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Abstract. Shallow snowpack conditions, which occur throughout the year in many regions as well as during accumulation 

and ablation periods in all regions, are important in water resources, agriculture, ecosystems, and winter recreation. 

Terrestrial and airborne (manned and unmanned) laser scanning and structure from motion (SfM) techniques have emerged 

as viable methods to map snow depths. Lidar on an unmanned aerial vehicle is also a potential method to observe field and 15 

slope scale variations of shallow snowpacks. This paper describes an unmanned aerial lidar system, which uses 

commercially available components, for snow depth mapping on the landscape scale. The system was assessed in a mixed 

deciduous and coniferous forest and open field for a shallow snowpack (< 20 cm). The lidar ground point clouds yielded an 

average of 90 and 364 points/m2 in the forest and field, respectively. Comparisons of snow probe and lidar mean snow 

depths in the field, at 0.4 m resolution, had a mean absolute difference of 0.96 cm and a root mean squared difference of 1.22 20 

cm. In the forest, the in situ mean snow depth was nearly twice that from the lidar from mean absolute difference of 9.6 cm 

and root mean squared difference of 10.5 cm. These differences in forests are likely due, in part, to limitations of sampling 

using a snow probe. At 1 m resolution, the field snow depth precision was consistently less than 1 cm. The forest and heavily 

vegetated areas had modestly reduced performance with typical values within 4 cm precision. Performance depends on both 

the point cloud density, which can be increased or decreased by changing the flight plan, and the within cell variability that 25 

depends on site surface conditions. 

1 Introduction 

In many regions, shallow snowpacks, i.e., snow depth less than 20 cm, are typical throughout the winter. Even in 

mountainous regions with deep seasonal snowpacks, snowpacks can be shallow and nonuniform during the accumulation 

and melt periods as well as in areas with high winds. Shallow snowpacks impact many hydrologic, agricultural, and 30 
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ecosystem processes.  Shallow snowpack characteristics effect the location and condition of suitable habitats in animal 

populations (Friggens et al., 2018). Meltwaters from shallow snowpacks can be a major contributor to streamflow and spring 

floods in many regions (Tuttle et al., 2017) and intensify overland nutrient transport and soil erosion (Seyfried et al.,  1990; 

Singh et al., 2009). Thin, ephemeral snowpacks allow the underlying soils to freeze more readily in the winter because they 

lack the insulating properties of deeper packs and the shallower snow’s higher albedo may increase deep-freezing (Starkloff 35 

et al. 2017). Soil frost severity impacts soil respiration, carbon sequestration, nutrient retention, and microbial communities 

as well as a plant root health and tree growth (Aase and Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 2006; 

Henry, 2008; Aanderud et al., 2013; Tucker et al., 2016; Sorensen et al., 2018; Reinmann and Templer, 2018). When the 

frozen soils impede meltwater infiltration, flooding and erosion may increase (Watanabe and Osada, 2016). Winter 

recreation is also affected by shallow snowpacks. In some regions, minimum snow depth restrictions for recreational 40 

activities are required (e.g., 30.5 cm for snowmobiling on US Forest Service lands) or being considered to reduce impacts to 

sensitive ecosystems (Hatchett and Eisen, 2019).  

 

Shallow snowpacks are highly dynamic, accumulating and ablating throughout the winter with associated changes in 

snowpack density, grain size, and albedo (Adolph et al., 2017) as well as ice formation. Wind redistribution, sloughing of 45 

snow off slopes, trapping of snow by vegetation, and forest canopy interception also result in a range of spatial features at 

varying scales (Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). These variations cause shallow snowpacks to more 

readily ripen during winter rain events and warmer air temperature than deeper snowpacks (Wever et al., 2014) and, in 

combination with the transport and refreeze of meltwaters (Watanabe and Osada, 2016) make modeling and mapping of 

shallow snowpacks extremely challenging (Hall et al., 2010; Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite 50 

their prevalence, complexity, and importance, shallow snowpacks have received relatively little attention for measurement, 

modelling, and mapping efforts. 

