
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

DOI : 10.5121/ijnsa.2012.4103 29

PROTECTED DATA OBJECTS REPLICATION IN

DATA GRID

G. Aruna Kranthi and D. Shashi Rekha

Sr. Asst. Professor, Department of Computer Engineering, S.R. Engineering College,

Warangal, A.P.

raj.kranthi@gmail.com

M.Tech (C.S.E), S.R. Engineering College, Warangal, A.P.

sashi.mtech@gmail.com

ABSTRACT

Secret distribution and erasure convention - based approaches have been used in distributed storage

systems to provide the confidentiality, integrity, and availability of critical information. To achieve

performance goals in data accesses, these data fragmentation approaches can be combined with dynamic

replication. In this paper, we consider data partitioning (both secret distribution and erasure convention)

and dynamic replication in data grids, in which security and data access performance are critical issues.

More specifically, we investigate the problem of optimal allocation of sensitive data objects that are

divided by using secret distribution scheme or erasure convention scheme and/or replicated. The grid

topology we consider consists of two layers. In the upper layer, multiple clusters form a network topology

that can be represented by a general graph. The topology within each cluster is represented by a tree

graph. We decompose the share replica allocation problem into two sub problems: the Optimal Inter

cluster Resident Set Problem (OIRSP) that determines which clusters share replicas and the Optimal

Intra need cluster Share Allocation Problem (OISAP) that determines the number of share replicas

needed in a cluster and their placements. We develop two heuristic algorithms for the two sub problems.

KEY WORDS

Protected data, secret distribution, erasure convention, replication, data grids.

1. INTRODUCTION

Data grid is a distributed computing architecture that integrates a large number of data and

computing resources into a single virtual data management system [2]. It enables the sharing

and coordinated use of data from various resources and provides various services to fit the

needs of high-performance distributed and data-intensive computing. Many data grid

applications are being developed or proposed. These data grid applications are designed to

support global collaborations that may involve large amount of information, intensive

computation, real time, or nonreal time communication. Success of these projects can help to

achieve significant advances in business, medical treatment, disaster relief, research, and

military and can result in dramatic benefits to the society.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

30

There are several important requirements for data grids, including information survivability,

security, and access performance [1], [2]. Replication is frequently used to achieve access

efficiency, availability, and information survivability. The underlying infrastructure for data

grids can generally be classified into two types: cluster based and peer-to-peer systems [3]. In

pure peer-to-peer storage systems, there is no dedicated node for grid applications (in some

systems, some servers are dedicated). Replication can bring data objects to the peers that are

close to the accessing clients and, hence, improve access efficiency. Having multiple replicas

directly implies higher information survivability. In cluster-based systems, dedicated servers are

clustered together to offer storage and services. However, the number of clusters is generally

limited and, thus, they may be far from most clients.

In this paper, we consider combining data partitioning and replication to support secure,

survivable, and high performance storage systems. Our goal is to develop placement algorithms

to allocate share replicas such that the communication cost and access latency are minimized.

The remainder of this paper is organized as follows: Section 2 describes a data grid system

model and the problem definitions. Section 3 introduces a heuristic algorithm for determining

the clusters that should host shares. In Section 4, the results of the experimental studies are

discussed. Section 5 discusses some research works that are related to this research. Section 6

states the conclusion of this paper.

2. SYSTEM MODEL AND PROBLEM SPECIFICATION

In this paper, we consider achieving secure, survivable, and high-performance data storage in

data grids. To facilitate scalability, we model the peer-to-peer data grid as a two level topology

(shown in Fig. 1). One or several such autonomous systems that are geographically close to

each other can be considered as a cluster. The system consists of M clusters, H1 . . .,HM, which

are linked together and form a general

Figure 1 A sample graph of our system topology.

