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Abstract. Agroecosytem models, regional and global climate models, as well as numerical weather prediction models 

require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and 

predicting water and energy exchange processes at the transition zone between solid Earth and Atmosphere, and regulate 10 

evapotranspiration, infiltration, and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and 

hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling 

of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial 

averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, 

bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and 15 

soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global 

data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling that fits the parameters of 

the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the 

same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling 

parameters. Based on the Mualem van Genuchten approach we also derive the unsaturated hydraulic conductivity from the 20 

water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the 

Miller-Miller scaling parameter , information on global sub-grid scaling variance is given that enables modellers to improve 

dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output 

generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set 

of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at DOI:10.1594/PANGAEA.870605 25 

(DOI registration in progress, so far the data can be accessed under https://doi.pangaea.de/10.1594/PANGAEA.870605). 
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1 Introduction 

Hydraulic properties have fundamental importance in the description of water, energy and carbon exchange processes 

between the land surface and the atmosphere (e.g. Ek and Cuenca (1994), Xue et al. (1996)). Therefore, agroecosystem 

models (e.g. SWAP; van Dam et al. (2008)) and land surface models (LSMs; see below) require adequate parameterization 

of soil hydraulic properties, i.e., more specificly, the water retention curve (WRC) and the hydraulic conductivity curve 5 

(HCC). These properties regulate the relative magnitude of water balance fluxes such as evapotranspiration, infiltration and 

surface and sub-surface runoff (Vereecken et al., 2016), and thus the amount of water held in the soil at any one time. As 

well as affecting the water balance components, they also play a role in the land surface energy balance; directly via their 

effect on latent heat flux (evapotranspiration, e.g. via available soil water influencing plant water stress, see Verhoef and 

Egea (2014)), and indirectly because the size of the evapotranspiration co-determines land surface temperature, that in turn 10 

affects net radiation, sensible heat flux and soil heat flux (the latter is affected also via soil moisture dependency of soil 

thermal properties). With regards to the carbon balance, photosynthesis and soil respiration both strongly depend on soil 

moisture content and hence implicitly on choice of soil hydraulic models and their parameters.   

State-of-the-art LSMs, e.g., NOAH (Niu et al., 2011), CLM (Oleson et al., 2008), VIC (Liang et al., 1994), JULES (Best et 

al., 2011) and ORCHIDEE (Ngo-Duc et al., 2007) are key components of regional and global climate models 15 

(RCMs/GCMs) and numerical weather prediction models (NWPMs). They form important components of reanalyses (e.g. 

ERA-Interim/Land; Balsamo et al. (2015)) and model-data assimilation systems, such as the NASA Land Information 

System (LIS) or the Global Land Data Assimilation System (GLDAS; Rodell et al. (2004)). LSMs solve Richard´s equation 

for the water flow in the saturated/unsaturated zone. A fundamental problem is the adequate parameterization of the water 

retention and hydraulic conductivity function to solve Richard´s equation. At point scale, a broad suite of experimental 20 

methods are available that allow measuring the WRC and HCC. These measurements are however expensive and time 

consuming, and often comprise intensive field sampling campaigns. Alternatively, parameters of the WRC and HCC can be 

estimated from in-situ or remotely sensed data in combination with parameter estimation techniques (Scharnagl et al., 

2011;Bauer et al., 2012;Dimitrov et al., 2014;Jadoon et al., 2012;Montzka et al., 2011). At larger scales, such as those where 

RCMS and GCMs are employed, the WRC and HCC are impossible to estimate (because underlying soil properties vary 25 

widely within grid cells) and are unobtainable by direct measurements.  

To overcome this problem, the estimation of the required soil hydraulic properties is usually based on pedotransfer functions 

(PTFs) that use simple soil properties such as texture, organic matter, and bulk density to derive the parameters of 

mathematical equations that describe the HCC and the WRC (Vereecken et al., 2010). The idea behind PTFs is that more 

easily available soil data such as soil texture, soil organic carbon content, or bulk density can be used to predict the hydraulic 30 

parameters for the WRC and HCC. In the last three decades, soil scientists have developed a broad suite of PTFs that differ 

with respect to the parameterizations of soil hydraulic properties for which they are used, the type of soil properties needed 

as inputs to derive the model-dependent parameters, and their spatial patterns. PTFs were developed for the prediction of 
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parameters used in the Campbell (1974) family of hydraulic functions (e.g., Clapp and Hornberger (1978)), Brooks and 

Corey (1964) (e.g., Rawls and Brakensiek (1985)), and Mualem van Genuchten equations (e.g., Rawls and Brakensiek 

(1985); Vereecken et al. (1989); Scheinost et al. (1997); Wösten et al. (1999); Weynants et al. (2009); Toth et al. (2015)). 

Bouma (1989) distinguished between two types of PTFs, namely continuous and class type PTFs. Continuous PTFs use 

information on textural properties, bulk density, and soil organic matter amongst others, whereas class type PTFs do not 5 

estimate the parameters based on continuous textural and other soil properties but estimate the parameters for defined 

textural classes (e.g., 12 USDA textural classes) (Clapp and Hornberger, 1978;Toth et al., 2013). The disadvantage of the 

latter is that only the class average can be predicted and inner-class variability is neglected. 