 

Because shallow snowpacks have considerable spatiotemporal variability, a large number of snow depth measurements are 

often needed to characterize the snowpack (Dickinson and Whiteley, 1972). Using traditional point measurements with its 55 

limited sample size requires a balance between the sampling extent and sample spacing; this impacts the ability to capture 

spatial variability that naturally increases with spatial scale as compared to capturing small-scale spatial structures (Clark et 

al. 2011). Over the past two decades, airborne remote sensing methods, providing spatially continuous, high-resolution snow 

depth maps at local and regional scales, have greatly advanced the ability to characterize the spatiotemporal variability of 

snow depth over earlier work using snow probes (see reviews in Deems et al., 2013; López-Moreno et al., 2017). Airborne 60 

laser scanning (ALS) (Deems et al., 2013; Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser scanning (TLS) 

(Grünewald et al. 2010; Currier et al. 2019), and structure-from-motion photogrammetry (SfM) (Nolan et al., 2015; Bühler et 

al., 2016; Harder et al., 2016) have emerged as viable methods to map surface elevations with snow-off and snow-on 

conditions in order to differentially map snow depths.  
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ALS and TLS both rely on well-established lidar (light detection and ranging) technology. TLS, applied from a fixed ground 

position, is able to measure snow depth with high vertical accuracy (Fey et al., 2019), and has the advantage of being 

relatively low-cost and portable, making repeat observations possible. However, TLS uncertainties are caused by large 

incident angles, occlusion from hills and trees that can cause data gaps in forested domains (Currier et al., 2019; Palace et al., 

2016), and challenges providing a stable scanner position for the tripod in snow-on conditions (Schweizer et al., 2003). ALS 70 

technology such as that deployed on the Airborne Snow Observatory (ASO) (Painter et al., 2016) has the advantage of being 

able to cover large areas, but it is extremely expensive and has limited availability, which impacts its use for most studies. 

ALS also has issues with observation gaps in forested regions (Broxton et al., 2015; Currier and Lundquist, 2018; Mazzotti 

et al., 2019) but possibly to a lesser extent than TLS (Currier et al., 2019). For shallow snowpacks, the typical vertical 

accuracies from these platforms, on the order of 10 cm (Kraus et al., 2011; Deems et al., 2013), as well as relatively low 75 

return density (~10 returns/m2) (Cook et al., 2013) are not adequate to observe spatial variations from micro to field scales of 

shallow snowpacks.  

 

SfM can create a digital surface model (DSM) from photographs taken using a standard consumer-grade digital camera.  

When deployed on an unmanned aerial system (UAS) platform, SfM is a low cost method that has the capacity for routine 80 

snow depth monitoring (Adams et al., 2018; Bühler et al., 2016; De Michele et al., 2016; Harder et al., 2016; Vander Jagt et 

al., 2015). Reported accuracies range from 8 to 30 cm using UAS SfM (Adams et al., 2018; Bühler et al., 2016; Goetz and 

Brenning, 2019; Harder et al., 2016; Meyer and Skiles, 2019). The primary drawbacks of UAS SfM as compared to lidar for 

mapping snow depth are that the DSM needs to be georeferenced using ground control points (GCPs) with known 

coordinates and may require significant manual steps (Tonkin et al., 2016; Meyer and Skiles, 2019), although new 85 

techniques are emerging that may reduce field data collection time (Gabrlik et al., 2019; Meyer and Skiles, 2019). Dense 

canopy or vegetation can reduce performance when snow compresses the vegetation relative to the snow-off imagery or 

when above-canopy vegetation is falsely interpreted to be the snow surface (Bühler et al., 2017; Cimoli et al., 2017; De 

Michele et al., 2016; Fernandes et al., 2018; Harder et al., 2016; Nolan et al., 2015). Canopy effects impact SfM snow 

mapping capability in regions where shallow snowpacks are masked by dense forest canopies like the northeastern United 90 

States.   

 

UAS-based lidar has been widely used in forest-related research (e.g. canopy height and forest change detection) (Wallace et 

al., 2012; 2014) and appears to offer the advantages of both the UAS SfM and lidar for snow depth mapping. A UAS 

platform also eliminates many of the drawbacks that arise from ALS and TLS systems discussed earlier. However, to date 95 

there are few previous studies that estimate snow depth using UAS-based lidar (Vander jagt et al., 2013).  The purpose of 

this paper is to assess the ability of a UAS platform to provide snow depth using a modest cost UAS-based lidar. The pilot 

study described here serves as a proof-of-concept for shallow snowpack dataset production in open terrain and forests in the 
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northeastern United States. The study highlights results from the 2019 winter season that provide insights as to the potential 

for UAS lidar mapping of snow depth as well as details about the system, its deployment and operational challenges. We 100 

explore the capability of UAS through the comparison of contemporary field-based snow depth measurements collected in a 

landscape containing fields and forests. 

