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Abstract 1 

Nitro-monoaromatic hydrocarbons (NMAHs), such as nitrocatechols, nitrophenols and 2 

nitrosalicylic acids, are important constituents of atmospheric particulate matter (PM) water 3 

soluble organic carbon (WSOC) and humic-like substances (HULIS). Nitrated and oxygenated 4 

derivatives of polycyclic aromatic hydrocarbons (NPAHs, OPAHs) are toxic and ubiquitous in the 5 

ambient air; due to their light absorption properties, together with NMAHs they are part of aerosol 6 

brown carbon (BrC). We investigated the winter concentrations of these substance classes in size-7 

resolved particulate matter (PM) from two urban sites in central and southern Europe, i.e. Mainz 8 

(MZ), Germany and Thessaloniki (TK), Greece. ∑11NMAH concentrations in PM10 and total PM 9 

were 0.51-8.38 and 12.1-72.1 ng m-3 at MZ and TK site, respectively, whereas ∑8OPAHs were 47-10 
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1636 and 858-4306 pg m-3, and ∑17NPAHs were ≤90 and 76-578 pg m-3, respectively. NMAHs 11 

and the water-soluble OPAHs contributed 0.4 and 1.8%, and 0.0001 and 0.0002 % to the HULIS 12 

mass, at MZ and TK, respectively. The mass size distributions of the individual substances 13 

generally peaked in the smallest or second smallest size fraction i.e., <0.49 µm or 0.49-0.95 µm. 14 

The mass median diameter (MMD) of NMAHs was 0.10 µm and 0.27 µm at MZ and TK, 15 

respectively, while the MMDs of NPAHs and OPAHs were both 0.06 µm at MZ, and 0.12 and 0.10 16 

µm at TK. Correlation analysis between NMAHs, NPAHs and OPAHs from one side and WSOC, 17 

HULIS, nitrate, sulphate and potassium cation (K+) from another, suggested that the fresh biomass 18 

burning emissions dominated at the TK site, while aged air masses (influenced by biomass and 19 

fossil fuel burning) were predominant at the MZ site.  20 

 21 

1. Introduction 22 

Atmospheric humic-like substances (HULIS) represent a complex mixture of aliphatic and 23 

aromatic compounds with multiple functional groups, such as hydroxyl, carbonyl, carboxyl, nitro, 24 

nitrooxy, and sulphate groups (Havers et al., 1998; Graber and Rudich, 2006; Hallquist et al., 2009; 25 

Claeys et al., 2012). They are a major constituent of aerosol water-soluble organic carbon (WSOC), 26 

contributing between 9 and 72% of WSOC mass (Decesari et al., 2000; Graber and Rudich, 2006; 27 

Lin et al., 2010; Zheng et al., 2013). The distribution of HULIS molecular weights (MWs) is 28 

unimodal and ranges between 100 and 500 Da with most of the compounds grouping around 200 29 

Da (Graber and Rudich, 2006; Claeys et al., 2012; Song et al., 2018), unlike soil humic and fulvic 30 

acids with MW distributions extending well beyond 1000 Da. Due to the presence of light-31 

absorbing polyconjugated and aromatic compounds (Duarte et al., 2005; Graber and Rudich, 2006; 32 

Claeys et al., 2012; Zheng et al., 2013), HULIS are an important constituent of aerosol water-33 

soluble brown carbon (BrC; Laskin et al., 2015, and references therein). The intense light-34 

absorption of HULIS in the ultraviolet and violet and blue visible regions, between 200 and 500 35 

nm, can affect aerosol optical properties and atmospheric photochemical processes (Andreae and 36 

Gelencser, 2006). Owing to the presence of highly polar polyfunctional material, HULIS has 37 

surface-active properties and can make aerosols act as cloud condensation nuclei (CCN). In the 38 

aerosol aqueous phase, HULIS can increase the solubility of hydrophobic organic compounds and 39 

change the reactivity and solubility of metal aerosols, owing to metal-complexation properties 40 

(Graber and Rudich, 2006). Finally, due to the presence of redox-active moieties, HULIS can 41 
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catalyse electron transfer reactions and formation of reactive oxygen species (ROS), which could 42 

pose oxidative stress in humans upon inhalation (Verma et al., 2015). 43 

Biomass burning (BB) is considered as one of the main sources of HULIS in the atmosphere (Lin 44 

et al., 2010; Claeys et al., 2012; Pavlovic and Hopke, 2012; Zheng et al., 2013) and an important 45 

source of aerosol nitroaromatic compounds (NACs; Claeys et al., 2012; Song et al., 2018). Recent 46 

studies found that nitro-monoaromatic hydrocarbons (NMAHs), such as 4-nitrocatechol (4-NC; 47 

MW: 155 Da) and isomeric methyl-nitrocatechols (MNCs; MW: 169 Da) are abundant constituents 48 

of particulate matter (PM) HULIS, originating from BB (Claeys et al., 2012; Song et al., 2018). 49 

NMAHs are emitted into the atmosphere by primary and secondary processes. 4-NC, MNCs, 50 

nitroguaiacols (NGs) and nitrosalicylic acids (NSAs) are predominantly formed by secondary 51 

oxidation of lignin thermal decomposition products (m-cresol, phenols, methoxyphenols, 52 

catechols, salicylic acid etc.) in the gas- and aqueous phase (Iinuma et al., 2010; Kelly et al., 2010; 53 

Kroflič et al., 2015; Frka et al., 2016; Teich et al., 2017; Finewax et al., 2018; Xie et al., 2017; 54 

Wang et al., 2019). Therefore, the yellow-coloured water-soluble 4-NC and MNCs have been 55 

proposed as suitable tracers for highly oxidized secondary BB aerosols (Iinuma et al., 2010; 56 

Kitanovski et al., 2012b; Kahnt et al., 2013; Caumo et al., 2016; Chow et al., 2016). In the past 57 

decade, the ambient PM nitrocatechols (NCs) have been measured in several studies world-wide, 58 

i.e. Europe (Iinuma et al., 2010; Zhang et al., 2010; Kitanovski et al., 2012b; Kahnt et al., 2013; 59 

Mohr et al., 2013; Teich et al., 2014; Frka et al., 2016), South America (Claeys et al., 2012; Caumo 60 

et al., 2016), North America (al Naiema and Stone, 2017), Asia (Chow et al., 2016; Li et al., 2016; 61 

Wang et al., 2019) and Australia (Iinuma et al., 2016). They represent a significant fraction of the 62 

PM organic carbon (OC), e.g. 0.8% in winter PM10 collected at an urban background location in 63 

Slovenia (range 0.4-1.3%; Kitanovski et al., 2012b), 0.75% in winter PM10 collected at rural site 64 

in Belgium (Kahnt et al., 2013) and ≈0.3% in PM10 collected in Brazil during the BB season 65 

(Caumo et al., 2016). Nitrosalicylic acids (2-hydroxy-nitrobenzoic acids) have been reported in 66 

PM samples collected at rural (van Pinxteren and Herrmann, 2007; van Pinxteren et al., 2012; Teich 67 

et al., 2017; Wang et al., 2018), urban (Kitanovski et al., 2012a and 2012b; Teich et al., 2017; 68 

Wang et al., 2018) and remote (Wang et al., 2018) sites. Similar to NCs, they are mainly associated 69 

with secondary BB aerosols (Kitanovski et al., 2012b; Teich at el., 2017; Wang et al., 2018). 70 

