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Abstract. Accurate specification of the model error covariances in data assimilation systems is a

challenging issue. Ensemble land data assimilation methods rely on stochastic perturbations of input

forcing and model prognostic fields for developing representations of input model error covariances.

This article examines the limitations of using a single forcing dataset for specifying forcing uncer-

tainty inputs for assimilating snow depth retrievals. Using an idealized data assimilation experiment,5

the article demonstrates that the use of hybrid forcing input strategies (either through the use of an

ensemble of forcing products or through the added use of the forcing climatology) provide a better

characterization of the model error background, which leads to improved data assimilation results,

especially during the snow accumulation and melt time periods. The use of hybrid forcing ensem-

bles is then employed for assimilating snow depth retrievals from the AMSR2 instrument over two10

domains in the Continental U.S. with different snow evolution characteristics. Over a region near the

Great Lakes where the snow evolution tends to be ephemeral, the use of hybrid forcing ensembles

provide significant improvements relative to the use of a single forcing dataset. Over the Colorado

Headwaters characterized by large snow accumulation, the impact of using the forcing ensemble is

less prominent and is largely limited to the snow transition time periods. The results demonstrate15

that the availability of a better model error background through the forcing ensemble enables the

assimilation system to better incorporate the observational information.
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1 Introduction

Land Data Assimilation (DA) methods combine observations of land surface conditions from remote

sensing platforms or ground measurements with model forecasts to produce temporally and spatially20

continuous estimates of land surface fields. The merging of the observations and model forecasts is

conducted by weighting them appropriately based on their respective sources of errors. As a result,

the skill of the DA systems is critically reliant on the accurate specification of errors in observations

and model background.

Despite their importance, the specification of input error covariances is challenging (Dee (1995);25

Derber and Bouttier (1999); Reichle (2008); Reichle et al. (2008)). The sources of errors in observa-

tions include instrument errors, deficiencies of the observation operators (such as radiative transfer

models) and representativeness issues from differences in spatial scales (Kumar et al. (2012)). Simi-

larly, uncertainties in model parameters, forcing inputs and deficiencies in model physics contribute

to the model background errors. The model error covariance specifications are often made through30

idealized experiments using analysis of assimilation increments and innovations (Kumar et al. (2008,

2009)). Comparison of model simulations against independent observations is another approach for

developing these specifications. However, given the lack of representativeness of the point-scale in

situ measurements and the heterogeneity of the land surface, developing spatially distributed esti-

mates of these model error covariances are difficult. As noted in Reichle (2008), the specification of35

input error covariances remains a subjective process in current land data assimilation systems.

Ensemble data assimilation techniques such as the Ensemble Kalman Filter (EnKF) are widely

used in land data assimilation applications (Crow and Wood (2003); Reichle et al. (2007); Kumar

et al. (2009); Reichle et al. (2010); De Lannoy et al. (2012); Kumar et al. (2014)). The EnKF, a

Monte-Carlo variant of the Kalman filter, uses an ensemble of model trajectories to represent the40

model error structures. The model error covariance is diagnosed as the sample covariance of the

ensemble of model forecasts. The ensemble is typically created by adding stochastic noise to the

meteorological forcing, propagated to the model fields through the non-linear land surface model. In

addition, stochastic perturbations are also commonly applied to the model prognostic fields.

Perturbations are sampled from randomly generated noise and are directly applied to the forcing45

and model prognostic fields. The typical approach is to employ either normally distributed additive

perturbations or lognormally distributed multiplicative perturbations, depending on the variable. For

example, multiplicative perturbations are normally used for fields such as precipitation, since the

use of additive noise could generate unphysical values (less than zero) or consistent positive biases

during periods where precipitation is absent. In addition, to avoid introducing systematic biases in50

the perturbed fields, the ensemble-mean of the perturbations are normally constrained to zero and

one, for additive and multiplicative perturbations, respectively.