 

 
Figure 1. 2015 imagery of Thompson Farm, Durham NH showing both forest and field region with lidar flight lines (top). Ground 105 
imagery (a to f), collected in December 2019, locations are noted on the top map and show the surface and leaf off forest conditions 
(bottom panels).  
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2 Site, Data, and Methods 

2.1 Site 

The test flights were conducted at the University of New Hampshire Thompson Farm Research Station in southeast New 110 

Hampshire, United States (N 43.10892°, W 70.94853°, 35 m above sea level), which was chosen for its mixed hardwood 

forest and open field land covers (Burakowski et al., 2015; Burakowski et al., 2018) that are characteristic of the region 

(Figure 1). Thompson Farm has an area of 0.83 km2 and little topographic relief (18 to 36 m ASL) (Perron et al., 2004). The 

agricultural fields are actively managed for pasture grass. The mixed deciduous and coniferous forest is composed primarily 

of white pine (Pinus strobus), northern red oak (Quercus rubra), red maple (Acer rubrum), shagbark hickory (Carya ovata), 115 

and white oak (Quercus alba) (Perron et al., 2004). There are two “wood roads” that run north-south through the pasture and 

into the western forest section. 

2.2 UAS Laser Scanning 

A series of UAS lidar surveys were conducted over approximately a 0.1 km2 (9.8 hectares) area (430 by 225 m) within the 

farm during the winter 2018/2019 (Figure 1). Here, we focus on the snow-on flight conducted on January 23, 2019 and the 120 

snow-off flight conducted on April 11, 2019. We selected the January 23 flight because it had snowed approximately 11.5 

cm with 1.8 cm of snow water equivalent from January 19th to January 20th and the air temperature was persistently below 

freezing prior to the flight. For the April 11, 2019 snow-off flight, the deciduous component of the canopy and understory 

were both dormant.   

 125 

We used an Eagle X8 UAS manufactured by UAV America, which carried a small, light-weight (590 g) VLP-16 lidar 

(Velodyne, Inc.) suitable for UAS deployment. The VLP-16 is a 16-channel lidar with a 30-degree field of view with 

rotating lasers that are spaced evenly between -15 to +15 degrees, with each channel rotating 360-degrees. The VLP-16 

collects up to 300,000 points per second with an accuracy of +/- 3 cm at a range of 100 m. Flights were conducted to 

maximize spatial coverage while conserving batteries due to limited flight time with the Eagle X8 (approx. 9 minutes flight 130 

time to discharge to 3.6 V per cell). Automated flights were conducted using UgCS flight planning software. Because of the 

limited flight time, flights were conducted at an altitude of 81 m for greater spatial coverage and our flight plan included 

multiple return flight lines for the three battery exchanges (Figure 1). Our flight speed was 7 m/s, with a total of 12 parallel 

flight lines with targeted overlap of 40 percent. Because of degrading accuracy at distances >100 m with the VLP-16, returns 

acquired outside of +/- 30 degrees of nadir view angles were filtered to limit target distance and improve overall accuracy. 135 

 

The payload is equipped with an Applanix APX-15 UAV inertial navigation system (INS), which has 2-5 cm positional, 

0.025-degree roll and pitch, and 0.08-degree true heading uncertainties following post-processing. The INS has a 
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measurement rate of 200 Hz, allowing for a timestamp to associate each lidar pulse with the closest data for latitude, 

longitude, altitude, and perspective information (roll/pitch/yaw), which is required for georeferencing returns.  140 

 

Data were post-processed to a Smoothed Best-Estimate Trajectory (SBET) file using POSPac MMS, resulting in 

approximately 3 cm positional accuracy for both the snow-on and snow-off flights. Lidar returns were matched to post-

processed INS data and georeferenced using Headwall Photonics, Inc.’s Lidar Tools software. We performed boresighting 

calibration using returns from the first two flight lines that were collected in antiparallel directions. Roll offset was 145 

determined using 10 m cross sections along the flight lines over flat terrain, and pitch offset was determined using 1 m cross 

sections across the flight lines over terrain with moderate relief. Resulting LAS point clouds were generated for the entire 

study area and projected in WGS84 UTM Zone 19N (EPSG 32619). Our flight and filtering parameters of the raw point 

cloud resulted in return densities of approximately 150 returns/m2 for each of the two flights.  