Graph topology G
C
 = (H

C
, E

C
). Here, H

C
 = {H1, . . .,HM} and E

C
 is the set of edges connecting

the clusters. Each edge represents a logical link which may be multiple hops of the physical

links. It is likely that the clusters are linked to the backbone and should be modeled by a general

graph.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

31

Within each cluster, there may be many subnets from the same or multiple institutions. Among

all the physical nodes in the cluster, some nodes, such as servers, proxies, and other individual

nodes, may be committed to contribute its storage and/or computation resources for some data

grid applications. These nodes are connected via logical links. Internet message routing is

relatively stable in days or even weeks and the multiple routing paths generally form a tree.

Thus, for simplicity, we model the topology inside a cluster as a tree. Consider a cluster Hx. Let

Gx =(Vx, Ex) represents the topology graph within the cluster, where Vx = {Px,1,Px,2, . . . , Px,Nx}

denotes the set of Nx (N if only considering cluster Hx) nodes in cluster Hx, and Ex is the set of

edges connecting nodes in Hx. Also, let Px
 root

 denote the root node in Hx (e.g., Px
 root

 Є Vx). We

assume that all traffic in Hx goes through the network where Px
 root

 resides. Let δ (Px,I, Px,j)

denote the shortest path between Px,I and Px,j in Hx, and | δ (Px,I, Px,j) denote the distance of δ
(Px,I, Px,j). Also, let δ (Hx, Hy) denote the shortest path between Hx and Hy (actually, between Px

root
 and Py

 root
), and | δ (Hx, Hy) | denote the distance of δ (Hx, Hy). We assume that δ (Px,I, Px,j) for

any i, j, and x is much less than |δ (Hx, Hz)| for any y and z, where y ≠ z (i.e., the distance

between any two nodes within a cluster is less than the distance between any two clusters).

The data grid (represented by the set of clusters HC) hosts a set of data objects D (D can

contain the application data or keys). One of the clusters is selected as the Master Server

Cluster (MSC) for some data objects in D, denoted as HMSC (different data objects may have

different HMSC). HMSC hosts these data objects permanently (it may be the original data

source). These data objects may be partially replicated in other clusters in HC to achieve better

access performance. Due to the increasing attacks on Internet, a node hosting some data objects

in D has a significant chance of being compromised. If a node is compromised, all the plaintext

data objects stored on it are compromised.

2.1. Access Model and Problem Decomposition

Data placement decisions are made based on historical client access patterns. We model access

patterns by analyzing the number of read/write accesses from each node or each cluster.

Consider a data object d. Let T denote the time period unit for collecting information of access

patterns. Let A
r

(Px,i) and A
w
(Px,i) denote the numbers of read and write accesses,

respectively, initiated from node Px,i over time T. Also, let A
r
(Hx) and A

w
(Hx) denote the

numbers of read and write accesses, respectively, initiated from a cluster Hx over time T. A
r
(H

x
)

= ∑iA
r
(Px,i) and A

w
(Hx)= ∑iA

w
(Px,i). Let W

C
 denote the total number of update requests on d in

G
C
, i.e., w

C
 = ∑Hx A

w
(Hx).

Based on the client access patterns, subsets of the m shares of each data in D may be replicated

to the clusters in H
C
. The set of clusters that hold shares is defined as the cluster level resident

set. Let R
C
 denote the cluster level resident set, i.e., R

C
 = {Hx | clusters hold shares}. To

minimize the communication cost, we consider that a cluster holds either none or at least l

distinct share replicas (will be proven in Theorem 3.1). Also, we assume that each cluster holds

only distinct shares (i.e., at most m) since, otherwise, extra efforts are required to avoid reading

duplicated shares (a large m value ensure that a sufficient distinct shares can be allocated to

each cluster). Intracluster residence set is the set of nodes that holds a share replica within a

cluster. Let Rx denote the intracluster residence set of Hx, i.e., Rx = {Px,i | Px,i holds a share and

Px,i is in Hx}. Correspondingly, |Rx| denotes the number of share replicas in Hx. We say Rx (or

R
C
) is connected if and only if every node in Rx (or R

C
) has at least one path to any other node

in Rx (or R
C
), and each node on the path also belongs to Rx (or R

C
). Otherwise, Rx (or R

C
) is

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

32

partitioned. In this case, Rx (or R
C
) contains multiple subgraph, Rx,1 , Rx,2, . . .,Rx,n (or R

C
1 , R

C
2 , .