In this article, we examine how the reliance on ensemble perturbations of forcing fields to de-

velop the model error background impacts the performance of data assimilation. Most land data
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assimilation systems use a single data source as the forcing input and the input forcing uncertainty55

is characterized by perturbing the meteorological fields from this single data source. Arguably, the

accuracy of the model error covariance will greatly depend on the accuracy of the forcing input. For

example, in a case where precipitation estimates are underestimated, the forcing uncertainty char-

acterized by the resulting ensemble will lead to the underestimation of the model error covariance.

In contrast, alternate strategies such as the added use of the forcing climatology or multiple forcing60

data sources are likely to provide better representations of the forcing uncertainty and a better char-

acterization of the model error background. In this article, we examine the impact of such factors in

the context of snow data assimilation case studies.

The article presents two sets of experiments: 1) An idealized experiment to demonstrate the impact

of model error covariance underestimation and 2) A “real” data assimilation scenario where snow65

depth retrievals (Oki et al. (2010); Kachi et al. (2013)), from the Advanced Microwave Scanning

Radiometer 2 (AMSR2) aboard the Global Change Observation Mission-Water (GCOM-W) satellite

are used. The assimilation of AMSR2 data is conducted over two different domains in the continental

U.S. with different snow evolution characteristics. The different nature of the snow evolution in

these domains is used to investigate the impact of model error background representations in snow70

data assimilation. All experiments described in this article are conducted using the NASA Land

Information System (LIS; Kumar et al. (2006)) which is an observation-driven land surface modeling

and data assimilation system. The data assimilation subsystem in LIS (Kumar et al. (2008)) contains

algorithms such as the EnKF and supports the assimilation of data from a variety of satellite sensors

(Reichle et al. (2010); Liu et al. (2013); Kumar et al. (2014, 2015); Liu et al. (2015); Kumar et al.75

(2016)).

2 Ensemble Kalman Filter and background error covariance representation

The filtering class of data assimilation algorithms seek the best estimate of the posterior state con-

ditioned on the past observations, using the statistics of the uncertainties in the model and obser-

vations. The Kalman Filter (KF) is an optimal estimator for linear dynamical systems driven by80

Gaussian noise. The EnKF is a reduced-rank variant of the KF, which assumes normality of model

and observation errors and typically requires the use of a small number of ensembles to represent

these error structures (Reichle (2008)).

EnKF is a sequential data assimilation approach, where the algorithm alternates between a forecast

step and an analysis step. In the forecast step, an ensemble of model states is propagated forward in85

time using the LSM. This is followed by an analysis step where the model forecast is updated based

on observations. The analysis step is written in the general form as:

xa
k = xb

k +Kk[yk −Hkxb
k] (1)
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where xb is the background model state vector, xa is the analyzed state vector, y is the observation

vector and Hk is the observation operator that relates the model states to the observations. The90

subscript k indicates time and the superscripts b and a refer to the state estimates, before and after

the update, respectively. Kk is the gain matrix, which represents the weighting factor that determines

the degree to which the model forecast is adjusted towards the observation. Kk is expressed as:

Kk = Pb
kH

T
k

[
HkPb

kH
T
k +Rk

]−1
(2)

where Rk and Pb
k are the observation and forecast model error covariances, respectively. The model95

error covariance is computed as the sample covariance of the model ensemble.

EnKF relies on the second order statistics of the noise simulated by ensemble perturbations in the

model and observations (drawn from Gaussian distributions), to characterize their probability density

functions (PDFs). The accuracy of the sampled model error covariance, in particular, is dependent on

the size of the ensemble and the presence of model errors (Li et al. (2009)). Prior studies have used100

techniques such as covariance inflation (Anderson and Anderson (1999)), to deal with the covariance

underestimation. These techniques, however, require significant tuning and rely on the assumption

that the observation error covariances are known (Miyoshi and Yamane (2007)). In addition, these

inflation techniques are ineffective when the model errors are significant and the resulting model

error covariances are close to zero. In the examples below, the impact of underestimating the model105

error background for snow data assimilation is examined.