2.3 Lidar Classification and Gridding 150 

Three-dimensional point clouds were classified as ground and non-ground points using the progressive morphological filter 

algorithm (PMF), in the lidR package (https://github.com/Jean-Romain/lidR) of R (v. 3.4, Team, 2018). The PMF operates 

iteratively on sets of two parameters, window size (w) and elevation thresholds (th) to erode and dilate point cloud data sets 

to estimate surface topography as a means to filter out non-ground returns from point cloud data sets (Zhang et al., 2003). 

For ground classification, point clouds were chunked into 100 m square tiles with a 15 m buffer on all sides using catalog 155 

options in lidR to ensure returns near tile edges were classified. Processing was distributed across 8 computing cores to 

improve efficiency. We used a set of window sizes of 1, 3, 5, and 9 m, and elevation thresholds of 0.2, 1.5, 3, and 7 m, which 

were determined by varying value sets and assessing DTMs to determine the parameter sets that produced a visually smooth 

surface over a dense grid (in sensu Muir et al., 2017). Following processing, buffers were removed, and tiles were merged to 

output final classified point clouds for each data set. Snow-on and snow-off ground point clouds were gridded at 0.1, 0.2, 160 

0.4, 0.5, and 1.0 m spatial resolutions using the average of all grid points within each grid cell (Currier et al., 2019). Gridded 

products for each data set were forced to the same coordinate grid. 

2.4 Snow Depth Ground Truth  

A 1.2-m Global Positioning System (GPS)-equipped Magnaprobe (Sturm and Holmgren, 2018) was used to compare to the 

unmanned aerial system (UAV) lidar surveys (hereafter noted as ALS measurements) over two transects. The first transect 165 

consisted of 12 sample locations in the field and 5 locations in the eastern forest of our study site. The second transect 

consisted of 11 sample locations in the western forest.  Sample locations were separated by approximately 10 m. Each 

sample location includes 5 samples in a cross pattern with the four ordinal directions sampled approximately 20 cm from the 

center sampling location in the cross. Because the magnaprobe GPS has an absolute accuracy of 8 m, a Trimble© Geo7X 

GNSS Positioning Unit with Zephr™ antenna was used to collect each sampling location’s center point with an estimated 170 
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horizontal uncertainty of 2.51cm (standard deviation 𝜎 0.95 cm) and 4.17cm (σ 4.60 cm) for the field and forest, respectively 

after differential correction. Along the same forest and field transects, a federal snow sampler was used to collect a single 

sample of snow depth and snow water equivalent at each location.  

2.5 Snow Depth Uncertainty Assessment 

The snow depth accuracy was assessed by comparing the lidar snow depth measurements to the magnaprobe measurements. 175 

Error statistics were calculated and the results were summarized by forest and field locations. At each magnaprobe location, 

the average and standard deviation of the five magnaprobe samples were calculated. The average lidar snow depth was 

determined for a 0.4 x 0.4 m cell centered on the center magnaprobe location.  The mean absolute difference (MAD) and 

root mean square difference (RMSD) were used to characterize the differences between the magnaprobe snow depths and the 

lidar snow depths. 180 

 

The uncertainty of the lidar estimate of the snow depth mean value was calculated for each cell as the one-sided 95% 

confidence interval of the snow depth. A cell’s snow depth pooled standard deviation 𝜎! of the snow on and snow off 

elevations was calculated as  

𝜎! = 𝜎!"! + 𝜎!""!              (1) 185 

where 𝜎!" and 𝜎!"" are the standard deviation of the snow-on and snow-off lidar return elevations, respectively. The snow 

depth uncertainty was combined with the number of lidar returns and the pooled degrees of freedom (Helsel and Hirsh, 

1992) to calculate the one-sided width of the 95% confidence limits for each cell.  

3 Results and discussion 

3.1 Snow Depth Survey 190 

The snow-on and snow-off flights lidar ground returns yielded an average point cloud density of 90 and 364 points/m2 in the 

forest and field, respectively, with 6.7% of the forest and 0.03% of the field cells having less than 5 point/m2 (Figure 2). 

There is a wide range of the point cloud densities (Figure 2b). The highest point cloud density occurred for those cells 

sampled by both the regular flight lines and the multiple return flight lines conducted for the three battery exchanges. The 

vast majority of field cells (82%) have more than 100 points/m2. Only 1% of the field cells had less than 25 points/m2 and 195 

most of those cells were in shrubbery or dense vegetation surrounding the small water body. In contrast, 41% of the forest 

cells had more than 100 points/m2 and nearly 20% of the forest cells had less than 25 points/m2 with 8% having fewer than 

10 points/m2 (Figure 2b). Only 0.086% and 0.95% of the 1 m resolution field and forest cells, respectively, had no ground 

returns. The number of points per cell decreases with decreasing the cell size (Figure 2a). In the field, reducing the gridded 

resolution from 1 m to 0.5 m lowers the mean cell return count to 91 points per cell on average. Thus a 0.5 m field cell has 200 
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approximately the same number of returns as a 1 m forest cell. At a 0.2 m spatial resolution, the mean number of ground 

returns is 14.6 and 3.6 in the field and forest, respectively.  

