Published March 8, 2024 | Version 0.1.0
Dataset Open

Infrastructure Climate Resilience Assessment Data Starter Kit for Bermuda

Description

This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

Hazards:

  • coastal and river flooding (Ward et al, 2020)
  • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
  • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

Exposure:

  • population (Schiavina et al, 2023)
  • built-up area (Pesaresi et al, 2023)
  • roads (OpenStreetMap, 2023)
  • railways (OpenStreetMap, 2023)
  • power plants (Global Energy Observatory et al, 2018)
  • power transmission lines (Arderne et al, 2020)

The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

  • snkit helps clean network data
  • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

References

  • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
  • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
  • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
  • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
  • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
  • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
  • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
  • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
  • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
  • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
  • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
  • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.

Notes

Funding

This research received funding from the FCDO Climate Compatible Growth Programme.

Disclaimer

The views expressed in this website do not necessarily reflect the UK government's official policies.

Files

BMU.zip

Files (10.0 MB)

Name Size Download all
md5:a85ab14238125feb973deef3b28e4a9a
10.0 MB Preview Download

Additional details

References

  • Arderne, Christopher; Nicolas, Claire; Zorn, Conrad; & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Data set]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI:10.5281/zenodo.3628142
  • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. Dataset. DOI:10.4121/12705164.v3
  • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. Dataset. DOI:10.4121/14510817.v3
  • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; http://resourcewatch.org/
  • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI:10.1029/2020EF001616
  • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
  • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at: https://global.infrastructureresilience.org
  • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, DOI:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
  • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Data set]. Zenodo. DOI:10.5281/zenodo.8147088
  • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030).European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, DOI:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
  • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: https://www.wri.org/publication/aqueduct-floods-methodology