Figure 1 shows a schematic of three strategies that are used to examine the issue of model covari-

ance underestimation in this article. The first strategy (A), which is the typical practice in land data

assimilation systems, is to use a single forcing dataset to drive the ensemble. The small perturbations

applied to the input forcing variables help in simulating the ensemble spread. In the second strategy110

(B), the ensemble is forced with both the given forcing and a climatology of that forcing. The added

use of the forcing climatology helps in incorporating the representation of average conditions within

the ensemble and in reducing the covariance underestimation due to the reliance and limitations of a

single dataset. In the third approach (C), the model ensemble is driven using an ensemble of forcing

products from different sources, providing a more realistic representation of the input forcing uncer-115

tainty. Note that small perturbations to the forcing variables are also applied to B and C forcing data

to augment the ensemble size.

3 Assessing the impact of model error covariance underestimation through idealized experi-

ments

In this section, we present an idealized snow depth DA experiment to demonstrate the importance120

of accurately characterizing the input model error covariances. The experiment is conducted at the

Niwot Ridge site in Colorado (40.03◦N, 105.5◦W), which is part of the NRCS Snow Telemetry
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(SNOTEL) network. All model simulations are conducted using the Noah land surface model ver-

sion 3.3. The DA experiment is set up as an identical twin experiment (Kumar et al. (2009)) with

the following structure: First, the Noah LSM is run forced with a certain meteorology (FORCING1)125

and is assumed to represent the “true” state of snow depth evolution at this location. This model

integration is termed as the Control or “truth” simulation. Next, a set of synthetic snow depth ob-

servations is simulated from this Control run by introducing realistic retrieval errors. Similar to the

strategies used in previous studies (Kumar et al. (2008)), to account for the limitations of the passive

microwave sensors in retrieving snow depth under dense canopies, the observations are masked out130

when Green Vegetation Fraction (GVF) values used in the model are greater than 0.6. In addition,

observations are degraded by introducing multiplicative random noise with standard deviation of

0.05 to simulate the errors in the snow depth retrievals. An open loop (OL) integration is conducted

using the same LSM, but forced with a different meteorology (FORCING2) which has a degraded

set of precipitation inputs. A data assimilation integration is then conducted by incorporating the135

simulated observations into the OL configuration using a one-dimensional Ensemble Kalman Filter

(EnKF; Reichle et al. (2002)). The modeled estimates from the OL and DA integrations are com-

pared against the true fields from the Control run to evaluate the impact of assimilation.

An ensemble size of 20 is used in the integrations with perturbations applied to both meteorolog-

ical forcing inputs and model prognostic fields to simulate model error background. Multiplicative140

perturbations are applied to the precipitation and downwards shortwave fields with a mean of 1 and

standard deviations of 0.3 and 0.5, respectively. Additive perturbations with a standard deviation of

50 W/m2 are applied to the longwave radiation fields. The Noah LSM model fields of snow water

equivalent (SWE) and snow depth are perturbed with multiplicative noise of 0.01 and 0.02, respec-

tively. Time series correlations are imposed via a first-order regressive model (AR(1)) with a time145

scale of 24 hours for forcing variables and 12 hours for the model fields. The perturbations to the

forcing fields are applied hourly, whereas the model prognostic fields are perturbed at three hour

intervals, similar to the configurations used in Kumar et al. (2015) and Kumar et al. (2014).

Figure 2 shows a time series of the snow depth fields from model integrations for the 2012-2013

winter season, from the Control, observations (OBS), open loop simulation forced with a single me-150

teorological dataset (OL_FSNGL), and the data assimilation integration that assimilates observations

into the OL_FSNGL configuration (DA_FSNGL). Note that the OL_FSNGL configuration includes

the ensemble perturbations to the forcing and model state fields. The control and OL_FSNGL runs

are significantly different in their simulation of snow depth for this winter season. The OL_FSNGL

based snow depth estimates vastly underestimate the snow evolution, likely due to the underestima-155

tion of precipitation in the FORCING2 data at this location. The assimilation of the observations

helps in significantly improving the OL_FSNGL representation, especially during the peak winter

months of January through March. The simulation of snow depth during the snow accumulation time

periods and the snow melt time periods, however, show significant differences relative to the Control
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simulation, though observations of snow depth exist during these time periods. As shown in Figure 2,160

the snow accumulation in the OL_FSNGL simulation is significantly delayed relative to the Control.

