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Abstract. An  accurate  knowledge  of  snow  depth  distribution  in  mountain  catchments  is  critical  for

applications in hydrology and ecology. A recent new method was proposed to map the snow depth at meter-

scale resolution from very-high resolution stereo satellite imagery (e.g., Pléiades) with an accuracy close to

0.50 m. However,  the validation was mainly done using probe measurements  which sampled a  limited

fraction of the topographic and snow depth variability. We deepen this evaluation using accurate maps of the

snow depth derived from ASO airborne lidar measurements in the Tuolumne river basin, USA. We find a

good agreement between both datasets over a snow-covered area of  137 km² on a 3 m grid with a positive

bias for Pléiades  snow depth  of 0.08 m, a root-mean-square error of 0.80 m and a normalized median

absolute deviation of 0.69 m. Satellite data capture the relationship between snow depth and elevation at the
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catchment scale, and also small-scale features like snow drifts and avalanche deposits. The random error on

snow depth  can be reduced by a factor two (up to approximately 0.40 m) when the snow depth map is

spatially averaged to a ~20 m grid. The random error at the pixel level is lower on snow-free areas than on

snow-covered areas, but errors on both terrain type converge at coarser resolutions, which is important for

further applications of the method in areas without snow depth reference data. We conclude that satellite

photogrammetry stands out as an efficient method to estimate the spatial distribution of snow depth in high

mountain catchments. 

 Introduction

The snow depth or height of the snowpack (symbol: HS, Fierz et al. 2009) is a key variable for both water

resource management and avalanche forecasting in mountain regions. However, the determination of HS in

complex  terrain  remains  challenging  due  to  its  high  spatial  variability  at  decametric  scale.  Current

operational  approaches  to  estimate  HS  are  either  based  on  sparse  in  situ  measurements,  area  limited

unmanned aircraft vehicle (UAV) campaigns (Nolan et al., 2015, Redpath et al., 2018) or costly airborne

campaigns (Bühler  et  al.,  2015,  Dozier  et  al.,  2016,  Painter  et  al.,  2016).  Recently a  new method was

introduced to retrieve HS maps from satellite data at metric resolution, typically 1 to 4 m (Marti et al., 2016,

McGrath et al., 2019, Shaw et al., 2019). The method is based on the differencing of snow-on (winter) and

snow-off (in general end-of-summer) digital elevation models (DEM) that are generated from very high-

resolution satellite stereo imagery (e.g. Pléiades, DigitalGlobe/Maxar WorldView-1/2/3 and GeoEye-1). The

method was tested using two Pléiades stereo triplets over the Bassiès catchment in the Pyrenees (14.5 km²).

The snow-on and snow-off DEMs were generated using the Ames Stereo Pipeline (ASP, Shean et al., 2016)

and co-registered before differencing them (Berthier et al. 2007). The accuracy of the method was evaluated

using 451 probe measurements of the snow depth. The HS satellite-derived map was also compared to the

one obtained from a UAV photogrammetric survey over a small portion of the catchment (3.1 km²). The

results showed that snow depth could be retrieved with decimetric accuracy from Pléiades images (standard

deviation of residuals 0.58 m for a pixel size of 2 m), suggesting that the method had the potential to become

a viable alternative to airborne campaigns with the benefits of the satellite: access to any point on the globe

and lower cost for the end-user.

However,  this  work  provided  only  a  partial  validation  of  the  method since  the  reference  data  did  not

homogeneously sample the topographic and HS variability of the study area. For example, accumulation due

to snow drifts on the lee side of high-elevation ridges were not surveyed for safety reasons. The sampling

depth was also limited to 3.2 m, which was the length of the snow probes. Furthermore, the areas with steep

slopes were under-sampled. Half of the points sampled in the field were over slopes less than 10° while the

terrain median slope in this catchment is ~30°.  This lack of validation data in high slope areas was an
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important limitation of this study since DEMs from stereoscopic images are known to be less accurate in

high slope areas (Lacroix, 2016; Shean  et al., 2016). In addition, snow probe measurements may fail to

represent the mean HS at the scale of a 4 m pixel especially in mountain terrain (Fassnacht  et al., 2018).

Furthermore, Marti et al. (2016) did not evaluate the impact of the photogrammetric software configuration

on the accuracy of  the  HS map,  and several  upgrades  were implemented in  ASP since their  study.  In

particular,  the  semi-global  matching  algorithm  (Hirschmüller,  2005)  was  added  to  the  catalogue  of

algorithms that can be used to derive the disparity map from stereo images. This algorithm is expected to

perform better in low texture terrain (Bühler et al., 2015; Shean et al., 2016) and therefore has the potential

to reduce the number of missing values in the snow depth map. 

Given the aforementioned limitations, we planned a second more comprehensive validation study by taking

advantage of the NASA Airborne Snow Observatory campaigns (ASO) in the Sierra Nevada, USA. In this

area ASO routinely acquires accurate HS measurements by airborne lidar altimetry. We tasked the Pléiades

system to acquire  two stereo triplets  over  the  Tuolumne river  basin.  The snow-on Pléiades  triplet  was

acquired 1st May 2017, the day before the ASO flight and close to the accumulation peak. The ASO product

is used as a reference as it should exhibit no bias and was found to have an accuracy of 0.08 m (Painter et

al., 2016) while Pléiades HS maps have an accuracy ranging between 0.50 m and 1 m (Marti et al., 2016).