Nitrophenols (NPs), structurally related compounds to NCs, are emitted from primary sources (e.g. 71 

traffic, coal and wood combustion, industry and agricultural use of pesticides), which usually 72 
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predominate their secondary formation, especially in urban areas (Harrison et al., 2005; Cecinato 73 

et al., 2005; Hoffmann et al., 2007; Iinuma et al., 2007; Zhang et al., 2010; Ganranoo et al., 2010; 74 

Özel et al., 2011; Mohr et al., 2013; Kitanovski et al., 2012a and 2012b; Inomata et al., 2015; Teich 75 

et al., 2017; Wang et al., 2018). 76 

Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives (NPAHs 77 

and OPAHs), as well as hydroxy derivatives (OH-PAHs), are ubiquitous in the atmosphere 78 

(Walgraeve et al., 2010; Lammel, 2015; Bandowe and Meusel, 2017; Shahpoury et al., 2018). They 79 

are primarily emitted from incomplete combustion of fossil fuels (Zielinska et al., 2004; 80 

Karavalakis et al., 2010; Pham et al., 2013; Inomata et al., 2015), wood, coal and biomass burning 81 

(Ding et al., 2012; Shen et al., 2012, 2013a and 2013b; Huang et al., 2014; Vicente et al., 2016). 82 

The PAH derivatives are secondarily formed by the reaction of parent PAHs with atmospheric 83 

oxidants such as OH, NOx and O3. Some NPAHs have distinct sources; for instance, 3-84 

nitrofluoranthene (3-NFLT) and 1-nitropyrene (1-NPYR) are specifically associated with 85 

combustion sources, whereas 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR) are 86 

produced through oxidation of their parent species in the atmosphere (Bandowe and Meusel, 2017). 87 

Similarly, OPAHs benzanthrone (OBAT), benz(a)fluorenone (BaOFLN) and benz(b)fluorenone 88 

(BbOFLN) have been associated with primary sources, whereas 9,10-anthraquinone (9,10-89 

O2ANT), 1,2-benzanthraquinone (1,2-O2BAA), and 9-fluorenone (9-OFLN) have been attributed 90 

to both source types (Kojima et al., 2010; Souza et al., 2014; Lin et al., 2015; Zhuo et al., 2017). 91 

The primary sources dominate in winter time with residential heating surpassing traffic emission 92 

(Lin et al., 2015). It is anticipated that functionalized 2- and 3-ring PAHs (e.g. 2- and 3-ring 93 

OPAHs) would exhibit the highest hydrophilicity among their analogs and could also be part of 94 

PM HULIS (Vione et al., 2014; Fan et al., 2016; Haynes et al., 2019). The water-soluble OPAHs, 95 

in particular quinones, were suggested to contribute to light-absorption properties of brown carbon 96 

(Laskin et al., 2015; Haynes et al., 2019). Moreover, the ROS activity of HULIS from PM2.5 was 97 

associated to OPAHs, i.e. quinones and hydroxy-quinones (Verma et al., 2015). It has been shown 98 

in controlled experiments that the chemical aging of PM from various origins would increase its 99 

ROS activity and this effect is enhanced in the presence of O3 (Li et al., 2009; McWhinny et al., 100 

2011; Stevanovic et al., 2013; Verma et al., 2014 and 2015; Antiñolo et al., 2015). This process 101 

has been attributed to oxidation of PAHs and formation of water-soluble derivatives.   102 
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NMAHs, PAHs and N/OPAHs significantly contribute to the aerosol BrC due to their light- 103 

absorption capacity in the UV and visible range (Mohr et al., 2013; Teich et al., 2017; Xie et al., 104 

2017). Determining the size-resolved mass distribution of the PM molecular tracers is important 105 

for assessing the particle emission sources, atmospheric transport, and health effects (Neusüss et 106 

al., 2000). In particular, there is a limited knowledge about the size-resolved characteristics of 107 

NMAHs and N/OPAHs, and their relation to atmospheric HULIS (Claeys et al., 2012; Song et al., 108 

2018). Therefore, the aim of the present work is to fill this gap by studying the size-resolved PM 109 

from polluted urban air at two locations in central and southern Europe, i.e. Mainz (MZ), Germany 110 

and Thessaloniki (TK), Greece, and to apply these data to determine the possible emission sources. 111 

The concentrations of ions, organic acids, HULIS and HULIS-C in the samples used in this study 112 

can be found in a companion paper (Voliotis et al., 2017). 113 

 114 

2. Experimental 115 

2.1 Chemicals and solutions 116 

Solvents including methanol (MeOH, Chromasolv, LC-MS grade; Fluka, Buchs, Switzerland), 117 

tetrahydrofuran (THF, LiChrosolv, HPLC grade; Merck, Darmstadt, Germany), high-purity water 118 

(18.2 MΩ cm; Elga PURELAB, Veolia Water Technologies, Celle, Germany), 119 

ethylenediaminetetraacetic acid (EDTA, trace metals basis; Sigma-Aldrich, St. Louis, USA), 120 

formic acid and ammonium formate (grade eluent additive for LC-MS; Fluka) were used for LC-121 

MS mobile phase and sample preparation for NMAHs. Dichloromethane (DCM), n-hexane, and 122 

ethyl acetate (Suprasolv, GC-MS grade, Merck) were used for N/OPAH analysis. Analytical 123 

standards used in our study, their acronyms, and suppliers are listed in Tables 1 and S1. The internal 124 

standards (IS) of 2,4,6-trinitrophenol (picric acid, aqueous solution 1.0%; Sigma-Aldrich) and 4-125 

nitrophenol-d4 (4-NP-d4; LGC, Teddington, UK) were used for NMAH quantification, whereas 1-126 

nitronaphthalene-d7, 2-nitrofluorene-d9, 9-nitroanthracene-d9, 3-nitrofluoranthene-d9, 1-127 

nitropyrene-d9, 6-nitrochrysene-d11, 9,10-anthraquinone-d8, and 9-fluorenone-d8 (Chiron, Norway) 128 

were used for N/OPAH quantification. Individual stock solutions of NMAH standards were 129 

prepared in methanol at concentrations of 200 µg mL-1, whereas those for N/OPAHs were prepared 130 

in toluene at 10 µg mL-1. Standard mixtures were prepared for each substance class from individual 131 

stock solutions, and further used for preparation of calibration standards of NMAHs in 132 

methanol/water mixture (3/7, v/v) containing 5 mM ammonium formate buffer pH 3 and 400 μM 133 
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EDTA (injection solvent), and calibration standards of N/OPAHs in ethyl acetate. NMAH and 134 

N/OPAH calibration standards were prepared in the concentration range of 0.1 to 500 and 0.25 to 135 

1000 pg µL-1, with a fixed IS concentration of 100 and 200 pg µL-1, respectively.  136 

 137 

2.2 Collection of samples 138 

All PM samples were collected using a 5-stage high-volume cascade impactor with effective cut-139 

off diameters: 0.49, 0.95, 1.5, 3 and 7.2 µm of aerodynamic particle size, Dp, and a backup filter 140 

collecting particles < 0.49 μm (Table 2). The sampling in MZ was done using a high-volume air 141 

sampler Baghirra HV-100P (Baghirra, Prague, Czech Republic) equipped with a multi-stage 142 

cascade impactor (Tisch Environmetal Inc., Cleves, USA, series 230, model 235) and a PM10 head. 143 