The input model error covariances (Pb
k), therefore, remain close to zero until mid-December 2012,

when non-zero snow depth estimates are observed in the OL_FSNGL configuration. These model

errors result in the gain matrix (Kk) being zero when the model background error variances are zero.

As a result, no non-zero analysis increments are generated from the DA analysis and no changes in165

the snow depth fields from DA are observed until mid-December, 2012. In contrast, during the peak

winter months, the snow depth estimates from DA_FSNGL are closer to the Control simulation, as

the availability of a non-zero model error covariance allows DA to compute positive analysis incre-

ments. Further, the DA_FSNGL integration again fails to capture the late season snow events (late

April and early May 2013), as the deficiencies in the model error background results in the inability170

of the analysis step to produce meaningful analysis increments.

In the above example, the main source of the model deficiencies is the errors in the forcing inputs,

as the same model is used in the Control and open loop integrations. Two variants of this experiment

are conducted by: 1) using the forcing climatology in combination with the input forcing to specify

the ensemble (EXP-FCLIM) and 2) using an ensemble of forcing datasets to drive the ensemble175

(EXP-FENS). A climatological forcing dataset is developed by averaging the forcing inputs (used

in OL_FSNGL) at each forcing timestep across 4 years (2012 to 2015). In EXP-FCLIM, the forcing

climatology is used to drive 10 of the 20 ensemble members with the remaining 10 driven by the

OL_FSNGL forcing data. In EXP-FENS, four different forcing datasets (different from the data used

in the Control) is used to drive the model ensemble. Each forcing data is used to drive 5 ensemble180

members within the 20 member ensemble. As before, perturbations are applied to both forcing and

model states. These strategies assume that a better representation of the forcing uncertainty and

model error covariance can be developed by augmenting the ensemble through the use of multiple

data sources.

Panels (a) in Figure 3 show the time series of snow depth from open loop and DA integrations185

from the EXP-FCLIM and EXP-FENS experiments and panels (b) show comparisons of the snow

depth ensemble spread from DA integrations. In the EXP-FCLIM experiment, it can be noted that the

added use of forcing climatology with the OL_FSNGL forcing is helpful in increasing the ensemble

spread in the DA integrations without a significant change to the mean snow depth estimates. The

improved model error background representation, however, leads to improved DA performance, as190

the DA_FCLIM based estimates are improved relative to the DA_FSNGL estimates. The improve-

ments are more apparent during the snow accumulation (Dec-Jan) and melt (April-May) time peri-

ods, though they are significantly underestimated relative to the Control. Quantitatively, the RMSE

in the OL_FSNGL and OL_FCLIM integrations for the Oct 2012 to Jun 2013 time period is 85 mm.

The DA_FSNGL integration with a single forcing dataset has a RMSE of 55 mm and the added use195
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of the forcing ensemble helps in further reducing the overall RMSE to 48 mm in the DA_FCLIM

integration.

Comparatively, the use of an ensemble of forcing products provides significantly improved per-

formance in the assimilation of simulated observations. First, a significant portion of the bias in the

snow depth estimates is reduced by the forcing ensemble based open loop (OL_FENS). The cumu-200

lative RMSE of the OL_FENS integration is 56 mm. The use of the forcing ensemble then helps in

improving the DA simulations (DA_FENS), as it shows a closer match with the Control relative to

all other DA integrations. In particular, DA_FENS shows improvements in the accumulation (Nov-

Dec) and snow melt (Mar-Apr) periods, as the availability of an improved model background helps

in generating meaningful (non-zero) analysis increments. A better characterization of the snow accu-205

mulation also helps in improving the model background and data assimilation during the peak snow

time periods as well. The use of the forcing ensemble in data assimilation (DA_FENS) provides the

lowest RMSE of 29 mm, for the time period of Oct 2012 to June 2013.

