1887
Volume 2015, Issue 4
  • ISSN: 2305-7823
  • EISSN:

Abstract

Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.47
2015-11-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/4/gcsp.2015.47.html?itemId=/content/journals/10.5339/gcsp.2015.47&mimeType=html&fmt=ahah

References

  1. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al., Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006; 173:9:10231030.
    [Google Scholar]
  2. Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur Respir J. 2007; 30:1:104109.
    [Google Scholar]
  3. Seferian A, Simonneau G. Therapies for pulmonary arterial hypertension: where are we today, where do we go tomorrow? European respiratory review: an official journal of the European Respiratory Society. 2013; 22:129:217226.
    [Google Scholar]
  4. National Audit of Pulmonary Hypertension. In: Centre HaSCI, editor. United Kingdom: Health and Social Care Information Centre 2013.
  5. Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012; 186:3:261272.
    [Google Scholar]
  6. Austin ED, Loyd JE. The genetics of pulmonary arterial hypertension. Circ Res. 2014; 115:1:189202.
    [Google Scholar]
  7. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, et al., Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet. 2000; 26:1:8184.
    [Google Scholar]
  8. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al., Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000; 67:3:737744.
    [Google Scholar]
  9. Soubrier F, Chung WK, Machado R, Grunig E, Aldred M, Geraci M, et al., Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2013; 62:25:D13D21.
    [Google Scholar]
  10. Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, et al., Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat. 2006; 27:2:121132.
    [Google Scholar]
  11. Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, et al., Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation. 2002; 105:14:16721678.
    [Google Scholar]
  12. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim DK, et al., Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation. 2009; 119:4:566576.
    [Google Scholar]
  13. Upton PD, Morrell NW. TGF-beta and BMPR-II pharmacology–implications for pulmonary vascular diseases. Curr Opin Pharmacol. 2009; 9:3:274280.
    [Google Scholar]
  14. Yang J, Davies RJ, Southwood M, Long L, Yang X, Sobolewski A, et al., Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ Res. 2008; 102:10:12121221.
    [Google Scholar]
  15. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, et al., Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 2001; 28:2:184187.
    [Google Scholar]
  16. Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K, et al., Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci U S A. 2003; 100:21:1227712282.
    [Google Scholar]
  17. Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, et al., Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2009; 180:8:780787.
    [Google Scholar]
  18. Lavoie JR, Ormiston ML, Perez-Iratxeta C, Courtman DW, Jiang B, Ferrer E, et al., Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation. 2014; 129:21:21252135.
    [Google Scholar]
  19. Burton VJ, Ciuclan LI, Holmes AM, Rodman DM, Walker C, Budd DC. Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood. 2011; 117:1:333341.
    [Google Scholar]
  20. Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, et al., Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med. 2001; 345:5:325334.
    [Google Scholar]
  21. Sobolewski A, Rudarakanchana N, Upton PD, Yang J, Crilley TK, Trembath RC, et al., Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue. Hum Mol Genet. 2008; 17:20:31803190.
    [Google Scholar]
  22. Keeling KM, Bedwell DM. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley interdisciplinary reviews RNA. 2011; 2:6:837852.
    [Google Scholar]
  23. Nasim MT, Ghouri A, Patel B, James V, Rudarakanchana N, Morrell NW, et al., Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension. Hum Mol Genet. 2008; 17:11:16831694.
    [Google Scholar]
  24. Drake KM, Dunmore BJ, McNelly LN, Morrell NW, Aldred MA. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2013; 49:3:403409.
    [Google Scholar]
  25. Hartung A, Bitton-Worms K, Rechtman MM, Wenzel V, Boergermann JH, Hassel S, et al., Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol Cell Biol. 2006; 26:20:77917805.
    [Google Scholar]
  26. Dunmore BJ, Drake KM, Upton PD, Toshner MR, Aldred MA, Morrell NW. The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Hum Mol Genet. 2013; 22:18:36673679.
    [Google Scholar]
  27. Durrington HJ, Upton PD, Hoer S, Boname J, Dunmore BJ, Yang J, et al., Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor type II. J Biol Chem. 2010; 285:48:3764137649.
    [Google Scholar]
  28. Long L, Yang X, Southwood M, Lu J, Marciniak SJ, Dunmore BJ, et al., Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res. 2013; 112:8:11591170.
    [Google Scholar]
  29. Reynolds AM, Xia W, Holmes MD, Hodge SJ, Danilov S, Curiel DT, et al., Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2007; 292:5:L1182L1192.