The ASO data give us the opportunity to make a more advanced evaluation of the method in mountainous

terrain.

In other studies using DEM differences to characterize land surface elevation changes, error statistics are

often estimated from stable terrain areas, where no elevation change should have occurred (Deschamps-

Berger et al., 2019). However, stable terrain might not be representative of the snow-covered terrain owing

to  differences in  topography  and  in  reflectivity.  A  homogeneous  snow-covered  area  can  represent  a

challenge for image correlation compared to  typical snow-free terrain found in alpine mountains. When

integrating  elevation  change  over  areas  (glacier  volume  change,  lava  flow  volume,  landslide  terrain

deformation),  previous  studies  used  different  functions  to  estimate  the  error  by  including,  or  not,  a

systematic error, a random error and a spatial correlation metric. Here, the ASO dataset enables analysis of

the error model and the error sources. 

In addition, we take advantage of this dataset to evaluate the effect of the configuration of the ASP software

on the resulting HS map. We produced the HS maps with DEMs calculated with three different sets of

options. We also evaluate the effect of using different combinations of pairs of stereo images (front-back,

nadir-back, front-back) instead of a triplet (front-nadir-back) to generate the snow-on DEM at a lower cost

for future applications.  
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2 Study site

The study site is located in the Tuolumne river basin in the Sierra Nevada mountain range, California, USA

(Fig. 1). The Tuolumne river supplies water to the agricultural plain of the Great Valley and the densely

populated area of San Francisco. The region recently experienced a five-year drought from 2012 to 2016

(Roche et al., 2018), increasing the interest for water resources monitoring. The ASO flights cover 1100 km²

in the basin while this study focuses on a 280 km² subzone. The elevation within this subzone ranges from

1800 m a.s.l.  to 3500 m a.s.l..  Typical winter accumulation can reach several meters at high elevations

(Painter et al., 2016). The 2016-2017 winter was characterized by near record snow accumulation that has

been referred to as the snowpocalypse (Painter et al., 2017). 

 

Figure 1. The Tuolumne basin is located in California, USA (a). Pléiades images footprint (red polygon) in

Tuolumne basin (blue line) (b). The terrain elevation in the background is the snow-off digital elevation

terrain from ASO used in the co-registration step.

3 Data

3.1 Pléiades images

The study area is too large to be imaged by Pléiades in tri-stereo mode with a single scene, hence the area

was imaged in two strips which overlapped by 3 km in winter and 1.5 km in summer in the along-track

direction.  The  snow-on triplets  were  both  acquired  on  01  May 2017,  while  the  snow-off  triplets  were

acquired on 8 August 2017 and 13 August 2017 (Fig. 1, Table 1). The imaged area covers in total 280 km².
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Images were acquired in panchromatic and multispectral mode with incidence angles along track between -

7° and 9°. The base to height (B/H) ratio of successive pairs is around 0.1 (Table 1). The panchromatic

images have a resolution of 0.5 m at nadir and are used to calculate the DEMs. For the snow-on acquisition,

we requested to reduce the number of time domain integration (TDI) lines used to image the scene. This is

recommended to curb image saturation over sun-exposed snow surfaces (Berthier et al., 2014). As a result,

there are no saturated pixels in the images of this study. Pléiades multispectral images have a resolution of 2

m.  We  only  use  the  multispectral  image  that  was  acquired  the  closest  to  the  nadir  to  compute  the

multispectral orthoimage.

3.2 Lidar data from the Airborne Snow Observatory (ASO)

A snow-off DEM on 13 October 2015 and a snow depth map on 2 May 2017 from the ASO are used for

comparison with the Pléiades products (Fig. 1, Table 1). The ASO program, operating since 2012, provides

snow depth, Snow Water  Equivalent  (SWE),  and snow albedo maps over  full  mountain watersheds  to

support  scientific  campaigns and operational  water  management   (Painter  et  al.,  2016).  The ASO lidar

system measures the distance between the target and aircraft, and is combined with aircraft position and

orientation measurements to generate a collection of elevation points – a “point cloud”.  Ground points are

aggregated to a 3 m grid to derive a gridded DEM.. Snow depth maps are obtained from the difference of a

snow-on and snow-off DEM in unforested areas, and from a point-cloud differencing algorithm in areas with

forest canopy. Snow depth maps are combined with density from a model  and in-situ observations to obtain

the SWE. The values on the snow-free areas are used to bias-correct the snow-on elevations and are set to

zero.  From comparison with 80 in-situ manual  measurement, no bias is observed on the HS maps and the

root  mean square error (RMSE) per pixel  at  a 3 m resolution is  0.08 m (Painter  et  al.,  2016).  For the

evaluation of Pléiades HS maps, we excluded 25 km² near the catchment divide in the north-east part of the

study area because we observed artifacts in the lidar HS map probably due to issues with the aircraft position

and orientation data.
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Table 1. Summary of the data used in this study. The base-to-height ratio (B/H) between the front-nadir (F-

N), nadir-back (N-B) and front-back (F-B) pair of images is given for the stereo images.