Another issue with the soil hydraulic parametrization in LSMs is caused by the spatial resolution of the model application 

under consideration (e.g. GCM model runs for reanalyses or NWP model runs for weather forecasts), which is currently 10 

several (tens of) kilometres. This means that the soil input parameters to be provided at this scale have to be derived from 

existing data sources. Unfortunately, intrinsic soil properties are highly variable in space; in most cases several soil types can 

be found within a single grid cell of GCMs, for example. These soil types often differ strongly in soil texture, soil organic 

carbon content, and bulk density, as well as in soil depth and layering. Consequently, the fine scale soil information, 

available from state-of-the-art soil maps such as the European LUCAS (Land Use/Land Cover Area Frame Survey) (Toth et 15 

al., 2013;Ballabio et al., 2016) at 500m resolution or the global SoilGrid database at 1km resolution (Hengl et al., 2014), 

have to be up-scaled to the scale at which the LSMs are being employed. The general problem of up-scaling, or change in 

spatial resolution of the input data by aggregating small scale input data, and the resulting output uncertainty for various 

model states was reported e.g., by Cale et al. (1983), Rastetter et al. (1992), Pierce and Running (1995), Hoffmann et al. 

(2016), and Kuhnert et al. (2016). A practical example is GLDAS2-NOAH, where the porosity and the percentages of sand, 20 

silt, and clay at the original scale of the input data from Reynolds et al. (2000) were horizontally resampled, i.e. spatially 

averaged, to the 0.25° GLDAS grid (Rodell et al., 2004). Despite their importance, only a few studies investigating the 

implications of the above-mentioned issues (up-scaling, aggregation or resampling) on the model results have been 

conducted in the past.  

The most straight forward method to aggregate input parameters from small-scale soil maps to larger scale grid cells of the 25 

GCMs would be spatial averaging. For some soil properties such as soil organic carbon, bulk density, or soil depth this kind 

of approach seems reasonable, whereas for soil texture averaging it is associated with considerable problems. For example, a 

GCMs grid cell containing  a pure sand soil for half of its area with the other half a pure clay would provide a sandy clay on 

average, which neither adequately reflects the sand nor the clay soil physical properties. Additionally, averaging percentages 

may cause artefacts in closing the mass balance. A second method would be the averaging of soil hydraulic parameters (e.g., 30 

the van Genuchten parameters), whereby Zhu and Mohanty (2002) clearly showed that averaging of especially the shape 

parameters (a and n) is associated with considerable uncertainty. A third and most widely used aggregation technique for soil 

inputs at coarse model resolution is the one based on dominant soil types, where the dominant soil type within a coarse grid 

cell is derived from the fine scale soil map. However, in using this approach some information will get lost in the GCM 
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model outputs because non-dominant, but physically very differently behaving soils will not be taken into account during the 

model runs. In consequence, fluxes from non-dominant areas of the grid-cell will not be reproduced at large scale. 

The theory introduced by Miller and Miller (1956) provided a technique to scale the relationships of pressure head and 

hydraulic conductivity by considering microscopic laws for capillary pressure forces and viscous flow in porous media based 

on a similarity assumption of the pore space structure (Warrick et al., 1977). Similarity scaling allows converting hydraulic 5 

characteristics (e.g. pressure head or conductivity) of one system (e.g. a soil sample) or location (e.g. a point scale 

measurement of WRC at field scale) towards corresponding characteristics of another system or location (Tillotson and 

Nielsen, 1984) under the condition that  the internal geometry of the system only differs by a characterize size. Miller-Miller 

scaling therefore allows capturing the spatial variability of soil hydraulic properties in one single scaling parameter rather 

than having to specify the statistics for each single hydraulic parameter (Warrick et al., 1977). The set of scaling factors (i.e. 10 

each location or sample has one scaling factor) follow approximately a log-normal distribution (Simmons et al., 1979). Tuli 

et al. (2001) analysed a physically based scaling approach of unsaturated hydraulic conductivity and soil water retention 

functions from pore-size distribution. They assumed that the relationship between both characteristics is log-normally 

distributed and that pores are geometrically similar, and showed that in this case scaling factors computed from median pore 

size or capillary pressure head can be used to describe the variability of unsaturated hydraulic conductivity functions. Using 15 

a fractal model, Pachepsky et al. (1995) showed that the spatial variability of water retention functions could be described by 

the spatial variability of a single dimension-less parameter. Ahuja et al. (1984) found that scaling factors for different soil 

depths are also related, and Clausnitzer et al. (1992) investigated the potential to simultaneously scale the WRC and HCC 

and found evidence that the results do not necessarily require independent scaling. In more detail, Hendrayanto et al. (2000) 

showed that separate scaling resulted in large estimation errors in either effective saturation or hydraulic conductivity. 20 

Further scaling methods have been developed based on the fractal method, e.g. the piece-wise fractal approach proposed by 

Millan and Gonzalez-Posada (2005) or the wavelet transform modulus maxima introduced by Zeleke and Si (2007). Wang et 

al. (2009), as well as Fallico et al. (2010), analysed the multifractal distribution of scaling parameters for soil water retention 

characteristics. Shu et al. (2008) stressed the need for location-dependent scale analyses to improve the performance for soil 

water retention characteristic predictions. Jana and Mohanty (2011) showed that a Bayesian Neural Network can be applied 25 

across spatial scales to approximate fine-scale soil hydraulic properties. With this approach ground-, air-, and space-based 

remotely sensed geophysical parameters directly contribute to a PTF in a single processing step instead of 

aggregating/scaling the estimated parameters to other scales in an independent second step. Recently, Fang et al. (2016) 

established an amplification factor for soil hydraulic conductivity to compensate for the resulting retardation of water flow 

due to the loss of information content as consequence of spatial aggregation. Liao et al. (2014) pointed out that uncertainty in 30 

the soil water retention parameters mainly results from the limited number of samples used for deriving PTFs and the spatial 

interpolation of basic soil properties. However, the latter error contribution dominates the potential to correctly determine 

spatial parameters, which leads to the assumption for our study that existing PTFs provide adequate parameters for global 

model applications. Nevertheless, the scaling uncertainty still needs to be considered. 
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The objectives of this study are therefore: (i) to apply the Miller-Miller scaling approach to the state-of-the-art soil data set 