. .,R
C

n), n > 1, Rx,i (or R
C

i), 1 ≤ i ≤ n, is a connected subgraph, and Rx,i and Rx,j (or R
C

i and R
C

j

), i ≠ j, are not connected.

Now, consider the intracluster level. Let δ (Px,i, Rx) denote the shortest path from Px,i to any node

in Rx, and δ (Px,i,P x
 root

) denote the shortest path from Px,i to the root node in Hx. Also, let δ (Hx,

R
C
) denote the shortest path from Hx to the closest cluster in R

C
, and |δ (Hx, R

C
)| is the distance

of path δ (Hx, R
C
) (only counting the cluster level cost). Let Ґ(Px,i, Rx, α) denote the MST

rooted at Px,i and includes a total of α nodes hosting shares in cluster Hx.|Ґ (Px,i, Rx, α)|

represents the total distance of the MST. Let ҐC
(R

C
) denote the MST from HMSC to all clusters

in R
C
 at the cluster level. |ҐC

 (R
C
)| is the total distance of the MST ҐC

(R
C
), but only considering

the costs at the cluster level (i.e., the distance to the root node of each involved cluster).

 The read access protocol tries to read the closest l share replicas. Consider a client C sending a

read request to Px,i. If the local cluster of Px,i (i.e., Hx) holds shares (note that Hx holds either

none or at least l share replicas), then it reads l shares within Hx (the l nodes are selected such

that the communication cost is minimal). The access cost in this case is |Ґ (Px,i,Rx,l)| (assume

that the communication cost between the client and Px,i is negligible). If Hx does not hold share

replicas, then Px,i obtains all l shares from the closest cluster Hy where Hy ЄR
C
. The algorithm

for transferring shares from the source cluster Hy to the requesting cluster Hx is defined as

follows: 1) all the nodes in Hy holding the desired shares send the shares to Py
 root

 (encrypted

using the session key between Hy and the client); 2) Py
root

 puts the pieces into one message and

sends it to Px
root

 ; and 3) Px
root

 sends the shares to the requesting node Px,i and Px,i forwards

them to client C. Overall,

The read cost is |δ (Px,i, Px
root

) | + |δ (Hx, R
C
) |+| Ґ (Py

root
 ,Ry, l)|.

Note that |Ґ (Px,i, Rx,l)|= 0 if Hx hosts less than l shares,

and | δ(Px,i, Px
root

)|+| δ (Hx, R
C
)| + | Ґ(Py

root
,Ry,l)|= 0, otherwise.

Let readCost denote the total read cost in the system.

We have

readCost

 | Ґ (Px,i, Rx,l)|, if Hx holds at least 1 shares,

= ∑ ∑

 Hx i | (Px,I, Px
root

) | + | (Hx, R
C
)|

 +| Ґ(Py
root

 , Ry, l)|, otherwise.

Let updateCost denote the overall update cost in the system. We have

UpdateCost = w
c
 * (|ҐC

 (R
C
)| + ∑ Hx |Ґ (Px

root
, Rx,| Rx|)|)

 + forwardCost.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

33

Note that we do not consider the extra cost required for the detection and recovery of an invalid

share. With both update and read cost, the total cost becomes Tcost = updateCost + readCost.

Table 1 gives a summary of the notation used in this paper.

We can decompose the partitioned data replica problem into two subproblems. The first

problem is to decide which cluster should keep the share replicas at the cluster level, and we

define it as the Optimal Intercluster Resident Set Problem (OIRSP). The second problem is to

decide how many share replicas are needed for each cluster and how to allocate them within the

cluster. We define it as the Optimal Intracluster Share Allocation Problem (OISAP). Each

cluster is viewed as a single node in OIRSP. In the next two sections, we specify the two

subproblems in details.