Downstream of the impactor, gaseous organics were collected in two polyurethane foam plugs 144 

(PUF; density 0.030 g cm-3; Organika, Malbork, Poland) placed in a glass cartridge. The PM was 145 

sampled on slotted quartz fibre filters (QFFs, TE-230-QZ, Tisch Environmental Inc., 14.3×13.7 146 

cm) and a QFF backup filter (Whatman, 20.3×25.4 cm). Four sets of samples were collected at MZ 147 

between November and December 2015, each over the period of 70 hrs (flow rate: 60 m3 h-1; Table 148 

2). The impactor used in TK was a Sierra Instruments, model 235; the PM samples were collected 149 

on QFFs (Tisch Environmental TE-230QZ, slotted 5.7×5.7 cm) and on QFF backup filters (Pall, 150 

2500 QAT-UP), without a PM10 head, as described in Voliotis et al. (2017). 151 

 152 

2.3 Sample preparation and analytical methods 153 

2.3.1 LC/MS analysis of nitro-monoaromatic hydrocarbons 154 

Extraction of the filter samples for NMAH analysis was done using a validated procedure 155 

(Kitanovski et al., 2012b) with small modifications. Briefly, a 1.5 cm2 section of the filter was 156 

spiked with both IS (spiked mass: 100 ng) and subsequently extracted three times (5 min each) 157 

with 10 mL methanolic solution of EDTA (3.4 nmol mL-1) in an ultrasonic bath. The combined 158 

extracts were concentrated to 0.5 mL using a TurboVap II (bath temperature: 40°C, nitrogen gas 159 

pressure: 15 psi; Biotage, Uppsala, Sweden). The concentrated extract was filtered through a 0.2-160 

μm PTFE syringe filter (4 mm, Whatman; GE Healthcare, Little Chalfont, UK) into a 2-mL vial 161 

and was evaporated to near dryness under the gentle stream of nitrogen (99.999%; Westfalen AG, 162 

Münster, Germany). Finally, the extract was dissolved in methanol/water mixture (3/7, v/v) 163 

containing 5 mM ammonium formate buffer pH 3 and 400 μM EDTA for LC/MS analysis.  164 
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The NMAHs were determined using an Agilent 1200 Series HPLC system (Agilent Technologies, 165 

Waldbronn, Germany) coupled to an Agilent 6130B Series single quadrupole mass spectrometer 166 

equipped with an electrospray ionization (ESI) source. High-purity nitrogen was used as nebulizer 167 

and drying gas. The separation of the targeted analytes was done on an Atlantis T3 column (150 168 

mm × 2.1 mm i.d., 3 μm particles size; Waters, Milford, USA), connected to an Atlantis T3 169 

VanGuard pre-column (5 mm × 2.1 mm i.d., 3 μm particles size; Waters), using isocratic elution 170 

with a mobile phase consisted of MeOH/THF/water (30/15/55, v/v/v) mixture containing 5 mM 171 

ammonium formate buffer pH 3. The mobile phase flow rate, column temperature and injection 172 

volume were 0.2 mL min-1, 30°C and 10 μL, respectively (Kitanovski et al., 2012b). The detection 173 

and quantification of NMAHs was done in single ion monitoring and negative ESI mode (Table 174 

1). The optimized ESI-MS parameters were as follows: –1000V for the ESI capillary voltage, 30 175 

psig for the nebulizer pressure and 12 L min-1 and 340°C for the drying gas flow and temperature, 176 

respectively. Due to the lack of a reference standard for 3-methyl-4-nitrocatechol (3-M-4-NC), its 177 

concentrations were calculated based on the calibration curve of 4-M-5-NC. This is justified based 178 

on the structural similarity of the two substances and therefore similar ionization efficiency under 179 

ESI-MS conditions. LC/MSD ChemStation (Agilent Technologies) was used for data acquisition 180 

and analysis. 181 

 182 

2.3.2 Chemical analysis of nitro- and oxy-polycyclic aromatic hydrocarbons 183 

N/OPAHs were extracted from PM samples following a QuEChERS method with slight 184 

modifications (Albinet et al., 2014; Shahpoury et al., 2018). Briefly, each filter paper was placed 185 

inside a glass centrifuge tube (Duran, Schott, Mainz, Germany) and spiked with a mixture of 186 

internal standards containing 60 ng of each 1-nitronaphthalene-d7, 2-nitrofluorene-d9, 9-187 

nitroanthracene-d9, 3-nitrofluoranthene-d9, 1-nitropyrene-d9, 6-nitrochrysene-d11, 9,10-188 

anthraquinone-d8, and 9-fluorenone-d8. 7 mL of DCM was then added to each tube, the tubes were 189 

capped and the samples were extracted by vortexing for 1.5 min. The extracts were passed through 190 

a glass funnel plugged with deactivated glass wool and concentrated to 0.5 mL using a TurboVap 191 

II. The concentrated extracts were loaded on pre-conditioned SiO2 solid-phase extraction cartridges 192 

(500 mg; Macherey-Nagel, Weilmünster, Germany) and the target analytes were eluted with 9 mL 193 

of 65:35 n-hexane-DCM. 194 
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The purified extracts containing the analytes were concentrated to 0.5 mL and the solvent was 195 

exchanged by adding 5 mL of ethyl acetate, concentrating the solution to 0.5 mL, and repeating the 196 

process three times. The sample volumes were adjusted to 0.3 mL and transferred to 2 mL vials 197 

containing 0.4 mL glass inserts. All solvents used for N/OPAH analysis were high-purity 198 

(Suprasolv, GC-MS; Merck, Darmstadt, Germany). All glassware used for analysis was pre-199 

washed with lab-grade detergent, tap water and deionized water, and baked at 310°C for 12 hours.  200 

The samples were analysed using a Trace 1310 gas chromatograph (GC; Thermo Scientific, 201 

Waltham, MA, USA) interfaced to a TSQ8000 Evo triple-quadrupole mass selective detector 202 

(MS/MS; Thermo Scientific). The analysis was performed in negative chemical ionization with 203 

methane used as ionization gas (1.5 mL min−1 flow rate; > 99.99%; Messer, Bad Soden, Germany). 204 

The analytes were separated on a 30-m DB-5ms capillary column (0.25 mm ID, 0.25 µm film 205 

thickness; J&W, Santa Clara, CA, USA) with helium (99.99 %; Westfalen AG, Münster, Germany) 206 

as carrier gas at 1 mL min−1 flow rate. The GC inlet temperature was set to 250°C and operated in 207 

pulsed splitless mode (30 psi pulsed pressure for 1.5 min, and splitless time of 1.8 min). The GC 208 

oven temperature was held at 60°C for 2 min at the start of the analysis, then increased to 180°C at 209 