SoilGrids1km to provide a global consistent soil hydraulic parameterisation for GCMs based on first principles. These soil 

hydraulic parameterizations can be used in models of the terrestrial system to predict soil water fluxes based on solving 

Richard´s equation from local to global scale, (ii) to present a method to identify the sub-grid variability of WRC and HCC 5 

with reference to the 1 km resolution SoilGrids soil texture data base. This scaling information can be used to perturb 

hydraulic parameters to generate ensemble runs with GCMs or to improve GCM downscaling, (iii) to evaluate the 

performance of the scaling approach for the calculation of the WRCs and HCCs against standard aggregation procedures 

based on two exemplary grid cells with varying variability in textural properties, and finally (iv) to demonstrate the 

importance of the scaling variance at different spatial resolutions for three larger regions in North America, Africa, and Asia. 10 

We provide the corresponding aggregated global data set for the ROSETTA PTF (Schaap et al., 2001) at 0.25° regular grid 

spacing at DOI:10.1594/PANGAEA.870605 (DOI registration in progress, so far the data can be accessed under 

https://doi.pangaea.de/10.1594/PANGAEA.870605). 

 

2 Material and Methods 15 

In this section the data base and the approach to generate the global data set of soil hydraulic parameters is presented (see 

also Figure 1). In the following, all analyses are based on the SoilGrids 1km data base in combination with ROSETTA 

(Schaap et al., 2001). Other soil data bases and PTFs can be used similarly. The PTF will be applied to the high resolution 

soil texture maps to predict high resolution Mualem-van Genuchten (MvG) parameters. These are then scaled to calculate 

soil hydraulic properties for the WRCs and HCCs employed at a coarser scale. In Section 2.3, the scaling approach is 20 

explained, and additionally the treatment of the sub-grid variance will be presented. In section 2.4 details about the 

application to generate the global data set are given. 

 

Insert Figure 1 here 

 25 

2.1 SoilGrids 1km 

The SoilGrids 1km data base (Hengl et al., 2014) is a consistent, coherent, and global data set created by automated mapping 

(Vereecken et al., 2016). The main inputs are publicly available soil profile data, such as the USA National Cooperative Soil 

Survey Soil Characterization database (NCSS), the Land Use/Cover Area frame Statistical Survey LUCAS (Toth et al., 

2013), and the Soil and Terrain Database (SOTER) (Van Engelen and Dijkshoorn, 2012). Moreover, additional information, 30 

derived from moderate-resolution imaging spectroradiometer (MODIS) satellite imagery and the Shuttle Radar Topography 

Mission (SRTM) digital elevation model, has been used. Artificial surfaces as well as bare rock areas, water bodies, shifting 
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sands, permanent snow and ice were neglected. The resulting soil properties at seven predefined depths (0, 5, 15, 30, 60, 100, 

and 200 cm) are: soil organic carbon (g kg
-1

), soil pH, sand, silt, and clay fractions (%), coarse fragments (gravel) (%), bulk 

density (kg m
-3

), cation-exchange capacity (cmol+ kg
-1

), soil organic carbon stock (t ha
-1

), depth to bedrock (cm), World 

Reference Base soil groups, and USDA Soil Taxonomy suborders. SoilGrids implements model-based geostatistics and 

multiple linear regressions for predicting sand, silt, and clay percentages as well as bulk density; and General Linear Models 5 

with log-link function for predicting organic carbon content. Lower and upper confidence limits at 90% probability of the 

predictions are also provided. In theory, the full prediction uncertainty could be used to estimate soil hydraulic property 

uncertainty but in our study we restricted the analysis on the mean predicted values. The findings of Hengl et al. indicate, 

that the distribution of soil organic carbon content in horizontal direction is mainly controlled by climatic conditions 

(temperatures and precipitation), while the distribution of texture is mainly controlled by topography and lithology. The 10 

advantage of SoilGrids over other soil data-bases is that it provides pixel-based information rather than gridded vector 

information from class-based vector polygons. It should be noted that SoilGrids is stored in a World Geodetic System 84 

(WGS84) regular grid with 1km resolution at the equator. The resolution at other latitudes is therefore higher. 