4 Impact of forcing ensemble in the assimilation of AMSR2 snow depth retrievals

The idealized experiments presented in the previous section demonstrate that the use of hybrid forc-210

ing ensemble strategies is helpful in providing a better characterization of the forcing uncertainty

and the model background. We extend this approach to a “real” data assimilation scenario where

passive microwave snow depth observations from the AMSR2 instrument are employed. These

retrievals, available from 2012 July onwards, are obtained from the Japan Aerospace Exploration

Agency (JAXA). In all the integrations assimilating AMSR2 retrievals, the standard deviation of the215

observation error is assumed to be 50 mm.

Land surface model simulations using the Noah LSM (version 3.3) are conducted over two re-

gional model domains in the continental U.S. (Figure 4) at 25 km spatial resolution: (1) A region

centered around the Great Lakes (GL) and (2) a domain centered around the Colorado Headwaters

(CH). The snow evolution in the GL region tends to be ephemeral, wet and shallow whereas the CH220

region is a high-terrain domain with complex topography and large seasonal snowpacks. The impact

of different model error background representations on the assimilation of AMSR2 data is examined

over these two domains with contrasting snow development and melt characteristics.

Similar to the synthetic data assimilation experiment presented in Section 3, the model simulations

are conducted with a single meteorological forcing dataset, a single meteorological forcing dataset225

and its climatology, and an ensemble of forcing datasets. The Agricultural Meteorology model from

the U.S. Air Force 557th Weather Wing (formerly the Air Force Weather Agency) is used as the sin-

gle meteorological forcing data. In the forcing ensemble based runs, in addition to AGRMET, three

other forcing datasets are used, which include the Global Data Assimilation System (GDAS; Derber

et al. (1991)) operational outputs from NOAA/NCEP, the NLDAS-2 datasets (Xia et al. (2012)),230
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and the Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2;

Reinecker et al. (2011)) data. The LSM simulations are conducted during a time period of October

2012 to Dec 2015 with a time step of 30 min.

We focus first on the GL region by comparing the snow evolution from various model and data

assimilation integrations. Figure 5 presents a “RMSE improvement” map (RMSE of DA with the sin-235

gle forcing (DA_FSNGL) minus the RMSE of DA with the hybrid forcing ensemble (DA_FCLIM

or DA_FENS)) by comparing to the in-situ snow depth measurements at the Global Historical Cli-

mate Network (GHCN; Menne et al. (2012)) sites. The warm colors indicate locations where the

DA_FCLIM or DA_FENS has a reduced RMSE compared to DA_FSNGL and the cool colors indi-

cate locations where DA_FSNGL has an increased skill relative to DA_FCLIM or DA_FENS. As the240

figure indicates, the DA integrations employing hybrid forcing inputs are systematically better than

the DA_FSNGL simulation in most parts of the domain. Comparatively, the RMSE improvements

are larger in the DA_FENS integration than the DA_FCLIM simulation. Note that the improved skill

of DA_FENS in particular, is benefited by both the improved model background and the skill of the

precipitation data sources that constitute the forcing ensemble, though it is hard to separate their245

contributions. This is demonstrated by comparing the time series of model and DA simulations at

two locations: Point A, at 45.875 N, 89.375 W and Point B, at 48.875 N, 97.625 W.

As shown in Figure 6 (A), the OL_FSNGL simulations significantly underestimate the snow

evolution throughout the winter period of 2012-2013. The added use of the forcing climatology

(OL_FCLIM) leads to overestimating the peak season snow (Feb-Mar) and marginally improves the250

late season snow. Similarly, the use of the forcing ensemble (OL_FENS) marginally improves the

OL_FSNGL underestimation (especially during the early snow season), but fails to capture the late

season snow events. The AMSR2 retrievals at this location are primarily available in the late snow

season and help in improving the snow depth simulation through DA. Overall, the limitations of the

OL_FSNGL prevents the DA from making a significant impact in the DA_FSNGL simulation. The255

availability of the improved background in DA_FCLIM and DA_FENS enables them to provide a

better match to the relatively large snow events in March and April, compared to other simulations.

