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ABSTRACT 

Cryptography is the study of techniques for ensuring the secrecy and authentication of the information. 

Public –key encryption schemes are secure only if the authenticity of the public-key is assured. Elliptic 

curve arithmetic can be used to develop a variety of elliptic curve cryptographic (ECC) schemes 

including key exchange, encryption and digital signature. The principal attraction of elliptic curve 

cryptography compared to RSA is that it offers equal security for a smaller key-size, thereby reducing the 

processing overhead. In the present paper we propose a new encryption algorithm using  Elliptic Curve 

over finite fields. 
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1. INTRODUCTION 

The study of elliptic curves by algebraists, algebraic geometers and number theorists dates back 
to the middle of the nineteenth century. Elliptic Curve Cryptography (ECC) was discovered in 
1985 by Neil Koblitz and Victor Miller [7.12]. Elliptic Curve Cryptographic (ECC) schemes are 
public-key mechanisms that provide the same functionality as RSA schemes. However, their 
security is based on the hardness of a different problem, namely the Elliptic Curve Discrete 
Logarithmic Problem (ECDLP). Most of the products and standards that use public-key 
cryptography for encryption and digital signatures use RSA schemes. The competing system to 
RSA [8] is elliptic curve cryptography. The principal attraction of elliptic curve cryptography 
compared to RSA is that it offers equal security for a smaller key-size. An elliptic curve E over 
a field R of real numbers is defined by an equation       

                         2 3 2

1 3 2 4 6:E y a xy a y x a x a x a+ + = + + + …………………..(1) 

Here a1, a2, a3 , a4, a6 are real numbers belong to R, x and y  take on values in the real 
numbers. If L is an extension field of real numbers, then the set of L-rational points on 
the elliptic curve E is 

2 3 2

1 3 2 4 6( ) {( , ) : 0} { }E L x y LXL y a xy a y x a x a x a= ∈ + + − − − − = ∪ ∞ where ∞  the point 

is at infinity. Equation (1) is called Weierstrass equation. Here the elliptic curve E is 
defined over the field of integers K, because a1, a2, a3 , a4, a6 are integers. If E is defined 
over the field of integers K, then E is also defined over any extension field of K. The 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012 

302 

 

condition  0≠�  ensures that the elliptic curve is “smooth”. i.e., there are no points at 
which the curve has two or more distinct tangent lines. The point ∞  is the only point on 
the line at infinity that satisfies the projective form of the Weierstrass equation [1,9,14]. 
In the present paper for the purpose of the encryption and decryption using elliptic 

curves it is sufficient to consider the equation of the form 2 3
y x ax b= + + .. For the 

given values of a and b the plot consists of positive and negative values of y for each 
value of x. Thus this curve is symmetric about the x-axis. 
 
1.1 Group laws of E(K):- Let E be an elliptic curve defined over the field of integers 

K. There is a chord-and-tangent rule for adding two points in  E(K), to give the third 

point. Together with this addition operation, the set of points of ( , )pE a b  forms an 

abelian group with ∞  , the point at infinity  as identity elements. 
 

1.2 Geometric rules of Addition:- Let P(x1,y1) and Q(x2,y2) be two points on the 
elliptic curve E. The sum R is defined as: First draw a line through P and Q, this 
line intersects the elliptic curve at a third point. Then the reflection of this point of 
intersection about x-axis is R which is the sum of the points P and Q. The same 
geometric interpretation also applies to two points P and –P, with the same x-
coordinate. The points are joined by a vertical line, which can be viewed as also 
intersecting the curve at the infinity point. We therefore have P + (-P) =∞, the 
identity element which is the point at infinity. 

 

1.3 Doubling the point on the elliptic curve:- 
First draw the tangent line to the elliptic curve at P which intersects the curve at a point. 
Then the reflection of this point about x-axis is R. As an example the addition of two 
points and doubling of a point are shown in the following figures 1 and 2 for the elliptic 
curve y2

 = x
3
-x. 

                                               
    Figure 1. Geometric addition                                         Figure 2. Geometric doubling 
 
1.4 Identity:-P + ∞ =  ∞+P = P for all E(K), where ∞ is the point at infinity. 
 

1.5Negatives:- Let P(x,y) ∈ E(K) then (x,y) + (x,-y) = ∞. where (x,-y)  is the negative 
of P denoted by –P. 
 