    [Google Scholar]
  30. Reynolds AM, Holmes MD, Danilov SM, Reynolds PN. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J. 2012; 39:2:329343.
    [Google Scholar]
  31. McMurtry MS, Moudgil R, Hashimoto K, Bonnet S, Michelakis ED, Archer SL. Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2007; 292:4:L872L878.
    [Google Scholar]
  32. Yang J, Li X, Al-Lamki RS, Southwood M, Zhao J, Lever AM, et al., Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Circ Res. 2010; 107:2:252262.
    [Google Scholar]
  33. Yang J, Li X, Al-Lamki RS, Wu C, Weiss A, Berk J, et al., Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2013; 33:1:3442.
    [Google Scholar]
  34. Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, et al., FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013; 123:8:36003613.
    [Google Scholar]
  35. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007; 109:5:19531961.
    [Google Scholar]
  36. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, et al., BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci. 2007; 120:Pt 6:964972.
    [Google Scholar]
  37. Upton PD, Davies RJ, Trembath RC, Morrell NW. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem. 2009; 284:23:1579415804.
    [Google Scholar]
  38. Wei Z, Salmon RM, Upton PD, Morrell NW, Li W. Regulation of Bone Morphogenetic Protein 9 (BMP9) by Redox-dependent Proteolysis. J Biol Chem. 2014; 289:45:3115031159.
    [Google Scholar]
  39. Wooderchak-Donahue WL, McDonald J, O'Fallon B, Upton PD, Li W, Roman BL, et al., BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013; 93:3:530537.
    [Google Scholar]
  40. Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, et al., Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem. 2012; 287:33:2731327325.
    [Google Scholar]
  41. Long L, Ormiston ML, Yang X, Southwood M, Graf S, Machado RD, et al., Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015; 21:7:777785.
    [Google Scholar]
  42. Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, et al., Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med. 2012; 18:3:396404.
    [Google Scholar]
  43. Whitman M, Rosen V, Brivanlou AH, Groppe JC, Sebald W, Mueller T. Regarding the mechanism of action of a proposed peptide agonist of the bone morphogenetic protein receptor activin-like kinase 3. Nat Med. 2013; 19:7:809810.
    [Google Scholar]
  44. Knaus P, Sebald W. Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem. 2001; 382:8:11891195.
    [Google Scholar]
  45. Isaacs MJ, Kawakami Y, Allendorph GP, Yoon BH, Izpisua Belmonte JC, Choe S. Bone morphogenetic protein-2 and -6 heterodimer illustrates the nature of ligand-receptor assembly. Mol Endocrinol. 2010; 24:7:14691477.
    [Google Scholar]
  46. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, et al., Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene therapy. 2004; 11:17:13121320.
    [Google Scholar]
  47. Sengle G, Ono RN, Sasaki T, Sakai LY. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. J Biol Chem. 2011; 286:7:50875099.
    [Google Scholar]
  48. Ricard N, Ciais D, Levet S, Subileau M, Mallet C, Zimmers TA, et al., BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood. 2012; 119:25:61626171.
    [Google Scholar]
  49. Chen H, Brady Ridgway J, Sai T, Lai J, Warming S, Chen H, et al., Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. Proc Natl Acad Sci U S A. 2013; 110:29:1188711892.
    [Google Scholar]
  50. Souza TA, Chen X, Guo Y, Sava P, Zhang J, Hill JJ, et al., Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. Mol Endocrinol. 2008; 22:12:26892702.
    [Google Scholar]
  51. Herrera B, Inman GJ. A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC cell biology. 2009; 10::20.
    [Google Scholar]
  52. Miller T, Williams K, Johnstone RW, Shilatifard A. Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3. J Biol Chem. 2000; 275:41:3205232056.
    [Google Scholar]
  53. Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L, et al., BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cellular and molecular life sciences: CMLS. 2012; 69:2:313324.
    [Google Scholar]
  54. Neuhaus H, Rosen V, Thies RS. Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech Dev. 1999; 80:2:181184.
    [Google Scholar]
  55. Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al., BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004; 131:9:22192231.
    [Google Scholar]
  56. David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, et al., Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008; 102:8:914922.
    [Google Scholar]
  57. Constam DB, Robertson EJ. Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol. 1999; 144:1:139149.
    [Google Scholar]
  58. Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A. 2001; 98:16:93069311.
    [Google Scholar]
  59. Thies RS, Chen T, Davies MV, Tomkinson KN, Pearson AA, Shakey QA, et al., GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth factors. 2001; 18:4:251259.