Table 1 shows a summary of the cumulative RMSE from various simulations at these locations. The

cumulative RMSE from the OL_FSNGL is 381 mm, which reduces to 275 mm and 169 mm with

the OL_FCLIM and OL_FENS, respectively. The cumulative RMSE in the DA integrations is 266260

mm for DA_FSNGL, 262 mm in DA_FCLIM and 244 mm in DA_FENS. Note that the cumulative

RMSE does not reflect the obvious improvement during the late season snow periods in DA_FENS

(over OL_FENS), as the early season underestimation dominates these statistics.

Figure 6 (B) panel shows a similar time series comparison at point B with larger snow evolution.

Similar to point A, OL_FSNGL underestimates the snow evolution throughout the season (RMSE of265

252 mm) and is improved by the use of the hybrid forcing ensembles. During the snow accumulation

time periods (up to early Feb 2013), the OL_FCLIM (RMSE of 201 mm) and OL_FENS (RMSE of
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167 mm) estimates show better agreement with the GHCN measurements. The AMSR2 retrievals

show significant underestimation relative to GHCN during the peak snow season, though they are

helpful in improving the snow depth simulations in the late snow season (Mar-May). The impact of270

the improved model background can be noted in the DA_FCLIM and DA_FENS simulations in their

ability to provide a better match with the GHCN observations in the late snow season. The single

forcing based DA estimate (DA_FSNGL), on the other hand, does a poor job in this time period

despite the availability of AMSR2 retrievals that are consistent with GHCN. The cumulative RMSE

of the DA_FSNGL integration at this location is 206 mm and it improves to 156 mm and 162 mm in275

the DA_FCLIM and DA_FENS integrations.

A similar set of evaluations are conducted over the CH domain, an area with deeper seasonal

snow accumulation compared to the GL region. Figure 7 presents the RMSE improvement map for

the CH domain (similar to Figure 5). Compared to the improvements observed in the GL domain, the

patterns of improvements and degradations are more mixed in the CH domain. In addition, stronger280

improvements and degradations are observed in the DA_FCLIM and DA_FENS integrations relative

to DA_FSNGL. To examine these patterns, the time series of snow evolution from various integra-

tions are compared at two locations in the CH domain ( Point C at 40.375, 106.875 and point D at

45.125, 109.875) and are shown in Figure 8. OL_FSNGL underestimates the snow evolution in both

locations (RMSE of 424 mm and 276 mm at C and D, respectively as shown in Table 1). The added285

use of the climatology (OL_FCLIM) marginally improves the snow simulation at location C (RMSE

of 402 mm) and provides more significant improvements at location D (RMSE of 142 mm). The

use of the forcing ensemble (OL_FENS) provides a better match to the observations at location C

(RMSE of 179 mm), but overestimates the snow accumulation at location D (RMSE of 215 mm). At

location C, the assimilation of AMSR2 improves the snow depth estimates in DA_FSNGL (RMSE of290

316 mm) and DA_FCLIM (RMSE of 309 mm) integrations relative to their respective OL, whereas

DA leads to degradations in the forcing ensemble configuration (RMSE of 285 mm), compared to

OL_FENS. At location D, the assimilation of AMSR2 retrievals leads to increased RMSE in the DA

integrations (RMSE of 327, 312 and 309 mm for DA_FSNGL, DA_FCLIM and DA_FENS, respec-

tively) These trends are reflective of the fact that the AMSR2 observations underestimate the snow295

evolution in the peak winter months (Jan-Mar) and overestimates snow estimates in the spring melt

time periods (Apr - May), at location C. At location, D, however, the AMSR2 snow observations are

generally underestimated. The underestimation of snow at both these locations, is likely due to the

fact that passive microwave based retrievals saturate for thick snow packs (Dong et al. (2005)).

In general, the DA integrations (DA_FSNGL, DA_FCLIM and DA_FENS), have comparable per-300

formance at both these locations and they mostly follow the snow evolution patterns in the AMSR2

data. The influence of undersampling the model error background can be observed in the early part

of the snow season at location C and during late season at location D, where the DA_FSNGL in-

tegrations fail to match the snow events captured by AMSR2. During the peak snow time periods,
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however, the undersampling of model error background in OL_FSNGL is less of a problem over305

this domain. Though underestimated, the AMSR2 observations capture the seasonality of snow evo-

lution. Once the initial snow accumulation occurs, it provides an adequate model background for

subsequent data assimilation updates. Thus, the evaluation of the snow DA integrations at these two

regions provide valuable insights on the importance of accurately characterizing the model error

background. The use of the hybrid forcing ensemble and improved model background is more help-310

ful over the GL domain, where snow evolution is ephemeral. Over regions with large snowpacks

such as the CH region, the representation of the model background is more important during the

early accumulation and spring melt time periods.