Type Source Zone Date
Horizontal

resolution

B/H

(F-N|N-B|

F-B)

Snow

on/off

Digital terrain

model

Airborne lidar (ASO) North+South 2015-10-13 3 m - Off

Snow depth map Airborne lidar (ASO) North+South

(minus 25 km²)

2017-05-02 3 m - On

Tri-stereo images Satellite optical images

(Pléiades)

South 2017-05-01 0.5 m 0.12|0.12|0.23 On

Tri-stereo images Satellite optical images

(Pléiades)

North 2017-05-01 0.5 m 0.12|0.12|0.23 On

Tri-stereo images Satellite optical images

(Pléiades)

South 2017-08-08 0.5 m 0.12|0.08|0.20 Off

Tri-stereo images Satellite optical images

(Pléiades)

North 2017-08-13 0.5 m 0.11|0.11|0.22 Off

4. Methods

4.1 Workflow for calculation of Pléiades snow depth maps

Figure 2 presents the workflow that we developed to produce HS maps from Pléiades images using ASP

version 2.6.2 (Shean et  al.  2016) and the Orfeo Toolbox (Grizonnet  et  al.,  2017).  We detail  below the

calculation of the DEMs, the HS maps and the land cover classifications.

4.1.1 DEM calculation

We use an iterative approach to obtain a refined point cloud and a DEM from each triplet of stereo images.

The first  iteration uses default L1B input images to  produce a  coarse DEM at 50 m resolution. The input

images are orthorectified using this coarse DEM with the ASP utility mapproject. The orthorectified  images

are  then used as inputs for the second  iteration to obtain a fine DEM at  3 m resolution.  This  iterative

processing was  shown to improve computation time and reduce artifacts in the final DEM (Shean  et al.,

2016). The resolution and coordinate system of the DEMs were defined to match those of the ASO product

(UTM 11 north).  The options  of  the  stereo  command for  the  second run were empirically  adjusted as

explained in Sect. 4.2. 
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4.1.2 Snow depth (HS) maps 

We co-registered the Pléiades DEMs to the ASO snow-off DEM to enable a pixel-wise comparison between

both datasets and align the raster grids. We first co-registered the Pléiades snow-off DEM to the ASO snow-

off DEM. We then separately co-registered the Pléiades snow-on DEM to the Pléiades-registered snow-off

DEM  before  computing  the  difference  between  the  Pléiades  snow-on  and  Pléiades  snow-off  DEMs

(hereafter referred to as dDEM). The north and south Pléiades dDEMs were mosaiced and the north dDEM

value was preserved in the overlapping area. The co-registration vectors were calculated using the algorithm

by Nuth and Kääb (2011) on areas where no elevation change is expected (i.e. stable terrain). The stable

terrain areas were determined by supervised classification of the Pléiades multi-spectral images into a land

cover map (see 4.1.3). From the same land cover map, the Pléiades dDEM values were set to zero in snow-

free areas to obtain the HS map. Pléiades HS values below -1 m and above 30 m were set to no data.

4.1.3 Land cover classification 

Snow covered areas and stable terrain were analysed separately, and their location determined with a land

cover supervised classification calculated from the multi-spectral images. The winter and summer scenes

were classified into four categories: snow, forest, open water and stable terrain, the latter corresponding to

snow-free areas with low vegetation or bare rock. First, we orthorectified the nadir multi-spectral images

using  mapproject on  their  corresponding  DEM.  For  each  image,  we  manually  extracted  training  data

covering 0.1-1.0 km2 from a composite image of red, green, blue, near-infrared bands and the derived NDVI.

A maximum of 33  polygons were manually drawn for the snow class on the winter north image.  These

samples  were used to  train a random forest  classifier  with  otbcli_TrainVectorClassifier from the Orfeo

Toolbox. 

The stable terrain and snow masks were eroded with a radius of two pixels (4 m) and patches smaller than

30 pixels (270 m²) were removed. The masks were shifted according to the DEMs co-registration vector and

then interpolated with the nearest neighbour method onto the ASO grid. Lakes and snow patches remaining

in the summer land cover map were removed from the winter snow mask. Lakes were manually delineated

on snow-off images. This workflow was automated  except for the training dataset which was generated by

human interpretation of the images.

4.2. Photogrammetric processing of the images

A DEM is computed with the Ames Stereo Pipeline (ASP) using two utilities: stereo and point2dem. First,
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stereo generates a dense disparity map (e.g. the pixel displacement between the two images of a stereo pair)

using image correlation. The disparity map is used to calculate a point-cloud with a triangulation algorithm.

Then, point2dem interpolates the point cloud on a regular grid (Shean et al., 2016). We compared three sets

of options in stereo. The first set of options is the one used by Marti et al. (2016). This set uses the local-

search window stereo algorithm and the normalized cross-correlation parametric cost function with windows

of 25x25 pixels (options further called Local-Search). The sub-pixel refinement algorithm uses an affine

method.  The two other sets of options use the semi-global matching stereo algorithm (SGM, Hirschmüller,

2005)  combined  with  two  different  cost  functions.  The  semi-global  matching  is  often  used  with  non-

parametric cost functions. Here we compare the two non-parametric cost functions implemented in ASP: the

binary  census  transform (options  further  called  SGM-binary)  and the  ternary  census  transform (further

called SGM-ternary).  The sub-pixel  refinement is  operated during the SGM correlation with the option

Poly4 of  ASP.  We evaluated the three sets  of  options based on the completeness of the maps and the

agreement of the snow depth with the ASO using the mean bias, NMAD and RMSE of the residuals. All the

options of point2dem were set to their default values. 