 

 
Figure 2. (a) Average lidar point cloud density of the ground returns with versus cell size by land cover, and snow-on and snow-off state 205 
(top). (b) Probability density function for the lidar ground returns point cloud density for 1 m2 cell for the forest (gray) and the field 
(hashed) (bottom). 

 

3.2 Snow Depth 

Based on the magnaprobe snow depth and UAS-mapped snow depth measurements, the accuracy of lidar snow depth 210 

measurements differed between field and forest cells (Figure 3). In the field, the mean snow depth from the magnaprobe 

(12.2 cm ±0.56 cm) was only slightly greater than that from the lidar (11.2 cm ± 0.72 cm) and the MAD and RMSD values 

were 0.96 cm and 1.22 cm, respectively. In the forest, the mean snow depth from the magnaprobe (15.2 cm ± 2.3 cm) was 

twice as large as the lidar snow depths (7.8 cm± 6.3) and the MAD and RMSD were 9.6 cm and 10.5 cm, respectively. The 

mean snow depth from the snow tube was (12.9 cm ±0.71 cm) and (13.1 cm ±1.9 cm) in the field and forest, respectively. 215 

There is a notable low bias in the lidar forest snow depth relative to the magnaprobe and snow tube for west forest in 

particular with exception of one site.  

3.3 Snow Depth Maps  

The UAS-mapped snow depth, mapped by subtracting snow-off DTMs from snow-on DTMs, reveals a shallow snowpack 

whose depth ranges from less than 2 cm to over 18 cm (Figure 4). The mean snow depth was 10.3 cm in the field and 6.0 cm 220 
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in the forest. Despite the shallow conditions, spatially coherent patterns are readily discernible. The field snowpack depth has 

higher spatial variability than the west forest snowpack and more spatial organization. In the field, the deepest snow is in the  

 

 

Figure 3. Comparison between the magnaprobe (gray fill) and snow tube (black fill) versus the lidar snow depth measurements by 225 
location. The mean and 95% confidence intervals were calculated using the five magnaprobe snow depths and the lidar snow depths 
averaged over a 0.4 x 0.4 m grid cell.  The single snow tube snow depth measurement is shown without confidence intervals. 

 

low-lying northeast areas that are sheltered from westerly winds. A relatively moderate and consistent snowpack occurs in 

southern part of the east field and west of the small pond. The shallowest snowpack is found in the center portion of the 230 

field, which is slightly elevated and, unlike most of the field, was not mowed. Lower snow depth at the forest edge 

distinguishes the field to forest transition. In the field, the precision of the mean snow depth estimate is remarkably 

consistent with one-sided confidence interval values typically between 0.5 to 1 cm regardless of snow depth (Figure 4). 

Modestly higher intervals occur adjacent to the north-south road where the fields were not mowed prior to winter as well as 

the northern and southern extents of the flight lines due to the reduced sampling density. The average one-sided confidence 235 

interval is considerably higher in the forest (3.5 cm) than the field. Where the forest is predominantly comprised of 

deciduous trees, the typical one-sided confidence interval of the mean snow depth is 1 to 2 cm. The largest one-sided 

confidence interval values occur in the middle of the field where there is dense shrubbery, at the edge of the fields, and in 

clusters within the forest where the forest sections are dominated by coniferous trees.  
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 240 

 

Figure 4. Average snow depth values (top) and one sided confidence intervals (bottom) calculated from the snow-on and snow-off lidar 
point clouds for 1 m2 cells at Thompson Farm, Durham, NH on January 23, 2019. 
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3.4 Point Cloud Density and Spatial Resolution  

Snow depth precision was examined in light of the point cloud density and the spatial resolution at which lidar returns were 245 

aggregated. The ability to precisely estimate mean snow depth of a 1 m2 area increases dramatically as the lidar point cloud 

density increases (Figure 5a). Except for the cells with fewer than 10 point/m2, forest cells have less precise estimates of the 

mean depths than field cells for a given sample size. When the density exceeds 25 point/m2 in the field and 50 point/m2 in 

the forest, precision is typically 2 cm. The cells with the highest point cloud densities have one-sided confidence intervals of 

about 1 and 1.5 cm for the field and forest cells, respectively. The field cells with more than 50 point/m2 did not have 250 

noticeably smaller confidence intervals, but the increased density did reduce the number of cells with anomalously low 

precision. Given the high lidar point cloud density for the field cells, it is possible that reasonably precise estimates of snow 

depth can be made at scales finer than 1 m (Figure 5b). 