 

2.2 Pedotransfer functions, water retention and hydraulic conductivity functions 15 

A global high resolution hydraulic parameters data set is needed to infer the scaling characteristics for large scale climate 

models. Based on the textural information stored in the SoilGrids data base, PTFs can directly estimate the required 

hydraulic parameters (Figure 1). Several PTFs have been developed; here, we focus on the widely used PTF ROSETTA by 

Schaap et al. (2001), which is based on Neural Network predictions for the estimation of the Mualem van Genuchten (MvG) 

parameters 𝜃𝑠, 𝜃𝑟, 𝛼, 𝑛, 𝐾𝑠, and 𝐿 (van Genuchten, 1980), whereby the WRC to describe the effective volumetric saturation 20 

𝑆𝑒 is calculated according to: 

 

𝑆𝑒(ℎ) =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
{

1 ℎ ≥ 0
[1 + (𝛼|ℎ|)𝑛]−𝑚 ℎ < 0, 𝛼, 𝑚 > 0, 𝑛 > 1

,       (1) 

  

where 𝜃𝑟 [cm
3
 cm

-3
], and 𝜃𝑠 [cm

3
 cm

-3
] are the residual and saturated volumetric water content, respectively, and 𝛼 [cm

-1
], 𝑛 25 

[-] and 𝑚 [-] (𝑚 = 𝑛 −
1

𝑛
) are shape parameters. Finally, the MvG approach to describe the HCC is given by: 

 

𝐾𝑟(ℎ) = 𝐾𝑠𝑆𝑒
𝐿 [1 − (1 − 𝑆𝑒

1/𝑚
)

𝑚
]

2

          (2) 
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where 𝐾𝑟  [-] is the relative hydraulic conductivity and 𝐾𝑠 [cm d
-1

] is the saturated hydraulic conductivity, and 𝐿 is the pore 

connectivity parameter [-].  

 

In a first step, ROSETTA was used to predict the MvG parameters based on the textural information of the SoilGrid map for 

each 1km cell. In a next step, the water retention pairs (𝑆𝑒 versus ℎ) were calculated for predefined pressure heads ℎ [cm] 5 

using the pressure head vector 𝒉: 

 

𝒉 =  [−1, −5, −10, − 20, −30, −40, −50, −60, −70, −90, −110, −130, −150, −170, −210, 

−300, −345, −690, −1020, − 5100, −15300, −20000, −100000, −1000000]    (3) 

  

The pressure heads in 𝒉 were chosen to reflect pressure steps commonly used in laboratory analysis. We assumed -300 cm to 10 

reflect field capacity whereas wilting point (h~ -1500 cm) is generally found between -1020 and -5100. In pF terms 

( log10(𝒉)) the h vector went up to 6. 

 

2.3 Scaling approach and sub-grid variability estimation 

In this study, the Miller and Miller (1956) scaling approach is applied to the parameters derived from the SoilGrids data for 15 

each soil depth separately. The procedure characterizes scaling factors to relate the hydraulic properties at a specific location 

to the mean hydraulic properties at a reference point or a point representative for a larger region. 

In a first step we need to find adequate parameters for the retention function at the coarse scale (Figure 1). This approach has 

been reported in Clausnitzer et al. (1992). For each subpixel 𝑖 the relative saturation 𝑆𝑒𝑖
 is calculated by: 

 20 

𝑆𝑒𝑖
(𝒉) = 𝑓(𝒉, 𝛼𝑖 , 𝑛𝑖) = [1 + (𝛼𝑖|𝒉|)𝑛𝑖]−𝑚𝑖          (4) 

 

Next, the coarse-scale parameters 𝛼̂ and 𝑛̂ of the water retention curve 𝑓(ℎ, 𝛼𝑖 , 𝑛𝑖) need to be found that minimize the sum of 

squares of the deviations for all respective subpixels 𝑖 = 1 … 𝑁, with 𝑁 being the number of subpixels within the coarse grid 

cell: 25 

 

(𝛼̂, 𝑛̂) = argmin𝛼,𝑛 ∑ [𝑆𝑒𝑖
− 𝑓(𝒉, 𝛼𝑖 , 𝑛𝑖)]

2𝑁
𝑖=1         (5) 

 

The parameter fitting algorithm used in this study was the damped least-squares method of Levenberg–Marquardt (LM) 

(Marquardt, 1963) to find a global minimum. As initial values for LM fitting the grid-specific spatial average of 𝛼 (𝛼̅) and 𝑛 30 

(𝑛̅) was used. 
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Russo and Bresler (1980), as well as Warrick et al. (1977), showed that scale factors for soil water retention and unsaturated 

hydraulic conductivity are not necessarily identical. However, Clausnitzer et al. (1992) reported that a independent fitting 

would lead to inconsistencies in the parameter space, and that a single scaling factor is well-suited to describe the 

distribution and correlation structure of HCC and WRC. In this study we use the relationship between 𝐾𝑟  and 𝑆𝑒 in Eq. (2). 

Therefore, the scaling of the WRC can be directly transferred to the HCC, by using 𝛼̂, 𝑛̂  from Eq. 5, even though these 5 

scaling parameters might not be the optimum choice for the HCC. However, this approach was chosen for simplicity; to 

allow for easy handling of hydraulic parameters via a single scaling parameter for global Earth system model applications. 

For the coarse grid cell representative HCC the missing parameters 𝐾𝑠  and 𝐿  are spatially averaged from the sub-grid 

parameters, in case of 𝐾𝑠 in logarithmic space. Similarly, also 𝜃𝑠 and 𝜃𝑟 were spatially averaged, i.e. for the coarse resolution 

𝜃𝑠̅ and 𝜃𝑟̅ were calculated. 10 

 

In a second step, the sub-grid variability is estimated by introducing the scale parameter 𝜆 to the hydraulic head vector to 

simplify the description of the statistical variation of soil properties (Figure 1). This is done by 

 

𝒉∗  =
𝒉

𝜆
 .             (6) 15 

 

After substituting 𝒉 by 𝒉∗ in the van Genuchten (1980) water retention function (Eq. 4), while using previously estimated 𝛼̂ 

and 𝑛̂, only the scaling factor is fitted for each individual subpixel. Eq. 5 can then be rewritten as: 

 

(λî) = argminλ𝑖
∑ [S𝑒i

− f(𝐡, α̂, n̂, λ𝑖)]
2N

i=1          (7) 20 

 

Equation 7 is subject to the constraint that the coarse grid mean of the set of scaling factors is unity (
1

𝑁
∑ log10(𝜆𝑖̂)

𝑁
𝑖=1 = 0). 