2.2. OIRSP Specification

We define the first problem, OIRSP, as the optimal resident set problem in a general graph

(intercluster level graph) with an MSC HMSC. Our goal is to determine the optimal R
C
 that

yields minimum access cost at the cluster level. For a cluster Hx Є R
C
 with | Rx | ≥ l, all read

request from Hx are served locally and the cost is 0 at the cluster level. For a cluster Hx with | Rx

| < l, it always transmits all read access requests in Hx to the closest cluster Hy Є R
C
 to access l

distinct shares, with |Ry| ≥ l. The read cost of cluster at the cluster level is A
r
 (H

x
) * | δ (Hx, R

C
)|.

Let ReadCost
C
 (G

C
,

R

C
) denote the total read cost in G

C
 with the resident set R

C
, then

ReadCost
C
 (G

C
, R

C
)= ∑Hx A

r
(Hx) * | δ(Hx, R

C
) |.

Let UpdateCost
C
 (G

C
,

R

C
) denote the total update cost in G

C
 with the resident set R

C
, then

UpdateCost
C
 (G

C
,R

C
) = w

C
 * | ҐC

 (R
C
)|.

Thus, the total access cost in G
C
, denoted as Cost (G

C
,R

C
) is defined as follows:

Cost
C
 (G

C
,R

C
) = UpdateCost

C
 (G

C
,R

C
)

+ ReadCost
C
 (G

C
 ,R

C
).

The problem here is to decide the share replica resident set R
C
 in G

C
, such that the

communication cost Cost
C
 (G

C
,R

C
) is minimized.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

34

TABLE 1

Summary of the Frequently Used Notation

2.3. OISAP Specification

When we consider allocation problem within a cluster Hx, we can isolate the cluster and

consider the problem independently. As discussed earlier, all read requests from remote clusters

can be viewed as read requests from the root node. Also, the w
C
 updates in the entire system can

be considered as updates done at the root node of the cluster. Thus, we can simplify the notation

when discussing allocation within Hx by referring to everything in the cluster without the cluster

subscript. For example, we use G = (P, E) to represent the topology graph of Hx, where P = {P1,

P2, . . . ,PN}. Similarly, P
root

 represents the root node of Hx, δ(Pi, Pj) represents the shortest path

between two nodes inside Hx, and R represents the resident set of Hx.

Let ReadCost (R) denote the total read cost from all the nodes in cluster Hx:

ReadCost (R) = ∑PiЄHx |Ґ (Pi, R, l)| * A
r
 (Pi):

For each update in the system, the root node P
root

 needs to propagate the update to all other

share holders inside Hx. Let WriteCost(R) denote the total update cost in Hx. Then

WriteCost(R) = w
C

* | Ґ (P
root

, R, |R)|.

Let Cost(R) denote the total cost of all nodes in Hx, then

Cost (R) = WriteCost (R) + ReadCost (R).

Our goal is to determine an optimal resident set R to allocate the shares in Hx, such that Cost(R)

is minimized.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

35

3. OIRSP SOLUTIONS

In this section, we present a heuristic algorithm for OIRSP. First (in Section 3.1), we discuss

some properties that are very useful for the design of the heuristic algorithm. In Section 3.2, we

present the heuristic algorithm that decides which cluster should hold share replicas to

minimize access cost.

3.1. Some Useful Properties

We first show that if a cluster Hx is in R
C
 (an optimal resident set), then Hx should hold at least l

share replicas (l is the number of shares to be accessed by a read request). If Hx is in R
C
 and Hx

has less than l shares, then read accesses from Hx will anyway need to go to another cluster to

get the remaining shares. If Hx holds no share replicas, then read accesses from Hx may need to

get the l shares from multiple clusters. These may result in unnecessary communication overhead.

Theorem 3.1. In a general graph G
C
,V x, Hx Є G

C
, |Rx| = 0 or |Rx| ≥ l.