 

 255 

Figure 5. One sided confidence intervals of the mean snow depth values in the field and forest at Thompson Farm, Durham, NH on 
January 23, 2019 from the individual cells for 1 m2 cells by land cover and point cloud density (top) and for grid resolutions ranging 0.1 to 
5 m (bottom). Boxplots show the lower quartile, median, upper quartile, and whiskers. 
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In addition to the lidar point cloud density, the ability to precisely capture the snow depth also depends on the within cell 260 

variability.  For this site and its shallow snowpack, the local scale variability of the ground surface elevation was estimated 

by calculating the standard deviation of the lidar elevation values and found to depend primarily on the cell size and, to a 

more limited extent, on land cover and snow cover (Figure 6a). Within the 1 m grid cells, snow depth variability was much 

lower in the field than the forest (Figure 6b). Both distributions had a positive skew. Typical standard deviations of the lidar 

surface elevation values within a 10 cm cell are on the order of 1.5 and 2 cm for the field and forest, respectively. That 265 

variability doubles for a 20 cm cell. The within cell variability increases gradually to about 3 to 4 cm in the field, and to 

about 6 cm in the forest. Snow cover reduces the within cell variability in field cells by about 1 cm, but has limited effect in 

the forest.  

 

Thus, precision largely depends on the point per cell in the lidar cloud because the standard deviation of a cell’s surface 270 

elevation is relatively constant for spatial scales from 0.5 to 1 m (Figure 6a).  In the field, reducing the cell size from 1 m to 

0.5 m still yields about 100 points/m2 and provides snow depth estimates within  +/- 1.5 cm.  Because the forest cells require 

a higher ground return density to capture these snow depths within a 1 cm precision, any reduction in cell size below 1 m 

greatly decreases the precision of the cell mean snow depth.  

 275 

 
Figure 6. Lidar surface elevation standard deviations by cell size and land cover (top). (b) Probability density function of the pooled snow 
depth standard deviation for each 1 m2 cell in the forest (gray) and field (hashed) (bottom). 
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4. Challenges and Recommended Improvements to UAS Lidar Snow Depth Mapping 280 

Despite UAS-based lidar’s increasing use in the natural sciences and capacity to make high resolution snow maps, there are 

many operational and technical challenges that require consideration prior to successfully conducting UAS-based lidar 

surveys that produce research grade data for snow hydrology. Large UAVs and supporting software analysis tools can be 

expensive and require trained pilots and lidar data analysis specialists. In this section, we present some preliminary insights 

regarding the deployment of a lidar sensor on a UAV for snow depth mapping. 285 

 

Because larger UAVs that can carry heavier payloads have challenges that may differ from small UAVs, a well-formulated 

flight plan is critical. Flight planning should address weather conditions, logistics of flying at proposed site, flight lines, UAS 

equipment, and personnel. Protocols should be developed and used consistently for each step of flight planning. Weather 

conditions influence the safety and success of a UAS survey. UAS should not be operated when there is any type of 290 

precipitation or in dense fog/clouds. Moisture can cause electronic components to malfunction. Moisture build-up on the 

propellers can also adversely affect lift production. This project’s Eagle X8 high lift capacity UAS cannot be flown 

comfortably in winds greater than 7.8 m/s. High wind speeds can also significantly reduce battery life as well as impact the 

accuracy of sensor observations. Cold air temperatures can cause batteries to rapidly discharge. For winter UAS surveys, all 

flight and operational batteries should be kept warm prior to the UAS survey. This also applies to the computer used to 295 

upload flight lines and relay telemetry information. A MIL-STD-810 certified Panasonic Toughbook was used in this study 

to handle the anticipated cold temperatures. Additionally, cold temperatures can severely limit the dexterity of the person 

manipulating the flight controls. Proper gloves/clothing are required to effectively operate the flight controls in cold weather. 