This constraint is already approximated by adequately fitting of 𝛼̂ and 𝑛̂ in the first step. Again, similar to the first step, the 

unsaturated HCC is scaled based on the parameters estimated for the WRC. 

We recommend calculating the variance of the logarithmic 𝜆𝑖̂ as a parameter of sub-grid variability for further use. The sub-25 

grid variability information var(log10 𝜆𝑖̂) can be used in further research to perturb the soil hydraulic parameterization in 

ensemble runs of climate or weather prediction models. 

2.4 Global application 

The scaling method proposed here is applied to the parameters derived from the whole SoilGrids1km data set. In this study, 

every terrestrial coarse grid cell is identified with a unique ID, where the SoilGrids 1km attribution to the coarse cell was 30 

performed within a GIS system. This ensures flexibility to predict parameters for any type of grid, no matter whether it is 
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approximately isotropic, such as in the MetOffice Global Atmosphere 4.0 and Global Land 4.0 model (Walters et al., 2014), 

or an unstructured mesh of hexagonal/triangular grid cells in the Ocean-Land-Atmosphere Model (OLAM) (Walko and 

Avissar, 2008). We chose a spatial resolution of 0.25°, as it is used e.g. in GLDAS-NOAH (Rodell et al., 2004). One coarse 

grid cell contains exactly 30×30 = 900 fine resolution pixels. The number of fine resolution pixels used for calculating the 

scaling statistics is also provided with the data set, because lakes and broad rivers reduce the number of relevant pixels. In 5 

addition, for global application a land-sea mask has been established to omit irrelevant pixels. The final data set is delivered 

for latitudes ranging from -60° to 90°, omitting Antarctica. 

2.5 Analysis procedure 

In this section the procedure is explained concerning how the final data set of hydraulic parameters and scaling information 

was evaluated. This was done by selecting sample regions for a detailed presentation of the data set performance. Two 10 

coarse grid cells of different sub-grid heterogeneity were selected and the scaling results for the WRCs and HCCs compared 

discussed. The importance of considering sub-grid variability is stressed for different spatial resolutions by means of three 

larger regions. 

 

2.5.1 Detailed grid cells analysis  15 

In order to investigate the performance of the scaling approach in more detail, two coarse grid cell within Germany were 

selected based on an initial analysis of the sub-grid sand standard deviation (Figure 2).  

 

Insert Figure 2 here 

 20 

The focus on German sites is motivated by the large variation in soil texture, from a heterogeneous region in the North of 

Germany to a relatively homogeneous region in the German central lowlands. Moreover, the number of soil profile 

information contribution to the SoilGrids neural network approach is quite high in these regions. The first grid cell was 

selected in the South of Lower Saxony where Pleistocene morainal plains turn into Jurassic and Triassic rocks. This region 

exhibits small-scale differences in rocks and sediments where the soils developed from. The second region selected is 25 

located in the South East of North-Rhine Westfalia where the soil developed from Devonic weathered rocks as well as 

fluviatile sediments from the Rhine river system. This region can be regarded to be relatively homogeneous in soil texture. 

See also the soil texture diagrams in Figure 3. 

 

Insert Figure 3 here 30 
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In order to compare our results to other commonly applied aggregation schemes, we also calculated the WRCs and HCCs (i) 

by averaging soil texture information and then using the ROSETTA equations; (ii) by averaging MvG parameters directly; 

ii) by identifying the dominant USDA soil class for each coarse grid cell and then utilizing class-representative MvG 

parameters; iii) by identifying the dominant USDA soil class for each coarse grid cell and then utilizing the Clapp and 

Hornberger (1978) approach to calculate the hydraulic properties, which requires dedicated hydraulic parameters. The Clapp 5 

and Hornberger (1978) parameterization is based on the Campbell approach (Campbell, 1974) for calculation of water 

retention and unsaturated hydraulic conductivity. This approach has been added to illustrate the differences between the 

VGM and Campbell (1974) approach that is still often used in GCM models. 𝑆𝑒𝐶𝑎𝑚𝑝
 after Campbell (1974) is given by: 

 

𝑆𝑒𝐶𝑎𝑚𝑝
(ℎ) =

𝜃

𝜃𝑠
{

1 ℎ ≥ h𝐵

(
1

h𝐵
|𝒉|)

−
1

𝑏
ℎ < h𝐵

         (8) 10 

 

h𝐵 is the air entry value, 𝑏 is the pore size distribution index [-]. The related hydraulic conductivity function for Campbell 

(1974) is given by: 

 

𝐾𝑟,𝐶𝑎𝑚𝑝(ℎ) = 𝐾𝑠 (
𝜃(ℎ)

𝜃𝑠
)

(3+2𝑏)

          (9) 15 

 

Note that the Campbell approach is similar to the Brooks and Corey (1964) approach, the only difference is that the latter did 

not set 𝜃𝑟 = 0 in the WRC. Also Clapp and Hornberger (1978) did not consider 𝜃𝑟 in their equations. 