Proof. Assume that there exists one cluster Hx in R
C
, such that |Rx| < l. When the resident set is

R
C
, a read request from Hx cannot be served locally and the remaining shares have to be

obtained from at least one other cluster in G
C
 that holds those shares. Thus, | δ (Hx, RC| > 0. Let

us construct another resident set R
C1

. R
C1

 is the same as R
C
 except that in R

C1
, Hx holds l distinct

shares. Thus, in R
C1

, |δ(Hx,R
C1

)| = 0. So, the read cost for read requests from Hx becomes zero.

Also, in G
C
, there may be clusters that read from Hx. Assume that Hx is the closest cluster in R

C

of Hy (Hy is not in R
C
). If the optimal resident set is R

C
, then Hy needs to read from Hx and some

other clusters since Hx has less than l shares. Thus, we can conclude

ReadCost
C
 (G

C
,R

C
) – ReadCost

C
 (G

C
,R

C1
)

≥ A
r
(Hx) *|δ(Hx,R

C1
)| and, hence,

ReadCost
C
 (G

C
,R

C1
) < ReadCost

C
 (G

C
,R

C
).

Now let us consider the update cost. Note that we have UpdateCost
C
 (G

C
,R

C
) = w

C
*|Ґ

C
 (R

C
)|.

Because R
C1

 and R
C
 are actually composed of the same set of clusters, so |ҐC

 (R
C1

)| = |ҐC
 (R

C
)|.

Also, w
C
 is independent of the resident set. So, we have UpdateCost

C
(G

C
,R

C1
) =

UpdateCost
C
(G

C
,R

C
).

Theorem 3.2. The optimal resident set is a connected graph within the general graph G
C
.

Proof. Assume that R
C
 is an optimal resident set for G

C
 and it is not connected. Since R

C
 is not

a connected graph, there are two subgraphs R
C1

 and R
C2

 that are not connected. Without loss of

generality, assume that cluster HMSC Є R1
C
 and R2

C
 is the closest subgraph to R1

C
 in the update

propagation minimal spanning tree of R
C
. Since G

C
 is connected, at least one path existed that

connects R1
C
 and R2

C
. Let δ (R1

C
 , R2

C
) denote the path connecting R1

C
 and R2

C
 in G

C
 with the

minimal distance (or minimum number of hops between R1
C
 and R2

C
 if distance is measured by

the number of hops) and let |δ(R1
C
 , R2

C
)| denote the distance. Since R1

C
 and R2

C
 are

disconnected, there exists a cluster Hx Є δ (R1
C
, R2

C
) and Hx Є R

C
.

Let us consider a new resident set R
C1

 such that R
C1

 is the same as RC, except that all clusters on

path δ (R1
C
, R2

C
) are in R

C1
. For each cluster H

x
 Є δ(R1

C
 ,R2

C
), |δ(Hx ,R

C1
)| = 0. Together with

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

36

Theorem 3.1, we know that ReadCost
C
 (G

C
 , R

C
) < ReadCost

C
 (G

C
 ,R

C1
). For each update in

G
C
, an update propagation message is propagated from R1

C
 to R2

C
 through δ(R1

C
 , R2

C
), no

matter whether R
C
 or R

C1
 is the residence set, since δ(R1

C
 , R2

C
) is the shortest path between R1

C

and R2
C
 in G

C
. Thus,

UpdateCost
C

(G
C
,R

C1
) = UpdateCost

C
(G

C
,R

C
).

Since R
C1

 yields a lower read cost than and has the same update cost as R
C
, we can conclude

that Cost
C
 (G

C
,R

C1
) < Cost

C
 (G

C
,R

C
). Thus, R

C
 is not a minimal residence set. And, we can

conclude that the optimal resident set is a connected graph in G
C
.

Fig. 2. Sample G
C
 and SPT (G

C
 , R

C
). (a) The original G

C
 with R

C
 = {H1, H2,H3}. (b) Super node

S and SPT (G
C
, R

C
) constructed by Build_SPT.