15°C min−1, and to 280°C at 5°C min−1, followed by a final hold time of 15 min. MS transfer line 210 

and ion source temperature were set to 290 and 230°C, respectively. Emission current and electron 211 

energy were set to 100 µA and −70 eV, respectively. The target analytes were detected in selected 212 

ion monitoring mode, identified using their retention times and quantification ions (Table 1). The 213 

quantification was performed using the internal calibration method and 11-point calibration curves 214 

ranging from 0.25 to 1000 pg µL−1. Trace Finder (Thermo Scientific, Waltham, USA) was used 215 

for chromatographic data acquisition and analysis. 216 

 217 

2.3.3 Quality control and data analysis 218 

Field blanks (n = 3) were prepared during sample collection by mounting the pre-baked filters on 219 

the sampler without switching it on. These filters were subsequently retrieved and processed along 220 

with the rest of the samples. Limits of quantification (LOQ) for analytes were calculated as mean 221 

concentration of each analyte in blanks + 3 standard deviations. When analyte concentrations in 222 

the samples exceeded the LOQ, mean blank concentrations were subtracted from those in the 223 

corresponding samples. Microsoft Office Excel 2013 (Microsoft Corp., Redmond, USA) and 224 

OriginPro 9.0 (OriginLab Corp., Northampton, USA) were used for statistical analysis and data 225 
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visualization. Mass size distributions (MSDs) of NMAHs and N/OPAHs were additionally 226 

characterized by the mass median diameter (MMD), defined as log MMD = Σ (ci log Di)/ Σ ci, 227 

with ci and Di being the concentration (ng m-3) and geometric mean diameter, respectively, of six 228 

impactor stages. 0.001 µm was adopted as the lower cut-off of the lowermost stage (backup filter) 229 

and 10 µm as the upper cut-off of the uppermost stage, even in the absence of a PM10 head (i.e. TK 230 

samples).  231 

 232 

3. Results and discussion 233 

3.1 Levels of NMAHs 234 

From the 11 targeted NMAHs, 8 were consistently detected in size-segregated PM from MZ and 235 

TK. 4-NG and DNOC were not detected in MZ samples, while being sporadically detected in the 236 

coarse PM (>3 µm) from TK. 2,4-DNP was detected more frequently in TK (three sample sets) 237 

than in MZ samples (one sample set). 238 

The concentrations of NMAHs associated to PM10 (MZ) and total PM (TK) are given in Table S3. 239 

PM10 and total PM ∑11NMAH concentrations in MZ and TK were 0.51-8.38 and 12.1-72.1 ng m-240 

3, respectively. In all sample sets, 4-NC was the most abundant NMAH with concentrations ranging 241 

within 0.05-3.90 ng m-3 (mean 2.46 ng m-3; Table S3) in MZ samples, and 10 times higher 242 

concentrations in TK samples (5.89-36.33 ng m-3; mean 22.11 ng m-3; Table S3). Second most 243 

abundant NMAH in MZ was found to be 4-NP with concentrations between 0.24 and 1.27 ng m-3 244 

(mean 0.83 ng m-3; Table S3), while 4-M-5-NC was the second most abundant in TK samples (2.54 245 

- 16.05 ng m-3; mean: 9.79 ng m-3; Table S3). In general, the concentration trends of NMAHs were 246 

4-NC > MNCs > 4-NP > NPs > NSAs > DNP (dinitrophenols) for MZ samples, and 4-NC > MNCs 247 

> 4-NP > NSAs > NPs > DNP for TK samples. These trends are in good agreement with other 248 

studies, where 4-NC, MNCs and 4-NP were the most abundant NMAHs (Kitanovski et al., 2012b; 249 

Chow et al., 2016). However, we previously found different concentration trends in snow-250 

scavenged atmospheric particles collected in MZ, where 4-NC and MNCs were the second most 251 

abundant NMAH species following NPs (Shahpoury et al., 2018). ∑NMAH winter concentrations 252 

at TK were higher than those found in winter PM2.5 and PM10 from Hong Kong (China; Chow et 253 

al., 2016) and rural Belgium (Kahnt et al., 2013), respectively, but lower than NMAH 254 

concentrations in winter PM10 samples from Ljubljana (Slovenia; Kitanovski et al., 2012b) and 255 

Shanghai (China; Li et al., 2016). The concentrations of individual NMAHs in winter PM10 from 256 
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MZ were among the lowest values reported so far (Iinuma et al., 2010; Kitanovski et al., 2012b; 257 

Kahnt et al., 2013; Mohr et al., 2013; Chow et al., 2016; Li et al., 2016; Teich et al., 2017; Wang 258 

et al., 2019). 259 

In Table S3, one can easily notice the consistently higher (≈10 times) total PM concentrations of 260 

4-NC, MNCs and NSAs in TK samples compared to those found in PM10 samples from MZ. 261 

Smaller concentration discrepancies among the sites were observed for 4-NP and methyl-262 

nitrophenols (MNPs) (up to 3 times higher concentrations in TK samples). Since 4-NC, MNCs and 263 

NSAs are considered as suitable tracers for BB aerosols (Iinuma et al., 2010; Kitanovski et al., 264 

2012b; Kahnt et al., 2013; Caumo et al., 2016; Chow et al., 2016; Teich et al., 2017), this suggests 265 

that the air masses over TK during sample collection were greatly influenced by BB emissions. To 266 

test this hypothesis, a correlation analysis was done for NMAHs. Except for NPs in TK samples, 267 

generally high correlations were observed within the NMAHs compound groups (NSAs, NCs, NPs; 268 

R2
adj > 0.8; Table S4 and S5). The correlation analysis of TK samples showed several interesting 269 

features (Table S4). Firstly, 5-NSA highly correlated (R2
adj 0.81 – 0.83) with 4-NP and potassium 270 

cation (K+), but showed insignificant correlations with 4-NC, MNCs and nitrate. Moreover, 3-NSA 271 

showed significantly (p<0.05) high correlation only with K+, but moderate with 4-NP. 272 

Additionally, 4-NP was highly correlated with K+ and nitrate (R2
adj 0.94 and 0.81, respectively). 273 

Secondly, 4-NC and 4-M-5-NC showed low correlations with K+ and nitrate, but highly correlated 274 

with 3-M-4-NP (R2
adj 0.74 and 0.78, respectively). In our previous work (Kitanovski et al., 2012b), 275 

high correlations between NSAs and 4-NC, MNCs or nitrates were observed (R2
adj > 0.8), 276 

supporting NSAs’ secondary origin (Kitanovski et al., 2012b; Teich et al., 2017). Our TK results 277 

indicate different emission sources between NSAs and 4-NP on the one hand, and 4-NC and MNCs 278 

on the other hand. 5-NSA and 4-NP (2-M-4-NP included) most likely had the same emission 279 

source, i.e. BB (both correlate with K+), and were probably formed by aqueous-phase nitration of 280 

their phenolic precursors (especially for 4-NP and 2-M-4-NP, which both highly correlated with 281 

nitrates) in deliquescent aerosol (Kroflič et al., 2018). Additionally, 3-NSA (insignificantly 282 

correlated with nitrate) was probably emitted primarily by BB (Wang et al., 2017). In contrast, low 283 

correlations of 4-NC and MNCs with K+ and nitrates suggest that BB and aqueous-phase nitration 284 

might not be the dominating emission sources, and that their possible main source could be gas-285 

phase nitration of anthropogenic precursors (Finewax et al., 2018), such as benzene and toluene 286 

(Xie et al., 2017; Wang et al., 2019), emitted from fossil fuel combustion (e.g. traffic, coal 287 
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combustion). The statistically significant (p<0.05) correlations of 3-M-4-NP with 4-NC and 4-M-288 

5-NC, in contrast to the correlations with 4-NP and nitrates, suggest that most likely 3-M-4-NP had 289 

similar emission sources with NCs (i.e. fossil fuel combustion). It can be noted from Table S4 that 290 