 

2.5.2 Analysis of scaling variability for different spatial resolutions 20 

In order to stress the importance of considering the sub-grid scaling information provided by the proposed method, the mean 

var(log10 𝜆𝑖̂) is quantified for different spatial resolutions. Three regions were analyzed in more detail, which are regions in 

North America, central Africa, and China/Mongolia consisting of 2048×2048 fine pixel from the SoilGrids 1km database 

(see Figure 4). For each of these larger regions a single parameter set of 𝛼̂ and 𝑛̂ is estimated by using Eq. 5. For each fine 1 

km pixel the scaling parameter 𝜆𝑖̂ is calculated according to Eq. 7. Different resolutions of 2, 4, 8, 16, 32, 64, 128, 256, 512, 25 

and 1024 km were applied to the resulting map of 𝜆𝑖̂. For each spatial resolution the cell-specific scaling parameter is 

averaged (mean(log10 𝜆𝑖̂)). Finally, the variance of these averaged scaling parameters is calculated for the large regions. 

Herein we hypothesise that the variance of the scaling parameter is a function of spatial resolution. 

 

Insert Figure 4 here 30 
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This analysis uses the original SoilGrids1km spatial resolution as a reference. However, it has to be mentioned that the 

calculated scaling variability only refers to the information content of the SoilGrid 1 km reference, and does not necessarily 

provide the real soil scaling variability. 

 5 

3 Results and discussion 

For brevity in this paper the results for the top soil layer are discussed only. After a description of the global data set, this 

section discusses the results for the two example pixels in Germany and the influence of different spatial resolutions on the 

variability of three larger regions. 

 10 

3.1 Global analysis 

The resulting global hydraulic parameters α̂, n̂, 𝜃𝑠̅ as well as mean(log10 𝐾𝑠) are presented in Figure 5. Parameter α̂ ranges 

between 0.0036 and 0.045 cm
-1

 with a global average of 0.0143 cm
-1

 and shows a clear biogeographical or climatic related 

distribution. Relatively low values can be found mainly under boreal forests, but also in the North China Plain, Central 

Europe, US Midwest, and the Cordoba province in Argentina. Especially the low bulk density of boreal top soils in the 15 

SoilGrids data base, and their widespread occurence, reduce the global average of α̂ to that low value. Relatively high values 

of α̂ were found at locations with high sand fractions, such as the desert regions of Sahara, Namib, the Arabian peninsula, 

and to a lesser extent also in Australia. Smaller regions with high α̂ could be traced in Florida and the morainal plains of 

Northern Europe and the Rocky Mountains. The global average of n̂ is 1.547, with a range between 1.174 and 4.33 [-]. The 

extreme high n̂ values are found only in the non-alluvial regions of Sahara and Rub' al Khali (‘Empty Quarter’, Arab 20 

peninsula). The relatively high global average of n̂ is caused by the same effect that caused the low α̂ average in the low bulk 

density of boreal top soils. Those soils typically are characterised by high organic carbon contents, behave quite differently 

in hydraulic sense compared to more mineral dominated soils, and are rarely used to develop classical PTFs. Therefore, 

independent from the aggregation or up-scaling approaches, more research is needed to adequately parameterise boreal soils 

by appropriate PTFs. 25 

 

Insert Figure 5 here 

 

The global map of mean saturated hydraulic conductivity (mean(log10 𝐾𝑠)) in Figure 5 ranges between 0.174 and 3.105 

with a global average of 1.784 (cm d
-1

). Low soil saturated hydraulic conductivities are located in India, the Sahel, the 30 

Mediterranean, Central Asia, Levant and Iran, Texas, the US prairie regions, California, and South Central Canada. Highest 
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mean(log10 𝐾𝑠) are found in Sahara and Rub' al Khali, where sandy soils dominate, but also in the upper Amazon basin 

(Marthews et al., 2014) and in cold climates. 

 

Insert Figure 6 here 

 5 

Figure 6 shows the global map of sub-grid scaling variance calculated from SoilGrids1km data set with a 0.25° grid 

reference. Global var(log10 𝜆𝑖̂) ranges between ~0 and 1.574, with an average value of 0.229. This shows that large regions, 

e.g. Siberia, East China, Southern coastal provinces of Brazil, and Mexico, are relatively homogeneous within individual 

grid cells. The regions with particularly high sub-grid variability are typically transition zones of soils evolved from young 

sediments. Examples are the holocene morainal plains in Northern Europe and Canada, as well as the slopes of high 10 

mountains areas of the Andes and Himalayas. Similarly, young deposits of large rivers such as the Amazon, and the inner 

Congo basin are characterized by high variability. These are the regions where the consideration of the sub-grid variability 

may have strong impacts on weather prediction and climate simulations.  

The final data set is stored in netcdf format in WGS84 projection and contains the information given in Table 1. 

 15 

Table 1: Variables stored in the final data set. The variable 𝒛 indicates the soil depth, i.e., 𝒛 ∈ [0, 5,15,30,60,100,200] cm. 