4.3 Comparison of bi- and tri- stereo images for DEM calculation

We calculated five DEMs from each stereo triplet by selecting a pair of images (front-nadir, nadir-back,

front-back)  or  the  complete  triplet  (front-nadir-back,  nadir-front-back).  This  provided  combinations  of

different B/H (called image geometry further in the article), ranging between 0.08 and 0.23 (Table 1). The

three  sets  of  options  of  stereo  were  tested  on  these  different  geometries.  In  the  tri-stereo  case,  ASP

calculates two disparity maps and performs a joint triangulation when calculating the point-cloud. In the first

tri-stereo case (front-nadir-back), ASP calculates a disparity map between the front and the nadir image and

between the front and the back image. In the second case (nadir-front-back), ASP calculates a disparity map

between the nadir and the front image and between the nadir and the back image. We did not evaluate the

third possible tri-stereo combination (back-nadir-front) as we expect results to be similar to the front-nadir-

back case.
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Figure 2. Workflow for the processing of the panchromatic and multispectral Pléiades images. Intermediate

products are in the boxes while the processing are in italic between the boxes. Text in bold italic characters

indicate steps for which we tested different options. 
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4.4 Evaluation of the snow depth maps

We evaluated the quality of the Pléiades HS maps over the area defined as the intersection of snow-covered

terrain in Pléiades HS maps (snow mask) and ASO HS maps (HS greater than zero). We also evaluated the

Pléiades dDEM over the stable terrain where we expect elevation difference to be zero. The HS residuals are

the difference between the Pléiades and the ASO HS. The stable terrain residuals are the Pléiades dDEMs as

ASO products are set to zero over snow-off terrain. The distribution of the residuals was characterized with

the mean, the median (i.e. the bias), the root-mean square error (RMSE) and the normalized median absolute

deviation (NMAD) of the residuals. The NMAD is a measure of the dispersion suited for populations with

outliers (Höhle and Höhle, 2009). 

For hydrological applications, HS maps are often spatially aggregated, for example to calculate the amount

of snow in a catchment or an elevation band. The expected random error of the average of a dDEM over N

pixels was defined as (Nuth and Kääb, 2011):

edDEM ,N=
erand
√N i

 (1)

Where erand
❑

, is the random error per pixel and N i is the number of independent pixels in the integration area.

The number of independent pixels depends on A, the area of averaging and lcor,the auto-correlation length

scale of the random noise. Many studies extract an auto-correlation length from a semi-variogram (Rolstad

et al., 2009; Trüssel  et al., 2013; Willis  et al., 2015; Melkonian  et al., 2016, Anderson, 2019). Assuming

complete correlation for all the pixels within the autocorrelation area, one obtains (Nuth and Kääb, 2011): 

N i=
A

lcor
2 (2)

If one uses square area of averaging of length, l❑. The expected random error is:   

In most cases erand
❑

 and lcor
❑

 are measured over the stable terrain and then used to estimate the error over snow

or glacier terrain. We use Eq. (3) to calculate the expected error on snow at a given resolution l. erand
❑

 and lcor
❑

are measured over the stable terrain. erand
❑

 is set to the measured NMAD of the stable terrain residuals and

lcor
❑

 is set to the measured correlation length from a semi-variogram. This expected error is compared to the
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effective (or measured) random error. The latter is calculated as the standard deviation of the HS residual

map resampled at resolution l. An average resampling scheme is used, which calculates the average value if

all pixels are valid within a block  (Berthier et al., 2016; Brun et al., 2017).  By comparing the expected and

the measured error, we aim at verifying i) if the elevation difference statistics calculated over stable terrain

compare well to the statistics over snow-covered areas and ii) if the error model from Eq. (1) is valid. 

5 Results

We first present the results for the HS maps calculated with the SGM-binary option and different image

geometries. Then, we focus on the impact of the configuration of ASP. The best set of options and geometry

is then used to analyze the spatial distribution of the residuals and to evaluate a model of the HS error. 

5.1 Evaluating the impact of bi or tri-stereo images as input

The NMAD of the snow depth residuals with respect to ASO data is larger for maps from pairs of images

with B-H around 0.12 (1.13 m for front-nadir,1.07 m for nadir-back) than from pair of images with B/H

around 0.20 (0.68 m for front-back) or triplets of images (Table 2).  The NMAD of the snow depth residuals

from the front-nadir-back triplets (0.69 m) is slightly better than from the nadir-front-back triplets (0.78 m)

and very similar to the NMAD from the front-back pair. The NMAD over stable terrain is lower but relative

values between two geometries are similar (Table 2). For the different image geometries, the RMSE evolves

similarly to the NMAD over snow-covered areas but very differently over stable terrain. The largest RMSE

over  stable  terrain is  1.35 m for front-back and the smallest  is  1.06 m for nadir-front-back.  The mean

difference over snow-covered areas ranges from +0.01 m (front-nadir) to +0.16 m (front-back). The absolute

mean and median over stable terrain are all less than 0.06 m. The relative results for the different geometries

are similar with the SGM-ternary and Local-Search options except for the mean error.  In the following

sections, the HS map from the front-nadir-back geometry is used as it yielded the lowest bias, RMSE and

NMAD.