3.2. A Heuristic Algorithm for the OIRSP

The goal of OIRSP is to determine the optimal resident set R
C
 in G

C
. G

C
 is a general graph.

Each edge in G
C
 is considered as one hop.

It has been shown that the problem is NP-complete. Thus, we develop a heuristic algorithm to

find a near-optimal solution. Our approach is to first build a minimal spanning tree in G
C
 with

R
C
 being the root and then identify the cluster to be added to R

C
 based on the tree structure. The

clusters in G
C
 access data hosted in R

C
 along the shortest paths, and these paths and the clusters

form a set of the shortest path trees. Since all the nodes in R
C
 are connected, we view them as

one virtual node S. Then, S, all clusters that are not in R
C
, and all the shortest access paths form

a tree rooted at S, which is denoted as SPT(G
C
, R

C
) (an example of the tree is shown in Fig. 2b).

We develop an efficient algorithm Build_SPT to construct SPT(G
C
,R

C
) based on the current

resident set R
C
. To facilitate the identification of a new resident cluster, we also define V

C
 (G

C
,

R
C
) as the vicinity set of S, where V Hx Є V

 C
(G

C
,R

C
), we have Hx Є R

C
 and Hx is a neighboring

cluster of S. Note that from Theorem 3.2,we know that the clusters in R
C
 are connected.

Build SPT (G
C
,R

C
) first constructs V

C
(G

C
,R

C
) by visiting all neighboring clusters of R

C
. If a

cluster Hx in V
C
(G

C
,R

C
) has more than one neighbor in R

C
, then one of them is chosen to be the

parent cluster. Next, Build SPT (G
C
, R

C
) traverses G

C
 starting from clusters in V

C
(G

C
,R

C
). From

a cluster Hx, it visits all Hx’s neighboring clusters. Assume that Hy is a neighboring cluster of

Hx. When Build_SPT visits Hy from Hx, it assigns Hx as Hy’s parent if Hy does not have a parent.

In this case, Hy is in the same tree as Hx, and Hy’s tree root is set to Hx’s (which is a cluster in

R
C
). Since all read requests from Hy go through the root, say Hz, A

r
(Hy) is added to A

r
(Hz)

1
 for

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

37

later use (for new resident cluster identification). In case Hy already has a parent, the distances

to S via the original parent and via Hx are compared. If Hx offers a shorter path to S, then Hy’s

parent is reset to Hx and the corresponding adjustments are made. To achieve a faster

convergence for new R
C
 identification, Hy’s parent is also changed to Hx if Hx’s tree root Hz has

a higher value of A
r
(Hz)

1
, when the distances to S via Hy’s original parent and via Hx are equal.

The detailed algorithm for Build_SPT is given in the following (assume that V
 C

(G
C
,R

C
) is

already identified). In the algorithm, each node Hx has several fields. Hx. root and Hx. parent are

the root and parent clusters of Hx, respectively. Hx. dist is the distance from Hx to Hx’s root (at

the end of the algorithm, it is the shortest distance). We also use Next (Hx) to denote the set of

Hx’s neighbors.

Build_SPT (G
C
, R

C
)

{ For all Hx, Hx1 Є V
 C

(G
C
,R

C
)

{ Insert Hx into Queue; Hx. root --- Hx; Hx. dist 0;

A
r
(Hx)

1
 A

r
(Hx); }

While (Queue # Ө

{ Hx Remove a node from Queue;

For all Hy, Hy Є Next (Hx) ^ Hy Є RC

{ If (Hy is not marked as visited) then

{ Insert Hy into Queue; Hy. dist Hx. dist + 1;

Hy. parent Hx; Hy. root Hx. root;

A
r
(Hy. root)

1
 A

r
(Hy. root)

1
+ A

r
(Hy); Mark Hy as

visited; }

Else

{ If (Hy. dist > Hx. dist + 1V((Hy. dist=

Hx. dist + 1) ^ A
r
(Hy. Root)

1
 < A

r
(Hx. root)