1.6Point addition:- Let P(x1,y1), Q(x2,y2) ∈ E(K) whereP ≠ Q. Then P + Q = (x3,y3) 

where 

2

2 1
3 1 2

2 1

y y
x x x

x x

 −
= − − 

− 
 and ( )2 1

3 1 3 1

2 1

y y
y x x y

x x

 −
= − − 

− 
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1.7 Points Doubling:- Let 1 1( , ) ( , )KP x y E a b∈ where  P P≠ − then 

( )

2
2 2

1 1
3 3 3 1 3 1 3 1

1 1

3 3
2 ( , ) where 2  and 

2 2

x a x a
P x y x x y x x y

y y

   + +
= = − = − −   

   
 

1.8 Point Multiplication:- Let P be any point on the elliptic curve(K). Then the 
operation multiplication of the point P is defined as repeated addition.  kP = P + P + 
.........ktimes 
1.9 Elliptic Curve Cryptography:- Elliptic Curve Cryptography (ECC) [2, 3,4,5,] 
makes use of the elliptic curve in which the variables and coefficients are all restricted 
to elements of the finites fields [10]. Two families of elliptic curves are used in 

cryptographic applications: Prime curves [7,15]over pZ  and binary curves (2 )m
GF . For 

a prime curve over pZ , we use a cubic equation in which the variables and the 

coefficients all take on values in the set of integers from 0 through p-1 and the 
calculations are performed with respect to modulo p. 
 

2. Related Work:- Elliptic curve cryptography has been thoroughly researched for 
the last twenty years. The actual application of elliptic curve cryptography and the 
practical implementation of cryptosystem primitives in the real world constitute 
interdisciplinary research in computer science as well as in electrical engineering. 
Elliptic Curve Cryptography provides an excellent solution not only for the data 
encryption but also for the secure key transport between two communicating parties [ 16 
], and authentic session key establishment protocols [6,11,13].   
Ep (a,b). 
 

3. Proposed Method:- If two communicating parties Alice and Bob want to 
communicate the messages then they agree upon to use an elliptic curve Ep (a,b) where 
p is a prime number and a random point C on the elliptic curve. Alice selects a large 
random number α which is less than the order of Ep (a,b) and a point A on the elliptic 
curve. She computes A1 = α (C +A) and A2 = α A. She keeps the random number α and 
the point A as her private keys and publishes A 1 and A 2 as her general public keys. 
Similarly Bob selects a large random number β and a point B on the elliptic curve. He 
computes  
B1 = β (C+B) and B 2 = β B. He keeps the random number β and the point B as his 
private keys and publishes B 1 and B 2 as his general public keys. After publishing the 
public keys, the communicating parties again calculate the following quantities and 
publish them as their specific public keys of each other. 
Alice calculates A B = α B 2 and publishes it as her specific public key for Bob 
Bob calculates B A = β A2 and publishes it as his specific public key for Alice 
 Alice’s private key 1                           =  α, a large random number less than the order of   
                                                                 the generator  
 Alice’s private key 2                           = a point A on the elliptic curve Ep (a,b) 
 Alice’s general public key 1               = a point A 1on the elliptic curve  Ep (a,b) 
 Alice’s general public key 2               = a point A 2 on the elliptic curve  Ep (a,b) 
Alice’s specific public key for Bob    = a point A B on the elliptic curve  Ep (a,b) 
 Bob’s private key 1                            = β, a large random number less than the order of  
                                                                the generator  
 Bob’s private key 2                           = B, a point on the elliptic curve Ep (a,b) 
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 Bob’s general public key 1               = B 1, a point on the elliptic curve Ep(a,b) 
 Bob’s general public key 2               = B 2, a point on the elliptic curve  Ep (a,b) 
 Bob’s specific public key for Alice   = B A, a point on the elliptic curve Ep(a,b) 
 
3.1 Encryption:- If Bob wants to communicate the message M then all the characters of 
the message are coded to the points on the elliptic curve using the code table which is 
agreed upon by the communicating parties Alice and Bob. Then each message point is 
encrypted to a pair of cipher points E1,E2 . He uses a random number γ which is 
different for the encryption of different message points.  
  E1 = γ C 
  E2 = M + (β + γ) A 1 – γ A 2 + AB 
After encrypting all the characters of the message Bob converts the pair of points of 
each message point into the text characters using the code table. Then he communicates 
the cipher text to Alice in public channel. 
 