5.2. Sensitivity to the photogrammetric processing 

We compare the stereo options on the HS maps from the front-nadir-back geometry (Table 3 and Fig. 3).

The SGM sets of options provide DEMs without data gaps. The Local-Search option produces snow-on

DEMs with gaps which results in ~2 km² missing in the HS maps compared to the SGM options (Table 3).

Visual examination of the winter DEMs shows large differences in snow fields and forest. Linear art ifacts

are observed over snow  in the DEM produced with the SGM-ternary option. The same regions are noisy in
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SGM-binary. Artefacts of typically 20 m x 20 m are also observed with the Local-Search options around

isolated trees. These artefacts are not visible with the SGM-binary or ternary options. 

The mean difference with the ASO snow depth data ranges from +0.08 m (SGM-binary) to +0.49 m (Local-

Search option). It is larger for SGM-ternary (+0.24 m) than SGM-binary. The NMAD of the residuals is

smaller for SGM-binary (0.68 m) than Local-Search (0.80 m) and SGM-ternary options (0.85 m). We noted

some artifacts in the Local-Search DEMs, which result in patches of abnormally large HS (>10 m) compared

to ASO (~3 m). Over stable terrain, the absolute mean and median of the elevation differences are less than

0.03  m except  for  the  mean of  the  Local-Search  option  which  is  -0.32  m.  The mean of  the  elevation

differences for Local-Search decreases to -0.03 m when the elevation differences are excluded if they exceed

three times the NMAD value. This is expected as the same filtering is used during the co-registration process

to remove outliers. In the following, the SGM-binary was selected since it gives the lowest bias and NMAD

with respect to ASO data and the lowest NMAD over stable areas (Table 3). 

5.3 Spatial distribution of the residuals

Figure  4  illustrates  that  the  Pléiades  HS  map  calculated  with  the  selected  images  geometry  and  ASP

configuration  (front-nadir-back  images,  SGM-binary)  compares  well  with  the  ASO  HS  map.  Typical

mountain snowpack features (avalanche deposits, snow drift accumulation) can be identified in the Pléiades

HS map (Fig. 4 d.,e., Fig. 5). Pléiades HS are available over 215 km² of open terrain but not for the 23 km²

of forest.  No HS were higher than 30 m but  0.25 km² of HS were excluded because below -1 m. The

intersection area of Pléiades and ASO snow-covered areas is 138 km² after erosion of the Pléiades snow

mask.  The Pléiades mean (median) HS is  4.05 m (4.13 m) against  3.96 m (4.02 m) for ASO over the

common snow-covered area. Figure 6 shows that ASO and Pléiades HS exhibit a similar distribution of HS

against elevation except between 1900 m - 2100 m and 3500 m - 3700 m where the mean residual over

snow-covered areas is greater than 25 cm (Fig. 7). This corresponds however to small areas which cover less

than 0.05 km² each. 

The NMAD of the Pléiades dDEMs over the 4.07 km² of stable terrain is 0.40 m against 0.69 m for the HS

residual. The distribution of residuals on stable terrain is similar for most aspect classes with the exception

of the north facing slopes (0.26 km², aspect classes 315°-360° and 0°-45°, Fig. 7).  Based on the visual

analysis of the residuals map, we attribute these errors to shaded slopes of steep summits. The distribution of

HS shows a similar spread for all aspects but a larger positive bias (~0.20 m) for south facing slopes (90°-

270°, Fig. 7). The distribution of HS residuals against the terrain slope is similar between 0° and 50° but

becomes more spread in steeper terrains which cover 2.13 km². The same trend is observed over stable

terrain but only above 70°. 
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The map of HS residuals shows a low frequency undulation with an amplitude of approximately 30 cm and a

wavelength of  approximately  4 km (Fig.  8).  The crests  of  the  undulation are  oriented in  the  east-west

direction. The semi-variance of the residual increases linearly between 3 and 20 m and is stable for longer

correlation distances in the considered range (Fig. 9). A similar semi-variance evolution is obtained over

stable terrain. From this semi-variogram analysis we estimate that the correlation length of the random error

(see 4.4) is about 20 m. 

5.5 Evaluation of a simple error model

We compare the measured and the expected error  of the  HS maps by comparing Eq.  (3) with the HS

residuals. We find that the HS residuals do not match with the expected error (Fig. 10). The expected error is

calculated with random error,  erand ,set to 0.50 m and 1 m to represent a realistic range of error, and the

correlation length,lcor , set to 20 m in agreement with the statistics over stable terrain. The measured error of

the residual is smaller than the error that would be estimated from this error if the HS map has a resolution

between 20 m and 50 m and greater than expected above 50 m. This mismatch is probably partly related to

the undulation observed in the HS residual (see Discussion).

Table 2. Comparison of the snow depth residual (HS Pléiades minus HS ASO) and stable terrain elevation

difference (Pléiades) depending on the geometry acquisition of the images. All metrics are in meters except

the mean B/H for bi-stereo geometries which is dimensionless. The bold line is common to this table and

Table 3.

