key values and
label the edge with the attribute names. If the table
has composite key then create a hyper edge to
connect the key domain values to other non-key
domain values.

7. Experimental results

7.1. Applying the approach on the MOOC schema

We start by simplifying the MOOC database schema to make it
more readable and make it as an ER diagram.

Therefore, entities are displayed as rectangles containing the
name of each entity, undirected arrows represent the

relationships between these entities cut each with a
diamond containing the non-relation (red dotted square)
and cardinality top and bottom of the diamond and attributes of
each entity is represented by a small black circle for primary
keys and as the number is many other attributes, it is useless to
the presented.

Sayeb et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 15-20

 19

7.2. Tool print screens

Our tool produces a graph database starting from a MySQL
database (MOOC database in the example below). As shown in
fig.2 we begin by choosing the source database.

Fig. 2 Selection of the relational database

After choosing the source database which is a relational
MySQL database, all tables are shown with their column list
Fig.3

Fig. 3Tables and columns

The figure above shows the interface from which the user will
choose the storage path the new database that will be
generated.

Fig. 4 Choosing path

Now, our tool deals with the algorithm mentioned earlier and
generate a graph database, as an example we choose the
database shown in fig. 5

To create a graph database from the generated file we use
Neo4j

Fig. 6 Browsing the generated file

Once we choose the file, we click on “Start”, and then, the
graph database will be created fig .7

Fig. 1 ER Diagram

Fig. 5 MOOC database schema

Sayeb et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 8 (2017) 15-20

 20

Fig. 7 Graph database creation

to view the result we'll use a simple CYPHER query ‘match n
return n’

Fig. 8 Neo4j Interface

The result of the conversion is a graph database in which the
records of the entity “Article” are represented as blue node
shown in fig.4, green ones are the records of the entity
“commentaire”, the yellow nodes represents the records of the
entity “image” and the two pink nodes represents two records
in the entity “catégorie”.

Conclusion
In this document we have presented an approach to migrate
automatically schema and data from relational to graph

databases. In the futures works we intend to refine the
technique proposed in this paper to obtain a more compact
target database.

References

[1] Mathieu Roger, synthèse d’étude et projets d’intergiciels:
basesNoSQL.

[2] Big Data Explained, retrieved 10 15, 2015, from :
www.mongodb.com/big-data-explained..

[3] Learn About NoSQL Databases | NoSQL vs SQL,
Benefits | DataStax. Retrieved March 16, 2015, from
datastax: www.datastax.com/nosql-databases.

[4] Nayak A, Poriya A, Poojary D. Type of NOSQL
Databases and its Comparison with Relational Databases.
International Journal of Applied Information Systems
(IJAIS 2013).

[5] what_is_neo4j. (n.d.). Retrieved 09 28, 2015, from
neo4j.com:neo4j.com/developper/graph-
database/#_what_is_neo4j.

[6] Michael Gaebel, “MOOC: Massive Open Online Courses
– January 2014”, EUA Occasional Papers.

[7] Sadalage, P. (2014, Oct 3). Retrieved 09 28, 2015, from
thoughtworks: www.thoughtworks.com/insights/nosql-
databases-overview.

[8] cipher-query-language. (n.d.). Retrieved 09 28, 2015, from
neo4j.com:neo4j.com/developper/cipher-query-language.

[9] Atzeni, P. Cappellari, R. Torlone, P. A. Bernstein, and G.
Gianforme. Model-independent schema translation. VLDB
J., 17(6):1347-1370, 2008.

 https://doi.org/10.1007/s00778-008-0105-2

[10] J. Ricardo, B. Cabral, P. Carreiro, M. Vieira and J.

Bernardino. Choosing the right NoSQL database for the
job: a quality attribute evaluation. Journal of Big Data
2015

[11] Jacques B, Reaping the benefits of big data in telecom.
Journal of Big Data2016

Fig. 9 Results of the conversion