MNP isomers (2-M-4-NP and 3-M-4-NP) probably had different main emission sources, i.e. 291 

aqueous-phase nitration of a 2-M-4-NP precursor emitted from BB vs. fossil fuel combustion in 292 

case of 3-M-4-NP (Noguchi et al., 2007). 293 

Correlation analysis for NMAHs in MZ samples presents quite a different picture (Table S5). 294 

Statistically significant (p<0.05) high correlations were observed among different NMAH 295 

compound groups (i.e. NSAs, NCs, NPs), with most of R2
adj higher than 0.8. K+ was correlated 296 

with 5-NSA, 4-NC, MNCs and 3-M-4-NP, indicating their predominant emission from BB. Nitrate 297 

showed high correlations (R2
adj>0.9) with 3-NSA, 4-NP, 2-M-4-NP and 2,4-DNP, suggesting that 298 

aqueous-phase nitration was a main source for these compounds over MZ (Table S5). Two pairs 299 

of positional isomers i.e. 3-NSA/5-NSA and 2-M-4-NP/3-M-4-NP showed distinct correlations 300 

within their pair with regard to nitrate and K+. 3-NSA and 2-M-4-NP, which were highly correlated 301 

with nitrates, showed no correlation with K+, indicating that aqueous-phase chemistry could have 302 

played a significant role in their formation. In contrast, the opposite was observed for 5-NSA and 303 

3-M-4-NP (Table S5). In summer PM2.5 over a rural site in northern China, Wang et al. (2018) 304 

observed weak correlations of NSAs with NO2 that could indicate formation processes other than 305 

nitration. Primary NSA emission from traffic or BB cannot be excluded, since their positional 306 

isomers were found in diesel exhaust particles (Seki et al., 2010) or in BB smoke particles (Wang 307 

et al., 2017). The correlations of 4-NC and MNCs with K+, 4-NP and MNPs suggest similar sources 308 

for NCs and NPs over MZ (Chow et al., 2016; Voliotis et al., 2017; Wang et al., 2018).  309 

 310 

3.2 Mass size distributions of NMAHs 311 

MSDs of NMAHs over the two sampling locations are given in Fig. 1 and 2. NSAs (3-NSA and 5-312 

NSA) and NCs (4-NC, 4-M-5-NC, 3-M-5-NC and 3-M-4-NC) showed unimodal distributions with 313 

MSDs generally peaking in the finest PM fraction (PM0.49) in both MZ and TK samples. Overall, 314 

NMAHs were prominent in smaller size fractions (PM0.95) in MZ compared to TK (Fig. 1 and 2). 315 

For NSAs, in one out of the four samples collected at MZ, MSDs peaked in PM1.5-0.95 fraction, 316 

while the PM0.95 mass fractions of 3-NSA and 5-NSA were 22% and 44%, respectively (Fig. S1a). 317 

In this sample only, 5-NSA showed bimodal distribution (dominant peaks in PM0.49 and PM1.5-0.95). 318 
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Moreover, 4-NP and MNPs were the most abundant NMAHs (Fig.S1a). The dominant MSD peak 319 

of NSAs in PM1.5-0.95 and the concentration abundance of 4-NP and MNPs could indicate possible 320 

influence of primary traffic emissions (fossil fuel combustion; Seki et al., 2010; Inomata et al., 321 

2015) at the beginning of the sampling campaign in MZ. During the next sampling periods at MZ 322 

site (Figs. S1b, S1c and S1d), 75-86% of NSAs’ PM10 mass was associated with PM0.95, which is 323 

in line with the observations at TK (66-82% of total PM mass belongs to PM0.95; Fig. S2). At both 324 

sites, usually more than 90% of the compound total mass was associated with PM3 (range: 83-325 

99%). 87-93% and 82-88% of NCs at MZ and TK were associated with PM0.95 (Figs. S1, S2 and 326 

S5). The coarse mode (>3 µm) accounted for only 1% (MZ) or 2.5% (TK). The larger coarse 327 

fraction found in TK could be partially attributed to the fact that the sampling system did not have 328 

a PM10 inlet, thus it could potentially collect coarse particles up to approximately 30 µm (Voliotis 329 

et al., 2017). The unimodal distributions of NCs peaking in the fine PM fraction are in line with 330 

the only report on MSDs of 4-NC (Li et al., 2016). The MSDs of HULIS in MZ and TK closely 331 

followed the MSDs of NCs and NSAs (Figs. 1 and 2), suggesting that these compounds could be 332 

important constituents of PM HULIS (for detailed discussion see Sect. 3.5). The accumulation of 333 

the NCs’ and NSAs’ mass in the submicrometer (<0.95 µm) PM fractions could indicate fresh 334 

combustion emissions (e.g. BB) and/or gas-to-particle conversion processes of their precursors 335 

over MZ and TK (Li et al., 2016). 336 

Nitrophenols (i.e. 4-NP, 2-M-4-NP and 3-M-4-NP) showed bimodal distributions with a dominant 337 

peak in the finest fraction (PM0.49) and a smaller peak in PM3-0.95 (Figs. 1, 2, S1, S2 and S5). 338 

Bimodal distribution of NPs (i.e. 4-NP, 4-NG, 2,6-dimethyl-4-nitrophenol and 2,6-dinitrophenol) 339 

with a small mode peak in the fine PM fraction and a big one in the coarse fraction, was recently 340 

reported during winter haze episodes over Shanghai, China (Li et al., 2016). Our results imply that 341 

BB and gas-to-particle conversion processes were likely more prevalent emission sources for NPs 342 

in MZ and TK (dominant NPs’ peak in PM0.49) than fossil fuel (diesel) combustion sources 343 

(Harrison et al., 2005; Noguchi et al., 2007; Inomata et al., 2015; Li et al., 2016). For 4-NP, at both 344 

sites, around 80% of PM10 mass (or of the total PM mass at TK) was associated with PM3, while ≈ 345 

60% was associated with PM0.95 (Figs. S1 and S2). Similarly, for methyl-nitrophenols 83-88% of 346 

PM10 mass at MZ and 75-83% of total PM mass at TK sites were associated with PM3, while 58-347 

65% of PM10 at MZ and 48-61% of total PM mass at TK sites were associated with PM0.95 (Figs. 348 

S1 and S2). 349 
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MMD of NMAHs was 0.10 µm (0.24 for NPs, 0.07 for NCs and 0.11 µm for NSAs) at MZ vs. 0.27 350 

µm (0.60 for NPs, 0.24 for NCs and 0.31 µm for NSAs) at TK. The larger MMDs at TK could be 351 

explained by the larger size range collected at this site as mentioned above, but they could also be 352 

indicative of aerosol aging. In aged aerosols, semivolatiles are expected to be re-distributed with 353 

the MMD approaching the surface mean diameter, which for urban and continental aerosol peaks 354 

around 0.2 µm (Jaenicke, 1988), a shift which could not be resolved by the sampling technique 355 

applied. Note that the low size resolution (6 stages) may hide modes, which in particular applies 356 

for the so-called accumulation mode, which adds mostly to PM0.49, but also to the size fraction 357 

between 0.49 and 0.95 µm. 358 

 359 

3.3 Levels of N/OPAHs 360 

N/OPAHs were studied in size-resolved PM in both MZ and TK sites. At both sites, particle-phase 361 