Area (km²) Mean Median NMAD RMSE STD

Mean

B/H
snow stable snow stable snow stable snow stable snow stable snow stable

front-back 0.22 138.11 5.2 0.16 -0.03 0.18 0.01 0.68 0.39 0.80 1.35 0.79 1.35
front-nadir 0.12 138.13 5.28 0.01 -0.01 0.03 0.02 1.13 0.70 1.21 1.15 1.21 1.15
nadir-back 0.10 137.25 5.25 0.08 -0.02 0.10 0.02 1.07 0.71 1.18 1.17 1.18 1.17

front-nadir-
back - 138.02 5.30 0.08 -0.01 0.10 0.02 0.69 0.40 0.80 1.16 0.79 1.16

nadir-front-

back - 137.51 5.29 0.13 -0.06 0.15 -0.00 0.78 0.44 0.90 1.06 0.89 1.06

Table 3. Comparison of the snow depth residual (HS Pléiades minus HS ASO) and stable terrain elevation

difference (Pléiades)  depending on the ASP  stereo  options.  All  metrics are in meters.  The bold line  is

common to this table and Table 2.
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Area (kmœ) Mean Median NMAD RMSE STD

snow

stabl

e snow stable snow stable snow stable snow stable snow stable
SGM-
binary

138.
02 5.30 0.08 -0.01 0.10 0.02 0.69 0.40 0.80 1.16 0.79 1.16

SGM-
ternary

138.
14 5.21 0.24 -0.03 0.25 0.03 0.85 0.44 1.11 1.30 1.09 1.30

Local-
search

135.
96 5.32 0.49 -0.32 0.39 -0.00 0.80 0.51 1.41 1.94 1.32 1.92

6 Discussion

6.1 Comparison to existing studies

By comparing the Pléiades HS with the ASO data, we find a NMAD of 0.69 m in the best case (i.e. best

acquisition geometry and ASP options), which is higher than the NMAD of 0.45 m reported by Marti et al.

(2016) based on 451 snow probes measurement. This discrepancy could be due to differences in (i) the

Pléiades  data  (i.e.  acquisition  geometry),  (ii)  the  characteristics  of  the  study  site  and  (iii)  the

representativeness of the validation data. The B/H for the images of Marti et al. (2016) study ranges between

0.21 and 0.25 for all consecutive stereo pairs while our B/H range between 0.08 and 0.12. This is consistent

with the theory of the photogrammetry, which states that the accuracy of the DEM increases with the B/H up

to a certain limit (Delvit and Michel, 2016). The larger NMAD compared to Marti et al. (2016) is also partly

due to fact that the present study covers a much larger range of slope angles and aspect. Therefore, we argue

that this study provides a better evaluation of the HS accuracy that can be expected from Pléiades in high

mountain regions. 

6.2 Sensitivity to image geometry and photogrammetric processing

We  find  that  the  HS  maps  accuracy  are  sensitive  to  the  B/H  ratio  of  the  input  images,  and  to  the

configuration details of the photogrammetric processing. We do not find a large added-value of the tri-stereo

images on the map accuracy compared to an optimal bi-stereo configuration.

The NMAD of the Pléiades HS is improved by 36 % when using images with a B/H of 0.22 instead of 0.11

(Table 3). Marti et al. (2016) used pairs of front-nadir and nadir-back images (B/H=0.2) as they observed

that the front-back pair (B/H=0.4) led to too many no-data pixels. From these two studies and for similar

terrain, a B/H around 0.2 seems beneficial. 

Using tri-stereo instead of bi-stereo images did not improve significantly the Pléiades HS map accuracy. It

seems like the processing of a triplet  of  stereo images (front,  nadir,  back) with ASP  stereo  function is
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equivalent to the processing of the best stereo pair of the triplet, the front-back pair in our case. There were

no data gaps due to view obstruction by steep relief in this study area. Should it be the case, the tri-stereo

may offer a better coverage. Several studies have evaluated the benefits of tri-stereo imagery against bi-

stereo (Berthier  et al., 2014; Zhou et al., 2015; Bagnardi  et al., 2016; Marti  et al., 2016). However, these

studies used different photogrammetric software which do not handle the combination of three images in the

same way.  For example, either multiple  disparity maps, or  points clouds or DEMs can be calculated and

merged to produce a final single DEM. The use of tri-stereo results in increasing the density of the point

cloud (Zhou et al., 2015; Bagnardi et al., 2016) and decreasing the no-data area in the final DEM (Berthier et

al., 2014; Zhou et al., 2015). The accuracy of elevation products from tri-stereo compared to bi-stereo was

slightly improved in Berthier et al. (2014) but not significantly in Marti et al. (2016). To our best knowledge,

volume change measurements were never computed from a large number of VHR satellite stereo-images

(>10), but studies suggest that the combination of multi-view images can improve the DEMs quality.  The

fusion of 16 Worldview-3 images improved the NMAD of the residual by 20% compared to a set of 6

images over an industrial zone (Rupnik et al., 2018). Therefore, the most important use of tri-stereo may not

be to improve the accuracy of HS maps, but rather to obtain complete coverage of complex terrains and have

a less distorted nadir ortho-image for the land surface classification. We did not evaluate the extent to which

the front and back images would provide a different land surface classification from the one obtained with

the nadir image.