Variable Units Explanation Variable name 

Latitude Decimal degree Latitude in degrees North, Southern hemisphere in negative 

numbers 

latitude 

Longitude Decimal degree Longitude in degrees East, West of Greenwich in negative 

numbers 

longitude 

𝜶̂ cm
-1

 Fitted  at z cm depth for MvG parameterization alpha_fit_zcm 

𝒏̂ - Fitted n at z cm depth for MvG parameterization n_fit_zcm 

𝜽𝒔
̅̅ ̅ m

3
m

-3
 Mean 𝜃𝑠 at z cm depth for MvG parameterization mean_theta_s_zcm 

𝜽𝒓
̅̅ ̅ m

3
m

-3
 Mean 𝜃𝑟 at z cm depth for MvG parameterization mean_theta_r_zcm 

𝑳̅ - Mean pore connectivity parameter at z cm depth for MvG 

parameterization 

mean_L_zcm 

(𝐦𝐞𝐚𝐧(𝐥𝐨𝐠𝟏𝟎 𝑲𝒔)) cm d
-1

 Mean saturated hydraulic conductivity at zcm depth mean_Ks_zcm 

𝐯𝐚𝐫(𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂) - Scaling parameter variance at z cm depth var_scaling_zcm 

Valid subpixels - Number of valid subpixels for calculating scaling statistics 

for the z cm soil depth 

valid_subpixels_zcm 
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3.2 Example pixels 

The detailed analysis of the WRC of two example model grid cells after applying a range of typical aggregation methods is 

shown in Figure 7. This includes aggregation by averaging soil texture information, averaging MvG soil hydraulic 

parameters, and by selecting the dominant USDA soil class (both with MvG and Campbell equations). Averaging soil 

texture and averaging MvG parameters to a coarser grid caused differences in the WRC for Lower Saxony but showed 5 

nearly the same curve for North-Rhine Westfalia. The reasons why textural and MvG parameter averaging yielded the same 

aggregated WRC in North-Rhine Westfalia are unclear but as Zhu and Mohanty (2002) pointed out the reliability of MvG 

averaging greatly depends on the fine-scale (here 1km) heterogeneity (textural differences), but also on the textural class. 

Therefore, in the heterogeneous region of Lower Saxony the difference is large which leads to 0.04 higher 𝑆𝑒 at 2.5 log10(ℎ) 

when averaging texture as opposed to averaging MvG parameters. However, more drastic differences occur when using the 10 

dominant USDA soil class to predict coarse scale WRCs, where the Clapp and Hornberger parameterization for the 

Campbell model results in wetter conditions for all pressure heads than when using the class-representative MvG parameters 

and the MvG model. 

 

Insert Figure 7 here 15 

 

Finally, the WRCs based on the different aggregation approaches (dominant soil class, texture averaging, Miller-Miller 

scaling) are presented in Figure 8 for the two example regions. As can be seen, the effective saturation (𝑆𝑒𝑖
) calculated for 

the 1km sub-pixels at the standard heads of the head vector h (Eq. 3) (blue dots) reflect the natural variability in soil texture 

and corresponding soil hydraulic properties of the two example regions. This subscale variability is also captured by the 20 

standard deviation of the Miller-Miller scaling approach, which is larger for Lower Saxony as compared to North-Rhine 

Westfalia. This indicates nicely that Miller-Miller scaling is an appropriate approach to capture fine scale variability and to 

propagate the fine-scale uncertainty into the larger scale of interest.  

 

Insert Figure 8 here 25 

 

A similar pattern of the different scaling methods can be also found for the HCCs presented in Figure 9. By this Miller-

Miller scaling approach, large scale modelling can capture not only the right aggregated ‘mean’ WRCs and HCCs but also 

the uncertainty can be taken into account by running the models for the retention/hydraulic characteristics spanned by the 

variance of the scaling factor. 30 

 

Insert Figure 9 here 
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Finally, we plotted the histograms of the calculated sub-grid scaling parameters (Figure 10). Here it has to be noted that the 

scaling parameter  was log-transformed with zero mean. Again, the differences in sub-grid heterogeneity of the two 

example regions become obvious with lager variability in  for Lower Saxony and lower variability for North-Rhine 

Westfalia.  

 5 

Insert Figure 10 here 

 

 

3.3 Analysing scaling variability for different spatial resolutions 

For the analysis of the scaling variability for different spatial resolutions the mean variance (var(log10 𝜆𝑖̂)) was calculated 10 

for different grid resolutions and plotted in Figure 11. For all three case sites (North America, Africa, and China, see also Fig 

3) var(log10 𝜆𝑖̂) decreased with decreasing spatial resolution; the absolute scaling parameter variability of the Africa region 

is largest. This can be explained by the fact that the Sahel is prone to strong seasonal dry-wet cycles, which induces large 

variability in soil development (Da Costa et al., 2015). On the other hand, the relative decrease of variance with coarser 

resolution for this region is compared to the other ones (Figure 11 right panel).  15 

 

Insert Figure 11 here 

 

Interestingly, ~90 % of the variance is still maintained at 16 km grid size, ~80% at 64 km, and ~70 % at 128 km. Even at 256 

km spatial resolution, more than 50 % of the variability is accounted for, but a diverging trend between the regions is 20 

detectable. 