OPAHs were detected more frequently than NPAHs: seven out of eight OPAHs targeted for 362 

analysis were detected in nearly all MZ and TK samples (Table S3; Figs. S3 and S4). In contrast, 363 

only eight out of seventeen targeted NPAHs were found in the PM samples, of which only 1-364 

nitronaphthalene (1-NNAP), 9-nitroanthracene (9-NANT), 2-NFLT, and 7-nitrobenz(a)anthracene 365 

(7-NBAA) were detected in both MZ and TK samples. Interestingly, 3-nitrophenanthrene (3-366 

NPHE), 3-NFLT, and 1- and 2-NPYR were only found in TK samples. This was not due to 367 

differences in individual LOQs between the two sites (see Table S2). The mean concentrations of 368 

NPAHs in PM were dominated by 9-NANT followed by 2-NFLT and 7-NBAA at both sites (Figs. 369 

1 and 2, Table S3), with concentrations reaching to 225, 154, and 71 pg m-3, respectively. This 370 

pattern closely resembles those previously reported for PM from several locations in central Europe 371 

(Tomaz et al., 2016, and references therein), including NPAHs found in snow-scavenged 372 

atmospheric particles from MZ sample site (Shahpoury et al., 2018). As for OPAHs, the mean 373 

analyte concentrations in PM were dominated by OBAT, followed closely by BbOFLN, BaOFLN, 374 

9,10-O2ANT, and 1,2-O2BAA. The latter two quinones could be of high importance due to their 375 

redox activity, and their potential to catalyse the formation of reactive oxygen species (ROS) within 376 

the human respiratory system (Ayres et al., 2008; Bates et al., 2019). The two substances were 377 

found to dominate two out of four MZ samples with concentrations up to 221 and 137 pg m-3, 378 

respectively. These concentrations were higher at TK site and reached 354 and 514 pg m-3, 379 

respectively.  380 
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Overall, all N/OPAHs showed considerably higher concentrations in TK than in MZ samples. 381 

∑NPAH concentrations in PM10 from MZ and in total PM from TK were <LOQ-90 and 76-578 pg 382 

m-3, respectively, whereas ∑OPAHs demonstrated much higher levels ranging 47-1636 and 858-383 

4306 pg m-3, respectively. The sum of three quinones 1,4-naphthoquinone (1,4-O2NAP), 9,10-384 

O2ANT, and 1,2-O2BAA were 30-363 and 428-873 pg m-3, respectively. The levels of particle-385 

phase NPAHs found in MZ fall in the lower end of the range (50-500 pg m-3) observed for various 386 

types of sites in Europe (Tomaz et al., 2016, and references therein). The levels at TK represent the 387 

upper end of this range, while being within the concentration range previously found at other sites 388 

in Thessaloniki (1204 ± 249 pg m-3 at a traffic site, 383 ± 77 pg m-3 at an urban background site, 389 

Besis et al., 2017). The total OPAH concentrations at both sites fall in the lower end of the range 390 

previously observed in Europe (0.5-50 ng m-3; Tomaz et al., 2016 and references therein). 391 

N/OPAHs were predominant in the sub-micrometre PM fraction (PM0.95; 85-91% of PM10 at MZ 392 

and 78-85% of total PM at TK site; Figs. 1, 2, S3, S4 and S5), with relatively more enrichment in 393 

PM0.49 compared to PM0.49-0.95 across the two sites. The mean concentrations of ∑NPAHs in PM0.49 394 

from MZ and TK were 101±73 and 417±134 pg m-3, whereas in PM0.49-0.95 were 22.8±15.9 and 395 

222±95 pg m-3, respectively. ∑OPAHs showed similar patterns at MZ and TK sites – they were 396 

460±566 and 1426±1210 pg m-3 in PM0.49, respectively, and 81.6±78.8 and 555±209 pg m-3 in 397 

PM0.49-0.95. The targeted NPAHs did not show a second mode in any sample, whereas for 9-OFLN 398 

and 9,10-O2ANT a second mode was found in MZ samples. Such differences between mass 399 

distributions indicate that these OPAHs are subject to different atmospheric processes compared to 400 

the other N/OPAHs that we studied. This could point at different emission and formation pathways 401 

in the atmosphere (see Sect. 3.4 for further discussion). Some of the OPAHs with single O-atom, 402 

namely OBAT, BaOFLN, and BbOFLN, originate from primary sources (i.e. combustion of fossil 403 

fuels and biomass; Albinet et al., 2007; Karavalakis et al., 2010; Shen et al., 2013b; Souza et al., 404 

2014; Huang et al., 2014; Tomaz et al., 2016; Vicente et al., 2016), whereas some quinones, such 405 

as 9,10-O2ANT and 1,2-O2BAA, are associated with both primary and secondary sources (Kojima 406 

et al., 2010; Souza et al., 2014; Lin et al., 2015; Zhuo et al., 2017). In order to better understand 407 

the potential sources of the target substances, we performed correlation analysis between the 408 

measured levels of N/OPAHs and other PM constituents, namely, WSOC, HULIS, nitrate, 409 

sulphate, and K+. We found a significant correlation (n = 5, p<0.05) between 9,10-O2ANT and 1,2-410 

O2BAA at TK site, which suggests a common emission source (Table S6). The data shown in 411 
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Tables S6 and S7 also indicate significant correlations (p<0.05) between the levels of BaOFLN 412 

and 1-NPYR (produced by primary sources), and WSOC, HULIS, and K+ (BB marker) in TK 413 

samples. 1-NPYR is the predominant congener among NPAHs found in diesel engine exhaust 414 

particles and was proposed as marker for diesel emission (Bamford et al., 2003; IARC 2013), but 415 

it may also be emitted with relatively small quantities from biomass-fuelled combustion (Shen et 416 

al., 2012; Orakij et al., 2017). These findings suggest the importance of primary emission sources 417 

including BB and diesel exhaust in TK study area. For MZ samples, we found significant 418 

correlations (n = 4, p<0.05) of 9-OFLN, BaOFLN, and 9-NANT with WSOC and HULIS, without 419 

any significant correlations to K+, suggesting the presence of mixed air masses that were fed by 420 

both primary and secondary sources at MZ site. The absence of both NPYR isomers in MZ samples, 421 

which are indicative of road traffic and industrial emissions and long-range transported pollution 422 

(IARC, 1989; Finlayson-Pitts and Pitts, 2000; Lammel et al., 2017), indicates that chemically aged 423 

air was advected during the MZ campaign (Voliotis et al., 2017).  424 

 425 

3.4 Mass size distribution of N/OPAHs 426 

N/OPAH MSDs are shown in Figs. 1 and 2. On average, the MMDs of NPAHs were 0.06 µm at 427 

MZ and 0.12 µm at TK, while those for OPAHs were 0.06 µm at MZ and 0.10 µm at TK. The 428 

MMDs for quinones were 0.07 and 0.15 at the two sites, respectively. We found two distinct MSD 429 

patterns among the samples: the first pattern observed in three samples across the two sites (one 430 

sample set from MZ and two sets from TK; Figs. S3c, S4a, d and e), was dominated by OBAT 431 

followed by BbOFLN. The MMD of OPAHs in these three samples was on average 0.06 µm 432 

(ranging within 0.05-0.09 µm). The unique analyte distribution in these samples was accompanied 433 

by a noticeably higher enrichment in PM0.49 as well as relatively high concentrations compared to 434 

the rest of samples. The preferential enrichment of OBAT, BaOFLN, and BbOFLN in sub-435 

micrometre PM was previously reported from locations in Europe, Asia, and the USA (Allen et al., 436 