The choice of the photogrammetric options has an impact on the elevation difference accuracy over stable

terrain and snow-covered areas.  The NMAD over  snow-covered areas  is  improved by 0.16 m by only

modifying the cost function (binary census-transform instead of ternary census-transform). However, such a

gain on the dispersion will hardly impact the HS averaged over a region of interest since the random error

decrease rapidly with the region area (see 6.3.). More important is the larger bias over snow-covered areas

introduced  with  the  SGM-ternary  option  (0.24  m)  and  Local-Search  options  (0.49  m).  This  bias  is

particularly important for south facing slopes. It seems to result from difficulties in image matching in bright

areas for the three compared options and from the impact of isolated trees for Local-Search. The impact of

the tree is likely due to the larger kernel size (25 pixels) used in the Local-Search option and advised when

using  the  local-search  stereo  algorithm.  The  exact  origin  of  the  bias  on  south  facing  slopes  remains

unknown.

6.3 Distribution of HS errors

We found a mean difference of +0.08 m between Pléiades (SGM-binary, front-nadir-back) and ASO HS

despite the correction of the vertical offset between the snow-on and snow-off DEM on the stable terrain

after co-registration. This bias is low given the difference of the characteristics of the ASO and the Pléiades
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products.  It  can  be  due  to  many  factors  including  the  effect  of  the  vegetation.  First,  lidar  and

photogrammetry do not  detect the same elevation in areas with dense vegetation (e.g. shrubs) since  lidar

pulses can reach the ground below the canopy unlike Pléiades images which provide the top of canopy

elevation. The ASO snow-off DEM is a digital terrain model while the Pléiades snow-off DEM is a digital

surface model. In addition, the ASO snow-off DEM was acquired in October 2015 and the Pléiades snow-

off DEM in August 2017. Growth or decay of the vegetation can occur over this period of time, leading to

elevation differences between the snow-off DEMs. Finally, it is expected that the co-registration step has a

decimetric accuracy for DEMs at a metric resolution (Nuth and Kääb, 2011).

We found that the random error is larger on snow-covered terrain (NMAD=0.69 m) than on stable terrain

(NMAD=0.40 m). This is true for all slopes and most aspects classes (Fig. 7). Although mountainous snow

surface  tends  to  have  smoother  topography,  thereby  increasing  the  accuracy  of  the  photogrammetric

processing, bright snow surfaces also tend to have less texture than snow-free surfaces, which decreases the

accuracy of the photogrammetric proccessing. The lower accuracy of snow areas is not due to saturation

since no pixels were saturated in the panchromatic images. In addition, it should be noted that the residuals

over  stable  terrain are  computed from Pléiades  data  only,  while  residuals  over  snow-covered areas  are

computed from Pléiades and ASO data. We cannot conclude if the larger dispersion over snow-covered

areas results from the properties of the surface or from the combination of errors in Pléiades and ASO data,

or both.

We found that the decorrelation distance of the residuals between Pléiades and ASO dDEM was around

20 m and identical over stable terrain and snow-covered terrain. This suggests that the correlation length on

stable terrain can be used to estimate the error on a spatial integration of HS, although this remains to be

confirmed in other sites. 

Previous studies suggest that the dispersion of the residuals on stable terrain can be used to estimate the error

on the HS map. However, Fig 10 suggests that an error model based on a single random error with a given

correlation length can be misleading. Indeed, we find that the measured error does not match the evolution

of such an error model over larger averaging areas. This is due to the contribution of other error sources at

lower spatial frequencies like the 4 km wavelength undulation observed in the residual.

The undulation pattern in Fig. 8  was observed in other Pléiades products, ASTER images (Girod  et al.,

2017) and World-View DEMs (Fig. 10 in Shean et al., 2016,  Fig. 6 in Bessette-Kirton et al., 2018). It is

likely a result of unmodeled attitude errors along-track (jitter). To gain insights into the contribution of this

error to the total HS error, we averaged  the HS residual in the across-track direction and used a Fourier

transform to identify and correct this low frequency undulation. Then, we removed this error from the HS

map. As a result, there is a better agreement between the measured and expected  error (Fig. 10). The HS

error is reduced after correction by 50 % for integration over squares of length 210 m. The improvement is
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under  0.05  m for  squares  of  length  under  30  m as  expected  since  the  correction  only  dampers  a  low

frequency signal. We conclude that the error model we used (Eq. 3) can be unvalidated by the presence of

spatial trend or pattern which can be hard to detect on sparse stable terrain. This shows the benefit of using

more complex error model for a valid error estimation (Rolstad et al., 2009).

We find that the selection of the image configuration and the processing options can lead to changes in the

NMAD up to ~0.3 m. Fig. 10 suggests that this variation is likely to become insignificant if the HS map is

aggregated at  larger  spatial  scale  (square  typically  larger  than 100 m x 100 m).   Such optimisation is

therefore  more  important  for  the  study  of  small-scale  features  (wind  drift,  avalanches,  typically  at

decametric  scale)  or  to  decrease  bias  on  specific  terrain  (south  slopes,  fields  with  isolated  trees).  The

optimization of the photogrammetric processing can also be important when little stable terrain is available

for the co-registration. 