    [Google Scholar]
  60. Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ. Expression of myostatin pro domain results in muscular transgenic mice. Molecular reproduction and development. 2001; 60:3:351361.
    [Google Scholar]
  61. Jiang MS, Liang LF, Wang S, Ratovitski T, Holmstrom J, Barker C, et al., Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophys Res Commun. 2004; 315:3:525531.
    [Google Scholar]
  62. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, et al., Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem. 2005; 280:26:2511125118.
    [Google Scholar]
  63. Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q, et al., An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol. 2003; 21:3:294301.
    [Google Scholar]
  64. Laux DW, Young S, Donovan JP, Mansfield CJ, Upton PD, Roman BL. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development. 2013; 140:16:34033412.
    [Google Scholar]
  65. Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, et al., Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development. 2002; 129:12:30093019.
    [Google Scholar]
  66. Seki T, Yun J, Oh SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res. 2003; 93:7:682689.
    [Google Scholar]
  67. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, et al., Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A. 2000; 97:6:26262631.
    [Google Scholar]
  68. Levet S, Ciais D, Merdzhanova G, Mallet C, Zimmers TA, Lee SJ, et al., Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood. 2013; 122:4:598607.
    [Google Scholar]
  69. Levet S, Ouarne M, Ciais D, Coutton C, Subileau M, Mallet C, et al., BMP9 and BMP10 are necessary for proper closure of the ductus arteriosus. Proc Natl Acad Sci U S A. 2015; 112:25:E3207E3215.
    [Google Scholar]
  70. Chen H, Yong W, Ren S, Shen W, He Y, Cox KA, et al., Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. J Biol Chem. 2006; 281:37:2748127491.
    [Google Scholar]
  71. Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, et al., Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2007; 25:5:665677.
    [Google Scholar]
  72. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al., Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). The Journal of bone and joint surgery American volume. 2003; 85-A:8:15441552.
    [Google Scholar]
  73. Luo Q, Kang Q, Si W, Jiang W, Park JK, Peng Y, et al., Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004; 279:53:5595855968.
    [Google Scholar]
  74. Peng Y, Kang Q, Cheng H, Li X, Sun MH, Jiang W, et al., Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. Journal of cellular biochemistry. 2003; 90:6:11491165.
    [Google Scholar]
  75. Luo J, Tang M, Huang J, He BC, Gao JL, Chen L, et al., TGFbeta/BMP type I receptors ALK1 and ALK2 are essential for BMP9-induced osteogenic signaling in mesenchymal stem cells. J Biol Chem. 2010; 285:38:2958829598.
    [Google Scholar]
  76. Hu N, Jiang D, Huang E, Liu X, Li R, Liang X, et al., BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci. 2013; 126:Pt 2:532541.
    [Google Scholar]
  77. Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene therapy. 2008; 15:4:257266.
    [Google Scholar]
  78. Aslan H, Zilberman Y, Arbeli V, Sheyn D, Matan Y, Liebergall M, et al., Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng. 2006; 12:4:877889.
    [Google Scholar]
  79. Luther G, Wagner ER, Zhu G, Kang Q, Luo Q, Lamplot J, et al., BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Current gene therapy. 2011; 11:3:229240.
    [Google Scholar]
  80. Bosch P, Musgrave D, Ghivizzani S, Latterman C, Day CS, Huard J. The efficiency of muscle-derived cell-mediated bone formation. Cell transplantation. 2000; 9:4:463470.
    [Google Scholar]
  81. Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A, et al., Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. The Journal of bone and joint surgery American volume. 2001; 83-A:7:10321039.
    [Google Scholar]
  82. Lee JY, Peng H, Usas A, Musgrave D, Cummins J, Pelinkovic D, et al., Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogenetic protein 2. Hum Gene Ther. 2002; 13:10:12011211.
    [Google Scholar]
  83. Varady P, Li JZ, Cunningham M, Beres EJ, Das S, Engh J, et al., Morphologic analysis of BMP-9 gene therapy-induced osteogenesis. Hum Gene Ther. 2001; 12:6:697710.
    [Google Scholar]
  84. Li JZ, Hankins GR, Kao C, Li H, Kammauff J, Helm GA. Osteogenesis in rats induced by a novel recombinant helper-dependent bone morphogenetic protein-9 (BMP-9) adenovirus. The journal of gene medicine. 2003; 5:9:748756.