3.2 Decryption:- After receiving the cipher text, Alice converts the cipher text into the 
points on the elliptic curve and recognizes the points E1 and E2 of each character. Then 
she decrypts the message as follows. 
 M = E2 – (α E1 +α B 1 + B A) 
 
3.3 Decryption works out properly:-(β + γ)  A 1- γ A 2 + A B = γ (A 1- A 2)+ β A 1 + A B 
           = γ α C + β α C + β α A + β α B 
           = γ α C + β α (A+B+C) 
                 αE1 +α B 1 + B A = α γ C + α β C + α β B + α β A 
                      = γ α C + β α (A+B+C) 
    Therefore, (β + γ)  A 1- γ A 2 + A B = α E1 + α B 1 + B A 
          E2 – (α E1 + α B 1 + B A = [M + (β + γ) A 1- γ A 2 + A 3] –[ α E1 + α B 1 + BA] 
                                      = M + [γ α C + β α (A+B+C)] – [γ α C + β α (A+B+C)] 
                                      = M 
In this method a group of communicating parties A, B, C, D……. can communicate 
with one another securely, non- repudiatively in an authentic manner. Here each 
communicating party say X publishes two general public keys X1,X2 . X also publishes 
a specific public key XY to be used by the communicating party Y for communication 
with Y. When Y wants to communicate with X, Y uses the general public keys of X 
(X1,X2), the specific public key published by X for Y (XY) and Y’s secret key y. To 
decrypt the message X uses Y’s general public keys (Y1,Y2), the specific public key 
published by Y for X  (YX) and X’s secret key x. Here X creates specific public key XY 
for Y using Y’s public keys and X’s secret key. So, this method of encryption using 
elliptic curves over finite fields is highly suitable for communication between groups of 
corporate/government institutions. 
 

4. Example:- Consider an elliptic curve whose equation is y2 = x3 + 2x + 9. The graph 
of the function is shown in figure 3. 
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In the above graph the right lines can be drawn in xy-plane such that 1) there is no 
intersection between the right line and elliptic curve 2) the line intersects the elliptic 
curve at one point or  two points or  three points. 
Now consider an elliptic curve( y2 = x3 + 2x + 9)mod37 , E37 (2,9). The points on the 
elliptic curve  
 E37 (2,9)are  
{ ∞ ,(5,25), (1,30),   (21,32),   (7,25), (25,12),  (4,28),  (0,34),  (16,17), (15,26), (27,32), 
(9,4),(2,24), (26,5), (33,14),  (11,17), (31,22), (13,30), (35,21), (23,7), (10,17), (29,6), 
(29,31), (10,20),  (23,30), (35,16),(13,7), (31,15), (11,20), (33,23), (26,32),(2,13), 
(9,33), (27,5), (15,11),  (16,20), (0,3), (4,9), (25,25), (7,12), (21,5), (1,7), (5,12),  } 
The graph of the function is shown in Figure 4. 
 

                        
                   
Let C = (9,4).  Alice selects a random number α = 5, any point A = (10,20) on the 
elliptic curve. She computes  
                   A 1 = α (C+A) =  5[(9,4) + (10,20)] = (1,7) 
        A 2 = α A = (33,23).  
She keeps the random number α = 5 and the point A on the elliptic curve as her secret 
keys and publishes  A 1 and A 2 as her public keys. 
Bob selects β = 7, B = (11,20) on the elliptic curve. He computes 
 B 1 = β (C+B) =  (11,17) 
  B 2 = β B = (23,30). 
He keeps the random number β = 7 and the point B on the elliptic curve as his secret 
keys and publishes  B 1 and B 2 as his public keys. 
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Alice calculates A B = α B 2 = (15,11) and Bob calculates B A = β A 2 = (2,13).  Alice 
publishes A B as the specific public key for Bob and Bob publishes B A as specific public 
key for Alice.  
 

4.1 Encryption: If Bob wants to communicate the message ‘attack’ to Alice, Bob 
converts all the text characters of the message into the points on the elliptic curves using 
the agreed upon code table. 

 

* a b c d e f g h 

∞  (5,25) (1,30) (21,32) (7,25) (25,12) (4,28) (0,34) (16,17) 

I j k l m n o p q 

(15,26) (27,32) (9,4) (2,24) (26,5) (33,14) (11,17) (31,22) (13,30) 

r s t u v w x y z 

(35,21) (23,7) (10,17) (29,6) (29,31) (10,20) (23,30) (35,16) (13,7) 

 

1 2 3 4 5 6 7 8 9 0 

(31,15) (11,20) (33,23) (26,32) (2,13) (9,33) (27,5) (15,11) (16,20) (0,3) 

# @ ! & $ %     

(4,9) (25,25) (7,12) (21,5) (1,7) (5,12)     