5 Summary

Accurate specification of input model and observations error covariances in data assimilation sys-315

tems is challenging though these error specifications are critical in the development of a skillful

data assimilation system. In offline ensemble land data assimilation systems, the model ensemble

and model error background representation are typically generated by applying small perturbations

to the model prognostic states and input meteorological forcing fields. Most Land DA studies are

reliant on the use of a single forcing dataset to derive their driving meteorology.320

In this article, the limitations of using a single forcing dataset as the basis for developing model

error background is examined in the context of snow data assimilation. When significant errors are

present in the forcing fields (e.g. precipitation), the resulting model and ensemble estimates will

have significant errors. In such instances, the use of an ensemble of forcing datasets, either based

on climatology or a suite of independent datasets, is likely to provide a better representation of the325

forcing uncertainty and the model error background. The article demonstrates these issues through

both idealized and real data assimilation experiments.

The idealized experiment presents a case where the snow depth estimates are significantly un-

derestimated due to the presence of precipitation biases. The application of stochastic perturbations

using this biased precipitation input is inadequate in providing a realistic model error background in330

the assimilation system. As a result, the snow depth fields in the DA system remain biased, especially

during the snow evolution and spring melt periods. In contrast, when an ensemble of forcing datasets

is used to drive the model, the representation of the model error background is more realistic. As a

result, the assimilation system performs better in incorporating the impact of observations during the

snow evolution and ablation periods.335

The impact of using a forcing ensemble for developing the model error background is examined

for the assimilation of snow depth retrievals from the AMSR2 instrument, over two domains in the

Continental U.S. with different snow evolution characteristics. Over the region near the Great Lakes,

the snow evolution tends to be shallow, with transitions between snow and no-snow conditions during
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each snow season. In this region, the added use of the forcing climatology to drive the ensemble340

leads to improved DA performance, when compared to the in-situ ground observations of snow

depth. The DA performance is further enhanced with the use of an ensemble of forcing inputs, partly

aided by the enhanced skill of the precipitation inputs. Over the Colorado Headwaters, an area with

large seasonal snow packs, the impact of precipitation biases on the simulation of snow states are

largely limited to the snow evolution and ablation time periods. As the occurrences of transitions345

between snow and no-snow states are less common during the peak winter months in this region,

the underestimation of the model error background is less problematic in the DA integrations during

these time periods. As a result, the positive impact of the use of forcing ensemble is mostly prominent

during the accumulation and ablation time periods.

As noted above, the evaluation of snow depth estimates over CH region show mixed results,350

with several locations indicating worse performance with the use of the forcing ensemble compared

to the use of a single forcing dataset. In regions with large snow accumulation (such as the CH

region), passive microwave retrievals such as those from AMSR2 are known to have low skill due

to issues such as saturation in deep snowpacks, signal loss in wet snow and overestimation in the

presence of large snow grains (Dong et al. (2005); Foster et al. (2005); Durand et al. (2011)). Such355

limitations contribute to the mixed results seen in these results, especially in the CH domain. In

such instances, the poorer performance from the use of the forcing ensemble is a result of the poor

skill of the retrievals. To improve the skill of the retrievals themselves, prior studies (Kumar et al.

(2014); Liu et al. (2015)) have successfully employed objective analysis techniques such as optimal

interpolation to blend in situ measurements with satellite retrievals prior to assimilation. These prior360

studies and the results of this article suggest that a strategy that combines the use of hybrid forcing

inputs (to improve model error background) and in situ data based correction of observations to be

assimilated (to enhance the satellite retrievals) is likely to provide a robust configuration for optimal

DA performance.