    [Google Scholar]
  85. Leblanc E, Trensz F, Haroun S, Drouin G, Bergeron E, Penton CM, et al., BMP-9-induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2011; 26:6:11661177.
    [Google Scholar]
  86. Zhu SF, Hu HB, Xu HY, Fu XF, Peng DX, Su WY, et al., Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med. 2015.
    [Google Scholar]
  87. Kim CW, Song H, Kumar S, Nam D, Kwon HS, Chang KH, et al., Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells. Arterioscler Thromb Vasc Biol. 2013; 33:6:13501359.
    [Google Scholar]
  88. Song JJ, Celeste AJ, Kong FM, Jirtle RL, Rosen V, Thies RS. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology. 1995; 136:10:42934297.
    [Google Scholar]
  89. Miller AF, Harvey SA, Thies RS, Olson MS. Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem. 2000; 275:24:1793717945.
    [Google Scholar]
  90. Xia Y, Babitt JL, Sidis Y, Chung RT, Lin HY. Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood. 2008; 111:10:51955204.
    [Google Scholar]
  91. Li Q, Gu X, Weng H, Ghafoory S, Liu Y, Feng T, et al., Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci. 2013; 104:3:398408.
    [Google Scholar]
  92. Wiercinska E, Wickert L, Denecke B, Said HM, Hamzavi J, Gressner AM, et al., Id1 is a critical mediator in TGF-beta-induced transdifferentiation of rat hepatic stellate cells. Hepatology. 2006; 43:5:10321041.
    [Google Scholar]
  93. Herrera B, Garcia-Alvaro M, Cruz S, Walsh P, Fernandez M, Roncero C, et al., BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells. PloS one. 2013; 8:7:e69535.
    [Google Scholar]
  94. Caperuto LC, Anhe GF, Cambiaghi TD, Akamine EH, do Carmo Buonfiglio D, Cipolla-Neto J, et al., Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. Endocrinology. 2008; 149:12:63266335.
    [Google Scholar]
  95. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, et al., A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004; 304:5675:13251328.
    [Google Scholar]
  96. Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, et al., An activating mutation of AKT2 and human hypoglycemia. Science. 2011; 334:6055:474.
    [Google Scholar]
  97. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, et al., Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001; 292:5522:17281731.
    [Google Scholar]
  98. Anhe FF, Lellis-Santos C, Leite AR, Hirabara SM, Boschero AC, Curi R, et al., Smad5 regulates Akt2 expression and insulin-induced glucose uptake in L6 myotubes. Molecular and cellular endocrinology. 2010; 319:1–2:3038.
    [Google Scholar]
  99. Bogaard HJ, Al Husseini A, Farkas L, Farkas D, Gomez-Arroyo J, Abbate A, et al., Severe pulmonary hypertension: The role of metabolic and endocrine disorders. Pulm Circ. 2012; 2:2:148154.
    [Google Scholar]
  100. Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. European journal of clinical investigation. 2013; 43:8:855865.
    [Google Scholar]
  101. Herrera B, van Dinther M, Ten Dijke P, Inman GJ. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res. 2009; 69:24:92549262.
    [Google Scholar]
  102. Ye L, Kynaston H, Jiang WG. Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Molecular cancer research: MCR. 2008; 6:10:15941606.
    [Google Scholar]
  103. Li B, Yang Y, Jiang S, Ni B, Chen K, Jiang L. Adenovirus-mediated overexpression of BMP-9 inhibits human osteosarcoma cell growth and migration through downregulation of the PI3K/AKT pathway. Int J Oncol. 2012; 41:5:18091819.
    [Google Scholar]
  104. Lv Z, Yang D, Li J, Hu M, Luo M, Zhan X, et al., Bone morphogenetic protein 9 overexpression reduces osteosarcoma cell migration and invasion. Molecules and cells. 2013; 36:2:119126.
    [Google Scholar]
  105. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, et al., Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem. 2011; 286:34:3003430046.
    [Google Scholar]
  106. Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, et al., Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med. 2010; 207:1:85100.
    [Google Scholar]
  107. Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci. 2010; 123:Pt 10:16841692.
    [Google Scholar]
  108. van Baardewijk LJ, van der Ende J, Lissenberg-Thunnissen S, Romijn LM, Hawinkels LJ, Sier CF, et al., Circulating bone morphogenetic protein levels and delayed fracture healing. International orthopaedics. 2013; 37:3:523527.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.47
Loading
/content/journals/10.5339/gcsp.2015.47
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error