  

High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant damage to person and 300 

property. The selection of a survey site not only needs to meet the objectives of the UAV survey, but also must have the 

proper attributes for safe and legal UAV operation. It is important that permission to operate the UAV at the site has been 

granted and that the land owner/public is aware of the UAV survey operations. Visual line of sight (VLOS) of the UAV 

needs to be maintained throughout the flight. It can be difficult to maintain VLOS while flying over forested or mountainous 

sites. Spotters can be used if there is constant two-way communication between the spotters and the person operating the 305 

flight controls. For this study, an on-site, walk up tower allowed a spotter to maintain VLOS while the UAV was flown over 

the forest. Two-way communication was maintained throughout the flight. 

  

In the first season, the project team experienced more than one situation that required the pilot to manually land the UAV. 

Flying using first person view (FPV) by an experienced pilot is highly recommended for a UAS platform that is capable of 310 

handling large payloads such as this study’s VLP-16 lidar. If an emergency occurs and the UAS needs to land as quickly as 

possible, FPV will help the pilot to orientate the UAV, safely land, and limit damage to the payload. For this study, the UAV 
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was equipped with low quality linearly polarized FPV antennas. The FPV signal was easily lost as the orientation of the 

drone relative to the base station changed. The FPV signal was also not able to penetrate the forest. Circular polarized FPV 

antennas are generally recommended for drones because they are not affected by transmitter/receiver orientation changes and 315 

are better at avoiding obstacle interference. 

 

The deployment of a lidar system mounted on a UAV platform for snow depth monitoring requires flight patterns designed 

for bore sighting alignment and post-processing to ensure that point clouds are aligned (Painter et al., 2016). Provided that 

GNSS data are accurate, the most common reason for misalignment of point clouds is boresight angle errors (Li et al., 2019). 320 

Traditionally, boresighting calibration is performed using antiparallel flight lines and a perpendicular flight line to calculate 

IMU offsets (Keyetieu and Seube, 2019). Due to battery flight time limitations, we were unable to complete the flight pattern 

that is commonly used for boresighting alignment. Because of this, we leveraged our first two antiparallel flight lines for 

boresighting calibration. To determine roll offset, we used broad (10 m) along-path cross-sections over flat terrain, and to 

determine pitch offset we used narrow (1 m) across-path cross-sections in sloped terrain where the point clouds overlapped 325 

(Figure 7). Though not shown here, we additionally leveraged unique features within our data acquisition region, including 

barn roofs and deciduous tree branches to assess the resulting boresight angles (Kumari et al., 2011; Li et al., 2005). For this 

particular study, we performed boresight calibration manually. Methods often require extensive user input (Li et al., 2005), 

however boresight calibration is an increasingly automated process with wide variation in algorithms and approaches (e.g. 

Maas, 2000; Kumari et al., 2011; Zhang et al., 2019). In future work, we plan to explore automated boresight calibration 330 

methods to improve the accuracy of point cloud data sets. 

 

While lidar calibration and data post-processing requirements are quite similar for UAS and airborne surveys, lidar surveys 

by the UAS platform deployed in this study have key differences from previous ALS surveys. A limitation noted above is 

that the UAS flight duration is considerably shorter causing the spatial extent to be much more limited than previous ALS 335 

snow depth surveys.  An advantage is that the UAS’s average point cloud density is much higher and has fewer missing 

pixels in the forest than previous ALS surveys. This study had ground returns of 90 and 364 points/m2 in the forest and field, 

respectively, and had no ground returns in only 0.086% and 0.95% of the 1 m resolution field and forest cells, respectively. 

In contrast, ALS surveys typically report surface model densities between 8 to 16 points/m2 (Broxton et al., 2015; 2019; 

Currier et al., 2019; Kirchner et al., 2014) and ground returns between 3 and 6 points/m2 (Broxton et al., 2019; Kirchner et 340 

al., 2014). ALS derived snow depth maps have a much greater proportion of areas that are masked due to no ground returns, 

particularly under trees, with masking areas ranging from less to 10% to more than 23% (Harpold et al., 2014; Mazzotti et 

al., 2019). While gap filling is possible, interpolation using measured snow depth values to fill under tree can overestimate 

snow depth (Zheng et al., 2016). 
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 345 
Figure 7. Uncalibrated boresight angles between the INS and lidar sensor can result in poorly aligned point clouds (A top and B top). Roll 
offsets present as crossed planes of data acquired from anti-parallel flight lines and are most clearly observed over flat terrain (A), while 
pitch offsets typically present as crossed planes of data acquired from perpendicular flight lines. Following boresight calibration, point 
clouds aligned well in both directions (A bottom and B bottom). 
 350 

While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial resolutions, validation of 

those observations is challenging. A time consuming collection of high accuracy GNSS survey points was required to co-

locate magnaprobe and lidar observations. Surveying in sample locations prior to the winter season might reduce this effort. 