 

4 Conclusions and outlook 

Reliable soil hydraulic parameterization is important for global climate model predictions, including climate reanalyses, and 

weather forecast models. State-of-the-art global soil maps can provide basic soil properties at sub-kilometre scale resolution. 25 

The transfer of these data towards coarser resolution hydraulic properties has been a topic in soil/land surface up-scaling or 

aggregation research for several decades. In this paper we present a scaling method based on Miller-Miller similarity theory 

which was applied to the SoilGrids1km data set to provide parameters for the van Genuchten model of water retention curve 

(WRC) and the Mualem-van Genuchten model of hydraulic conductivity curve (HCC). These curves are required to solve 

variably saturated flow in soils using Richards´ equation. In addition, the sub-grid variability of both WRC and HCC is 30 

assessed, which can be of use for model ensemble generation in climate and weather forecast models, or for down-/up-

scaling approaches. The final global data set at 0.25° spatial resolution is available at DOI:10.1594/PANGAEA.870605. 
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The new data set is presented and analysed at the global scale and in more detail by two different individual pixels differing 

strongly in textural composition. In comparison to aggregation by using dominant USDA soil classes, averaging soil texture 

and averaging soil hydraulic parameters, the curve fitting approach provides better estimates of coarse scale water retention 

and conductivity curves and related parameters. Moreover, the Miller-Miller scaling provides an indicator of sub-grid 

variability, which is not available from the other methods mentioned above. For three regions different spatial resolutions 5 

were analysed according to their ability to represent the soil hydraulic variability of the original SoilGrids data base at 1km 

resolution. For all regions a common general loss of variability was observed, with loosing ~10 % of the variance at 16 km 

grid size, ~20% at 64 km, and ~30 % at 128 km.  

The presented analysis has been conducted on two-dimensional soil maps, without consideration of vertical relationships 

between soil layers or horizons. This approach can be easily extended towards a 3D scaling that honors the vertical spatial 10 

dependency. A follow-up paper will assess the impact of this data set on water and energy fluxes at the soil surface for 

global simulations. Similarly, the effect of using other PTFs than Schaap et al. (2001) needs to be evaluated on the global 

scale as well as the uncertainties introduced during pedotransfer on the scaling parameterization. We plan to provide similar 

data sets for other PTFs, e.g. of Rawls and Brakensiek (1985), Wösten et al. (1999), Weynants et al. (2009), and Vereecken 

et al. (1989). A similar approach is planned to provide parameters for the Brooks and Corey equation. 15 
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Figure 1: Proposed method to aggregate soil hydraulic properties and sub-grid variability of soil water retention and hydraulic 

conductivity curves. 
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Figure 2: Location of the 0.25° test pixels in Germany, and their sand fraction based on SoilGrids1km. 
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Figure 3: Soil texture triangles, illustrating the difference in soil textural variability of the Lower Saxony pixel (left) and the North-

Rhine Westfalia pixel (right), according to USDA classification. 

 

 5 

Figure 4: Example regions selected to evaluate the scaling variance loss from Miller-Miller scaling at different spatial resolutions 

when neglecting the scaling variance. The background shows the sand fraction from SoilGrids1km. 
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Figure 5: Global map of 𝜶̂ (top), 𝒏̂ (top middle), 𝜽𝒔
̅̅ ̅ (bottom middle) and 𝐦𝐞𝐚𝐧(𝐥𝐨𝐠𝟏𝟎(𝑲𝒔)) (bottom) as derived when using the 

SoilGrids1km data set as input to the Rosetta PTF (Schaap et al., 2001), at 0.25° spatial resolution. 
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Figure 6: Global map of 𝐯𝐚𝐫(𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂) calculated from SoilGrids1km data set and the Rosetta PTF (Schaap et al., 2001) for 0.25° 

resolution. 

 

  5 

Figure 7: PF curve after applying typical scaling or aggregation methods: by dominant USDA soil class and Clapp & Hornberger 

parameters for the Brooks & Corey equation, by dominant USDA soil class and MvG equation, by averaging soil texture 

parameters and then applying ROSETTA PTFs, and by averaging MvG soil hydraulic parameters directly, for Lower Saxony 

(left) and North Rhine-Westfalia (right). 
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Figure 8: Retention curves for Lower Saxony (left) and North-Rhine Westfalia (right) calculated using different approaches. The 

coarse pixel fit is the result of the Miller-Miller scaling approach, where also (𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂)  was estimated. Therefore, also 

±𝟏𝐬𝐭𝐝 (𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂) could be provided to identify the sub-grid uncertainty. Further retention curves were calculated by dominant 

USDA class (both for Brooks & Corey with Clapp & Hornberger and for MvG equation), by averaging texture and by averaging 5 
MvG parameters. Blue points indicate  𝑺𝒆 at standard hydraulic heads for each individual subpixel. 

 

 

  

Figure 9: Hydraulic conductivity curves for Lower Saxony (left) and North-Rhine Westfalia (right). The coarse pixel fit is the 10 
result of the Miller-Miller scaling approach, where also (𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂)  was estimated. Therefore, also ±𝟏𝐬𝐭𝐝 (𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂)  could be 

provided to identify the sub-grid uncertainty. Further hydraulic conductivity curves were calculated by dominant USDA class 

(both for Brooks & Corey with Clapp & Hornberger and for MvG equation), by averaging texture and by averaging MvG 

parameters. Blue points indicate 𝐥𝐨𝐠𝟏𝟎(𝑲𝒓) at standard hydraulic heads for each individual subpixel. 
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Figure 10: Histograms of the retention scaling parameter (𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂) for Lower Saxony (left) and North-Rhine Westfalia (right). 

 

  

Figure 11: Retention scaling parameter variance 𝐯𝐚𝐫(𝐥𝐨𝐠𝟏𝟎 𝝀𝒊̂) for different grid resolutions and regions of interest (North 5 
America, Africa, and China, see also Figure 4). Left) absolute variance and right) variance normalised as percentage of the 

maximum variance at 1 km original SoilGrids resolution. 
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