1997; Albinet et al., 2008; Ladji et al., 2009; Ringuet et al., 2012; Shen et al., 2016; Gao et al., 437 

2019). The observed pattern could be the evidence of fresh emission from primary sources, as was 438 

discussed in the previous section. The second pattern, which was seen in the remaining six sample 439 

sets, was considerably different: the target substances were more evenly distributed across different 440 

PM size ranges, and often dominated by relatively high abundance of quinones, 9,10-O2ANT and 441 

1,2-O2BAA – the two quinones were previously reported with preferential enrichment in ultrafine 442 
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PM (Ringuet et al., 2012; Shen et al., 2016). The MMD of OPAHs in these five sample sets was 443 

on average 0.25 µm (ranging within 0.08-0.49 µm). This distribution points at relatively aged air 444 

masses and the contribution of both primary and secondary sources.  445 

In terms of the inter-site variability of target substance MSD, the size fraction PM0.49 was more 446 

prominent in MZ than in TK, i.e. on average 74% for NPAHs, 75% for OPAHs, 69% for quinones 447 

at MZ, compared to 55, 60, and 52%, respectively, at TK site (Figs. 1-2 and S3-5). The largest 448 

differences found among each substance group were for 9-NANT (28% higher at MZ), BbOFLN 449 

(25% higher), and 1,2-O2BAA (17% higher). The values for NPAHs from TK were lower than 450 

those previously found for wintertime PM at this site (59 and 71% for a traffic and urban 451 

background site, respectively; Besis et al., 2017). The higher enrichment of predominant NPAHs 452 

(9-NANT and 2-NFLT; Figure S3-S4) in PM0.49 in the present study is in agreement with the MSDs 453 

reported for these compounds from several other locations in Europe and Asia (Ringuet et al., 2012; 454 

Lan et al., 2014; Lammel et al., 2017). The preferential enrichment of N/OPAHs in sub-micron 455 

PM, especially PM0.49, raises concerns with respect to the inhalation toxicity of airborne PM; this 456 

is because PM0.49 is capable of reaching deeper regions in the lung. This is exacerbated by the 457 

ability of quinones to catalyse redox reactions and the formation of ROS in the respiratory system.  458 

 459 

3.5 NMAHs and N/OPAHs as part of HULIS 460 

Because of their water-solubility, NMAHs are constituents of PM HULIS and WSOC (Claeys et 461 

al., 2012; Teich et al., 2017). This substance class contributed ≈0.4 and 1.8% to HULIS mass at 462 

the MZ and TK sites, respectively (Table 3). This contribution was fairly even across the size 463 

fractions addressed, while showing a maximum for particles size 0.95-3 µm, namely ≈0.7 and 2.0% 464 

by mass at the MZ and TK sites, respectively. The large particle size, 0.95-3 µm, points to the 465 

significance of aqueous phase processes and in general slower formation of NMAHs (Voliotis et 466 

al., 2017). The water-soluble N/OPAHs, i.e. 1,4-O2NAP and 1-NNAP, contributed up to 0.0006 % 467 

to HULIS (Table 3; water solubility of ≥50 mg L-1 was used as criterion), with values peaking in 468 

the PM size fractions 0.95-3 and >3 µm at MZ and TK, respectively. Similar to NMAHs, the 469 

N/OPAH mass mixing ratios in HULIS did not significantly vary with particle size (Table 3).  470 

Our reported NMAH contribution to HULIS mass is in good agreement with the results of previous 471 

reports from urban sites in Europe (Kitanovski et al., 2012b; Claeys et al., 2012) and Brazil (Caumo 472 

et al., 2016). Specifically, Kitanovski et al. (2012) found that NMAHs contributed 0.4-1.3% to the 473 
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winter urban PM10 OC mass from Ljubljana (Slovenia), while in another study, 4-NC alone 474 

contributed 0.46% and 0.04% to the HULIS mass in urban spring and summer PM2.5 from Budapest 475 

(Hungary), respectively (Claeys et al., 2012). Moreover, NMAHs (4-NP, 4-NC, MNCs and 476 

dimethyl-nitrocatechols (DMNCs)) contributed 0.28% and 0.35% to the OC mass in winter PM10 477 

samples from São Paulo, Brazil (Caumo et al., 2016). Lower NMAH contribution to HULIS (or 478 

OC) mass were reported for rural sites in Europe. For example, 4-NC contributed 0.03% to the 479 

HULIS mass in summer PM2.5 from K-puszta, Hungary (Claeys et al., 2012), while total NMAHs 480 

(NPs, 4-NC, MNCs and DMNCs) presented 0.75% of OC mass in winter PM10 sampled at a rural 481 

background site in Belgium (Kahnt et al., 2013). 482 

In Sect. 3.2 we emphasized the similar MSDs at both locations between HULIS on one side and 483 

NCs and NSAs on the other. These two NMAH subclasses on average contributed to ≈83% and 484 

≈94% of total NMAHs in PM0.95, and ≈55% and 87% of total NMAHs in PM3-0.95 at MZ and TK 485 

sites, respectively (Table S8). At both sites, NCs were the dominant NMAH species. It is also 486 

interesting to note that HULIS showed higher correlations with NSAs and NCs in MZ (R2
adj 0.68-487 

0.98; Table S5), than in TK (R2
adj 0.24-0.59; Table S4). BaOFLN and 1-NPYR, as well as 9-OFLN, 488 

BaOFLN and 9-NANT showed similar MSDs and significant correlations (R2
adj ≥ 0.8; Tables S6-489 

S7) with HULIS at TK and MZ, respectively, suggesting that these N/OPAHs are most likely 490 

constituents of the HULIS. The significant correlations in the levels of 1-NPYR with HULIS, 491 

WSOC, and K+ (Table S6) are particularly interesting, as 1-NPYR is exclusively associated with 492 

primary emission sources. These observations are in line with our previous discussion that MZ site 493 

was mainly influenced by aged air masses, while TK site by a mixture of fresh (BB and fossil fuel) 494 

emissions and aged aerosols (Voliotis et al., 2017). 495 

With mass mixing ratios of the order of 1%, NMAHs are constituents of HULIS with limited 496 

significance by mass, but their relevance is more significant due to their optical properties (Mohr 497 

et al., 2013; Laskin et al., 2015; Teich et al., 2017; Xie et al., 2017). Teich et al. (2017) found that 498 

the mass contributions of total NMAHs (NPs and NSAs) to WSOC on average was five times lower 499 

than their contribution to the light absorption of the aqueous PM extract at 370 nm (Teich et al., 500 

2017). This implies that even small fractions of chromophoric HULIS compounds such as NMAHs 501 

and water soluble N/OPAHs can have an excessive influence on the aerosol light absorption (Mohr 502 

et al., 2013; Teich et al., 2017) and the atmospheric photochemical processes, especially in polluted 503 

areas (Laskin et al., 2015; Teich et al., 2017). 504 
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4. Final remarks 505 

We studied the composition and MSDs of NMAHs and N/OPAHs in PM from urban locations in 506 

Germany and Greece, with some of the target substances (i.e. NSAs, MNCs and MNPs) studied in 507 

size-resolved PM for the first time. At both locations, NCs were the most abundant NMAH species, 508 

and OPAHs were more abundant and more frequently detected than NPAHs. The total 509 

concentrations of the most abundant NMAHs, NCs, and N/OPAHs were up to 10 times higher in 510 