It must be stressed that in the experiments presented in the article, the OL_FSNGL configura-365

tions purposely employ an inferior forcing dataset so that the differences between the OL_FSNGL

and OL_FCLIM and OL_FENS simulations are more magnified. If the single forcing dataset being

used is of high skill, then the added benefit of using the forcing ensemble is likely to be less. Over-

all, the results in this article indicate that use of a forcing ensemble is helpful in providing better

representations of model error background and more positive and consistent improvements in data370

assimilation. Note also that the use of an ensemble of forcing products may be practical in opera-

tional assimilation environments for centers with ensemble prediction systems. Where not available,

the combined use of the forcing climatology along with the single, operational forcing input may be

an appropriate strategy to improve the skill of the data assimilation system, validated by the results

in this paper.375
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Table 1. Cumulative RMSE (mm) from various model and DA integrations at the four locations in the Great

Lakes and Colorado Headwaters domains used in the Figures 6 and 8.

Experiment GL domain CH domain

name A B C D

OL_FSNGL 381 252 424 276

DA_FSNGL 266 206 316 327

OL_FCLIM 275 201 402 142

DA_FCLIM 262 156 309 312

OL_FENS 169 167 179 215

DA_FENS 244 162 285 309
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Figure 1. Schematic of the three strategies used to specify forcing uncertainty in the data assimilation inte-

grations: (A) a single forcing dataset, (B) a single forcing dataset and its climatology and (C) an ensemble of

forcing products. In all three cases, perturbations are applied to the forcing inputs to generate the ensemble.

17

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-581, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 22 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



 0

 100

 200

 300

 400

 500

 600

2012/09 2012/10 2012/11 2012/12 2013/01 2013/02 2013/03 2013/04 2013/05 2013/06

S
n

o
w

 d
e

p
th

 (
m

m
)

Control
OL_FSNGL
DA_FSNGL

OBS

Figure 2. Snow depth time series for the water year of 2012-2013 from the open loop (OL_FSNGL) and data

assimilation (DA_FSNGL) integrations using a single forcing dataset, for the synthetic snow data assimilation

experiment. The Control simulation and the simulated observations are also shown.
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Figure 3. Similar to Figure 2, with the time series of model simulations from EXP-FCLIM and EXP-FENS

included. The FCLIM experiments employ the use of a single forcing dataset and its climatology to force the

ensemble and the FENS experiments employ the use of an ensemble of forcing datasets. The time series in

panel (b) of the top and bottom figures compares the ensemble spread from the DA_FCLIM and DA_FENS

integrations to the ensemble spread of DA_FSNGL integration, respectively.
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Figure 4. Two study domains with the 1 km terrain elevation (m) as the background: (top) GL domain and

(bottom) CH domain. The yellow circles indicate the locations of the grid cells used for time series comparisons.
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RMSE (DA_FSNGL) - RMSE (DA_FCLIM)

RMSE (DA_FSNGL) - RMSE (DA_FENS)

Figure 5. RMSE (mm) differences of snow depth fields from DA integrations using hybrid ensemble forcing

strategies (DA_FCLIM and DA_FENS) relative to the DA integration using a single forcing (DA_FSNGL) over

the Great Lakes domain, using GHCN data as the reference, for the time period of 2012 to 2015. Warm colors

indicate locations where DA_FCLIM or DA_FENS provides a lower RMSE than DA_FSNGL and cool colors

indicate locations where DA_FSNGL has a lower RMSE than DA_FCLIM or DA_FENS.
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Figure 6. Time series of snow depth fields at location A (top) and B (bottom) from model open loop

(OL_FSNGL, OL_FCLIM and OL_FENS), data assimilation (DA_FSNGL, DA_FCLIM and DA_FENS),

AMSR2 and in-situ (GHCN).
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Figure 7. Same as Figure 5, but for the Colorado Headwaters domain.
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Figure 8. Time series of snow depth fields at location C (top) and D (bottom) from model open loop

(OL_FSNGL, OL_FCLIM and OL_FENS), data assimilation (DA_FSNGL, DA_FCLIM and DA_FENS),

AMSR2 and in-situ (GHCN).
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