 
1). In the message ‘attack’ the first character ‘a’ corresponds to the point (5,25) using 
the code table. Bob selects a random number γ = 8 for encrypting the character ‘a’. 
Then the point (5,25) is  encrypted as 
 E1 = γ C = (1,30) which corresponds to the character ‘b’ in the conversion table. 
 E2 =  M + (β + γ) A 1 –γ A 2 + A B = (2,13) which corresponds to ‘5’ in the code  
table. So, the character ‘a’ in the plain text is encrypted to two characters {b,5}  in the 
cipher text.  
2) ‘t’ is a point (10,17) in the code table. Let γ = 12  
 E1 = (21,32) which corresponds to ‘c’ in the code table. 
 E2 = M + (β + γ) A 1 – γ A 2 + A B =  (2,24) which corresponds to ‘l’ in the code 
table. So, ‘t’ is encrypted as {c,l}. 
 3) ‘t’ is a point (10,17) in the code table. Let γ = 19 
 E1 = (4,9) which corresponds to ‘#’ in the code table. 
 E2 = M + (β + γ) A 1 – γ A 2 + A B = (27,32) which corresponds to ‘j’  in the code 
table. So, ‘t’ is encrypted as {#,j} 
4) ‘a’ is a point (5,25) in the code table. Let γ = 2 
 E1 = (29,31) which corresponds to ‘v’ in the code table. 
 E2 = M + (β + γ) A 1 – γ A 2 + A B= (1,30) which corresponds to ‘b’ in the code 
table. So, ‘c’ is encrypted as {v,b} 
5) ‘c’ is a point (21,32) in the code table. Let γ = 3 
E1 =  (1,30) which corresponds to ‘b’ in the code table. 
 E2 = M + (β + γ) A 1 – γ A 2 + A B= (31,22) which corresponds to ‘p’ in the code  
table. So, ‘a’ is encrypted as{b,p}. 
  
6) ‘k’ is a point (9,4) in the code table. Let γ = 23 
 E1 = (25,25) which corresponds to ‘@’ in the code table. 
 E2 = M + (β + γ) A 1 – γ A 2 + A B = (4,28) which corresponds to ‘f’ in the code 
table. So, ‘k’ is encrypted as {@,f} 
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Bob communicates {b,5; c,l; #,j; v,b; b,p; @,f  }as the cipher text to Alice in public 
channel. 
 4.2 Decryption:-   Alice after receiving the cipher text {b,5; c,l; #,j; v,b; b,p; @,f  }  
converts the cipher characters  into the points (1,30) ,(2,13), (21,32),(2,24) (4,9) ,(27,32)  
(29,31) (1,30) (1,30) (31,22) (25,25) (4,28). She decrypts the message taking two points 
at a time as the points E1 and E2. 
1) M = E2 – (αE1 +α B 1 + B A) = (5,25) which corresponds to the character ‘a’ in the 
code table. 
2) M = E2 – (αE1 +α B 1 + B A) = (10,17) which corresponds t the character ‘t’ in the 
code table. 
3) M = E2 – (αE1 +α B 1 + B A) = (10,17) which corresponds to the character ‘t’ in the 
code table. 
4) M = E2 – (αE1 +α B 1 + B A) = (5,25) which corresponds to the character ‘a’ in the 
code table. 
5) M = E2 – (αE1 +α B 1 + BA ) = (21,32) which corresponds to the character ‘c’ in the 
code table. 
6) M = E2 – (αE1 +α B 1 + B A) = (9,4) which corresponds to the character ‘k’ in the 
code table. Then ‘attack’ is the original message. 
 

5. Conclusions:-  
 In the encryption algorithm proposed here the communicating parties agree upon to use 
an elliptic curve and a point C on the elliptic curve. The security of the Elliptic Curve 
Cryptography depends on the difficulty of finding the value of k, given kP where k is a 
large number and P is a random point on the elliptic curve. This is the Elliptic Curve 
Discrete Logarithmic Problem. The elliptic curve parameters for cryptographic schemes 
should be carefully chosen in order to resist all known attacks of Elliptic Curve Discrete 
Logarithmic Problem (ECDLP). The straightforward use of public key encryption 
provides confidentiality but not the authentication [17]. Each communicating party 
publishes a specific public key for the communication with a specific communicator. 
With this the receiver is assured that the cipher was constructed by the sender only 
because the sender uses receiver’s general public keys, receiver’s specific public key 
published for the sender alone and sender’s private key for constructing the cipher. This 
ensures that sender has “digitally signed” the message by using the specific public key 
published for him alone by the receiver. Hence,  the cipher has achieved the qualities 
confidentiality, authentication and non-repudiation. Moreover, each message point is 
encrypted as a pair of points on the elliptic curve.  Here a random number γ is used in 
the encryption of each message point and γ is different for encryption of different 
message points. That is why the same characters in the message space are encrypted to 
different characters in the cipher space. The difference between characters of the plain 
text is not the same as difference between the characters of the cipher text.  Due to this 
the linear cryptanalysis is highly difficult. In addition to this each character of the 
message is coded to the point on the elliptic curve using the code table which is agreed 
upon by the communicating parties and each message point is encrypted to a pair of 
points on the elliptic curve. Hence, the method of encryption proposed here provides 
sufficient security against cryptanalysis at relatively low computational overhead. 
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