6.4 Comparison of satellite photogrammetry and airborne lidar 

Airborne  lidar provides HS maps with a better accuracy than Pléiades and potentially a finer horizontal

resolution too (Painters et al., 2016). One strong advantage of airborne lidar is that it can measure HS under

the tree canopy and in shaded areas. It is also able to acquire data in overcast conditions provided that the

clouds are above the aircraft. However, from this study and Marti et al. (2016), it appears that the accuracy

of Pléiades HS maps is sufficient to provide valuable information in regions where there are no airborne

lidar monitoring capabilities (probably the vast majority of mountain regions with seasonal snow cover). A

limitation of current very high-resolution sensors such as Pléiades is their narrow swath (20 km for Pléiades)

which impedes the acquisition of large areas with a frequent revisit. In particular  there are areas of high

competitions especially in lower latitudes where it can be challenging to obtain a stereo pair at the right time

of the snow season. More frequent acquisition should however become easier as more stereo satellites are to

be launched in the coming years. The acquisition of visible images will always be limited by the presence of

cloud,  making some regions hard to  study at  least  during some seasons.  There  is  already a number  of

efficient  free and open-access photogrammetric software tools which are under continuous development.

These  tools  enable  a  high  level  of  automation  and  are  compatible  with  high  performance  computing

environment (Howat et al., 2019). In our workflow, the last step to automate is the collection of training

samples for the image classification. This could be done by using an unsupervised classification algorithm or

by using an external land cover classification. Preliminary work with a time series of Pléiades images in the

Pyrenees (not shown here) suggested that it is not possible to simply use the classification model from a

previous year to generate the classification of the current year. A possibility may be to use a Sentinel-2 snow

cover map to extract training samples in the Pléiades multi-spectral images, since Sentinel-2 images have a
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shortwave infrared band which enables a robust and unsupervised detection of the snow cover (Gascoin et

al., 2019). Differencing terrain covered with vegetation from stable terrain would remain challenging.

7 Conclusion

We found a good agreement between snow depth (HS) maps from satellite very  high resolution stereo

images with lidar HS maps over 137 km² of mountainous terrain in California. The mean residual is +0.08 m

and the NMAD 0.69 m. Satellite photogrammetry and airborne lidar methods agree at all aspects and over

large range of slopes up to 60°. South facing slopes seem prone to a positive bias in the Pléiades HS (~0.2

m). These areas were found to have less texture in the panchromatic images. The main drawbacks of the

satellite stereo HS method are the lack of data under dense tree cover, the reduced accuracy in shaded areas,

and the current challenge to image large regions in a short time. We found that the accuracy of the maps was

sensitive  to  the  B/H  and  the  photogrammetric  processing  options.  Using  the  current  ASP  multi-view

triangulation routines, we could not find a clear benefit from the use of a triplet of images compared to a pair

with optimal B/H (about 0.2). For the error calculation, we suggest focusing on the spatial correlation of the

error before averaging HS. We conclude that satellite photogrammetric measurements of HS are relevant for

snow studies as they offer a good accuracy, a high level of automation and the potential to cover remote

regions around the world.
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Figure 3: Mean, median, NMAD and RMSE of the residual of HS maps depending on the ASP  stereo

correlation option. The options compared are the SGM algorithm with the binary census-transform cost

function (SGM-binary in red), with the ternary census-transform cost function (SGM-ternary in yellow) and

the local search algorithm (Local-Search in blue).
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Figure 4: Snow depth maps from Pléiades data on 01 May 2017 (a and d) and from ASO on 02 May 2017 (b

and e). Corniche (A) and avalanche deposits (B) are visible on Pléiades HS maps (d). The land surface cover

is shown in c and f over the same area. Black squares in a, b, c, is the area shown in d, e, f. The transect T-T’

is shown in Fig. 5. All datasets have the same spatial resolution (3 m).

Figure 5. Transect of snow depth visible on Figure 4. e. from Pléiades data (pink) and ASO (blue). 
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Figure 6. Snow depth against elevation (a) and total distribution (b) from Pléiades data (pink) and ASO 

(blue). The boxplots show the median value (white line), the 25th and 75th percentile (box) and the 5th and 

95th percentile (whiskers).
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Figure 7.  Distribution of the residuals between the Pléiades and ASO snow depth maps over the snow-

covered area (empty box) and stable terrain (filled box) against elevations (top), slopes (middle) and aspect

(bottom). Over stable terrain, ASO product is set uniformly to zero. Boxes where data were covering less

than 1 km² are slightly transparent.
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Figure 8. Residual snow height (Pléiades minus ASO) over the complete study area (a) and average per line

(b). In b., the raw residual (blue) is corrected for the low frequency undulation (black) to obtain a corrected

signal (red).
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Figure 9. Semi-variogram (γ) of the residuals between the Pléiades and ASO snow depth maps over the

snow-covered area. h is the distance.

Figure 10.  Expected and  measured  error of the HS averaged over different area.  Expected error (dashed

line) is predicted based on different random error per pixel (erand) and auto-correlation length (lcor) (Eq. 3).

The bold dashed line is the expected error based on the statistics derived from stable terrain in this study.

Empty (filled) circles are the standard deviation of the residual HS maps averaged at different resolution

before (after) the undulation correction. 
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