Published January 25, 2024 | Version v2
Preprint Open

GeoH2 model: Geospatial cost optimization of green hydrogen production including storage and transportation

Description

This preprint presents GeoH2, a geospatial model that optimizes the cost of green hydrogen production, storage, transport, and conversion. This model calculates the cost of producing green hydrogen in a specified location to meet demand in another location by: (1) optimizing hydrogen conversion and transport from production site to demand site; and (2) optimizing green hydrogen production and storage based on spatially-specific wind and solar generation temporal availability. This method allows users to map production costs throughout a region to identify the lowest-cost location of green hydrogen production to meet demand using a specified end-state for transportation and storage (i.e., pressurized hydrogen, ammonia, or liquefied hydrogen). These modeled costs can be compared to current or projected prices for energy and chemical feedstock in the region to assess the cost-competitiveness of green hydrogen. The model is designed to run at a country or regional scale

Files

GeoH2_Method_Preprint_v2.pdf

Files (588.9 kB)

Name Size Download all
md5:5ec801bc15fc62e32322e5ce1975d95d
588.9 kB Preview Download

Additional details

Dates

Submitted
2024-01-25
Updated preprint uploaded and submitted for peer review.