It is also challenging to make in situ snow depth measurements that provide centimeter accuracy. In this study, the 

magnaprobe in situ snow depth observations made in the forest were considerably higher than the lidar observations as 355 

compared to the open field where the magnaprobe and lidar measurements were within 1 cm. Previous studies also found 

that snow depth observations from ALS measurements are biased lower than those from snow-probe observations in the 

forest (Currier et al., 2019; Hopkinson et al., 2004). The cause of these differences is attributed to the snow probe’s ability to 

penetrate the soil and vegetation, human observers tending to make snow depth measurements in locations with relatively 

high snow (Sturm and Holmgren, 2018) and the reduced accuracy of the GNSS. Sturm and Holmgren (2018) indicate "The 360 

degree of penetration below the snow base is highly dependent on the nature of ground. For snow over sea, lake, or river ice, 

penetration is virtually zero and recorded depths are accurate to better than +0.1 cm. Over hard soils, rocks, and vegetation 

wetted in the fall and then frozen, the depth accuracy is nearly as high."  In this study, the cold temperatures and no snow 
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conditions prior to the January 19th and 20th snowfall event resulted in deeper frozen soils (23.5 to 25.5 cm) in the field and 

thinner soil frost layers (5.5 to 8.5 cm) in the west forest, which would have limited the probe penetration into soils at both 365 

sites. However, the forest has a 1-4 cm thick loose leaf litter layer that may have been penetrated by the magnaprobe. The 

snow tube depths were not as deep as the magna probe and more closely match the lidar snow depth, further supporting that 

“over-probe” by the magnaprobe is responsible for the forest snow depth differences. A simple penetration test under similar 

snow depth and soil frost conditions revealed that the probe penetration into soil and leaf litter ranged from 0 to 10 cm, 

averaging 5 cm over-probe bias over ten sample locations in the forest.   370 

5. Conclusions 

This paper describes and demonstrates a UAV lidar system for snow depth mapping using commercially available 

components. The UAS was assessed in a mixed deciduous and coniferous forest and open field with little relief. The UAS 

includes an Eagle X8 UAV manufactured by UAV America, a small, light-weight (590 g) VLP-16 lidar (Velodyne, Inc.), 

and an Applanix APX-15 UAV inertial navigation system (INS). The INS has a measurement rate of 200 Hz, allowing 375 

returns to be georeferenced without additional ground control points. Data, post-processed to a Smoothed Best-Estimate 

Trajectory (SBET) file, resulted in approximately 3 cm positional accuracy. Flights were conducted at an altitude of 81 m 

and flight speed of 7 m/s, with a total of 12 parallel flight lines with targeted overlap of 40 percent. Once the point clouds 

were classified as ground and non-ground points, the flights yielded an average of 90 and 364 ground points/m2 in a forest 

canopy and field, respectively, with 6.7% of the forest and 0.03% of the field cells having less than 5 point/m2.   380 

 

The snow depth map, generated by subtracting snow-off from snow-on DTMs derived from the resultant point clouds, 

reveals a shallow snowpack whose depth ranges from less than 2 cm to over 18 cm. For 0.4 x 0.4 m cells, the in situ and lidar 

mean snow depths in the field were nearly identical with the MAD and RMSD values of approximately 1 cm. In the forest, 

the in situ mean snow depths from a magnaprobe were twice as large as the lidar snow depths with a correspondingly high 385 

RMSD. These forest differences, which appear to be caused by the snow probe’s ability to penetrate the soil and vegetation 

resulting in random errors, support previous findings indicating that there are limits to lidar snow depth validation at high 

horizontal and vertical spatial resolutions in some land covers and conditions.  Mapped at 1 m2 cells, a 0.5 to 1 cm snow 

depth precision was achieved consistently in the field with modestly reduced accuracy in the forest and heavily vegetated 

areas. In the field, snow depth can be mapped at finer spatial resolutions with limited reduction in performance when 390 

reducing the cell size to 0.5 x 0.5 m and still achieving snow depth precision of less than 5 cm for a 0.2 x 0.2 m. Performance 

depends on both the point cloud density, which can be increased or decreased by changing the flight plan, and the within cell 

variability that depends on site surface conditions. 
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