TK than in MZ. Correlation analysis of NMAHs revealed distinct features among the sites, 511 

suggesting mixed air masses influenced by fresh BB and aged fossil fuel combustion emissions at 512 

TK, and aged advected air influenced by combustion emissions (i.e. BB) at MZ.   513 

The MSDs of NMAHs, OPAHs and NPAHs were rather similar, but exhibited temporal and spatial 514 

variations due to daily changes in atmospheric conditions and different sources. In general, NCs, 515 

NSAs, OPAHs and NPAHs showed unimodal MSDs peaking in the finest PM fraction, PM0.49, 516 

which was more prominent in MZ than in TK. NPs exhibited bimodal MSDs with the dominant 517 

peak in PM0.49. The MMDs of all chemical classes were lower at MZ than at TK. Larger MMDs at 518 

TK could be explained by the larger PM size range collected at this site, but they could also be an 519 

indication of aerosol aging. On average, NMAHs and water-soluble N/OPAHs (i.e. 1,4-O2NAP 520 

and 1-NNAP) contributed up to 1.8 and 0.0006% to the HULIS mass in the study areas. Although 521 

NMAHs and N/OPAHs represent a small fraction of PM HULIS (and WSOC), due to their light 522 

absorption properties, their impact on the total aerosol light absorption could be disproportionally 523 

large. This is particularly important for atmospheric photochemical processes in polluted areas.    524 
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Table 1. Analytes targeted in this study 

Analyte Abbreviation Q1 

3-Nitrosalicylic acid 3-NSA 182 
5-Nitrosalicylic acid 5-NSA 182 
4-Nitrocatechol 4-NC 154 
4-Nitroguaiacol 4-NG 168 
4-Methyl-5-nitrocatechol 4-M-5-NC 168 
4-Nitrophenol 4-NP 138 
2,4-Dinitrophenol 2,4-DNP 183 
3-Methyl-4-nitrophenol 3-M-4-NP 152 
3-Methyl-5-nitrocatechol 3-M-5-NC 168 
3-Methyl-4-nitrocatechol 3-M-4-NC 168 
2-Methyl-4-nitrophenol 2-M-4-NP 152 
2-Methyl-3,5-dinitrophenol 
(Dinitro-ortho-cresol) 

DNOC 
197 

1-Nitronaphthalene 1-NNAP 173.1 

2-Nitronaphthalene 2-NNAP 173.1 

5-Nitroacenaphthene 5-NACE 199.1 

2-Nitrofluorene 2-NFLN 211.1 

9-Nitroanthracene 9-NANT 223.1 

9-Nitrophenanthrene 9-NPHE 223.1 

3-Nitrophenanthrene 3-NPHE 223.1 

2-Nitrofluoranthene 2-NFLT 247.1 

3-Nitrofluoranthene 3-NFLT 247.1 

1-Nitropyrene 1-NPYR 247.1 

2-Nitropyrene 2-NPYR 247.1 

7-Nitrobenz(a)anthracene 7-NBAA 273.1 

6-Nitrochrysene 6-NCHR 273.1 

1,3-Dinitropyrene 1,3-N2PYR 292.1 

1,6-Dinitropyrene 1,6-N2PYR 292.1 

1,8-Dinitropyrene 1,8-N2PYR 292.1 

6-Nitrobenz(a)pyrene 6-NBAP 297.1 

1,4-Naphthoquinone 1,4-O2NAP 158.1 

9-Fluorenone 9-OFLN 180.1 

9,10-Anthraquinone 9,10-O2ANT 208.1 

2-Nitro-9-fluorenone 2-N-9-OFLN 225.1 

Benz(a)fluorenone BaOFLN 230.1 

Benz(b)fluorenone BbOFLN 230.1 

Benzanthrone OBAT 230.1 

1,2-Benzanthraquinone 1,2-O2BAA 258.1 

Q1 – m/z of ions used for quantification in ESI(  ̶)MS for NMAHs and NCI-MS for N/OPAHs 
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Table 2. Sampling details 

 
Cut-off 
diameters (µm) 

Sampling date 
Sample  

volume (m3) 

Mainz a 
49.99° N 
8.23° E 

10 - 7.2 
7.2 - 3 
3 - 1.5 

1.5 - 0.95 
0.95 - 0.49 

<0.49 

17.-20.11.2015 
26.-29.11.2015 
01.-04.12.2015 
04.-07.12.2015 

3402 
4124 
4088 
4197 

Thessaloniki 
40.63°N 
22.96° E 
 

10 – 3 b 
3 - 0.95 b 

0.95 - 0.49 
<0.49 

27.-29.1.2016 
08.-10.2.2016 
16.-18.2.2016 
22.-24.2.2016 
17.-19.3.2016 

3228 
3228 
3228 
3172 
3175 

b pooled from two impactor stages 
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Table 3. Mean absolute concentrations and mass mixing ratios (in brackets) of HULISa in WSOCa as well as of 
NMAHs and water-soluble (WS) N/OPAHsb in HULIS in (a) Mainz and (b) Thessaloniki PM. 
a. 

Particle size 
µm 

WSOC (µgC m-3) 
HULIS µg m-3 (% 

C/C) 
NMAHs ng m-3 

(%) 
WS N/OPAHs 

pg m-3 (%) 

< 0.49 1.14 0.80 (39) 3.41 (0.43) 0.7 (0.0001) 

0.49-0.95 0.68 0.31 (25) 1.24 (0.40) 0.2 (0.0001) 

0.95-3 0.18 0.09 (28) 0.65 (0.73) 0.3 (0.0003) 

3-10 0.12 0.09 (42) 0.27 (0.30) 0.2 (0.0002) 

Total 2.07 1.29 (33) 5.58 (0.43) 1.4 (0.0001) 

 

b. 

Particle size 

(µm) 
WSOC (µgC m-3) 

HULIS µg m-3 (% 

C/C) 

NMAHs ng m-3 

(%) 

WS N/OPAHs pg 

m-3 (%) 

< 0.49 2.02 1.29 (34) 24.0 (1.9) 2.7 (0.0002) 

0.49-0.95 1.28 0.83 (34) 13.9 (1.7) 0.7 (0.0001) 

0.95-3 0.57 0.35 (32) 6.89 (2.0) 0.5 (0.0001) 

> 3 0.33 0.11 (18) 1.87 (1.7) 0.7 (0.0006) 

Total 4.20 2.58 (32) 46.6 (1.8) 4.5 (0.0002) 

a Voliotis et al., 2017  
b 1,4-O2NAPs and 1-NNAP (criteria: water solubility > 50 mg L-1)  
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Figure 1. Mass size distributions (MSDs) of PM-bound NMAHs, N/OPAHs, WSOC, HULIS and ions in Mainz 
(Germany). The error bars represent standard deviations. a compound MSD calculated from one (out of four) sample 
set (detected and quantified in one sample set only); b compound MSD calculated from three (out of four) sample 
sets (detected and quantified in three sample sets only) 
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Figure 2. Mass size distributions (MSDs) of PM-bound NMAHs, N/OPAHs, WSOC, HULIS and ions in 
Thessaloniki (Greece). The error bars represent standard deviations. b compound MSD calculated from three (out of 
five) sample sets (detected and quantified in three sample sets only) 
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