1
)) then

{ A
r(
Hy. root)

1
 A

r(
Hy. root)

1
- A

r
(Hy);

Hy. dist Hx. dist + 1; Hy. parent Hx;

Hy. root Hx. root;

A
r
(Hy. root)

1
 A

r
(Hy. root)

1
+ A

r
(Hy); } }

} } }

Actually, the check for Hy. dist > Hx .dist + 1 in the algorithm is not necessary since a queue is

used (a node is always visited from a neighbor with the shortest distance to S). A sample

general graph G
C
 with current resident set R

C
 = {H1, H2, H3} is shown in Fig. 2a. The

corresponding SPT(G
C

, R
C
) is shown in Fig. 2b, where R

C
 is represented by the super node

labeled as S. When constructing SPT (G
C
, R

C
), S’s immediate neighbors, including H4, H5, H6,

H7, H8, and H9, are visited first. H4 is visited twice but H1 is selected as the parent since H4 is

visited from H1 first and there is no need for adjustment when it is visited the second time.

From the clusters nearest to S, the clusters that are two hops away from S, including H10, H11,

H12, H13, H14, and H15, are visited. Finally, the nodes that are further away from S are visited.

We develop a heuristic algorithm to find the new resident set for G
C
 in a greedy manner. We try

to find a new resident cluster in V
C

(G
C
,R

C
) and, once found, update R

C
 accordingly. The

algorithm is shown below. R
C
 is initialized to {HMSC}. The algorithm first constructs SPT

(G
C
,R

C
) and identifies V

C
(G

C
,R

C
). Then, a cluster Hy with the highest A

r
(Hy)

l
 is selected. If

A
r
(Hy)

1
 > w

C
, then Hy is added to R

C
. If A

r
(Hy)

1
 ≤ w

C
, then the algorithm terminates since no

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

38

other nodes can be added to R
C
 while reducing the access communication cost. Note that, in

each step, only one cluster can be added into R
C
 because SPT (G

C
,R

C
) and A

r
(Hx)

1
 changes when

R
C
 changes.

R
C
 {HMSC};

Repeat

{Build SPT (G
C
,R

C
);

Select a cluster Hy, where Hy has the maximum

A
r
(Hy)

l
 among all clusters in V

 C
(G

C
,R

C
);

If A
r
(Hy)

l
 > w

C
 R

C
 R

C
 U {Hy}; }

Until (A
r
(Hy)

l
 ≤ w

C
)

Theorem 3.3. In a general graph G
C
, if |R

C
| > 1, then Cost

C
(G

C
,R

C
) < Cost

C
(G

C
, {HMSC}).

Furthermore, every time a new cluster Hx (Hx satisfies the cost constraint) is added to current

resident set R
Cl

(R
Cl

 C R
C
), the communication cost decreases, i.e., Cost

C
(G

C
,R

Cl
U{Hx}) <

Cost
C
(G

C
, R

Cl
).

Proof. According to Theorem 3.1, V x, Hx Є R
C
, |Rx|≥ l. The algorithm works by adding one

cluster at a t i m e . Let R
C
= {H1, H2, . . .,Hn}, |R

C
| = n and H1= HMSC. Assume that Hi is added

at the (i- 1) th step to R
C
. If we show that after adding each cluster, the cost reduces, then we

can conclude that Cost
C
(G

C
,R

C
) < Cost

C
(G

C
, {HMSC}). We use induction to prove this.

Step 1. We show that Cost
C

(G
C
; {HMSC;H2}) < Cost

C
(G

C
, {HMSC}). According to the algorithm,

H2 Є V
C
(G

C
, {HMSC}), then UpdateCost

C
(G

C
,{HMSC, H2})= UpdateCost

C
(G

C
,{HMSC})+ w

C
*

|δ(H2,{HMSC})|. For each cluster Hx that reads {HMSC} through H2, δ(Hx, {HMSC}) is the shortest

path in G
C
 from Hx to {HMSC}. It is obvious that H2 Є δ(Hx, {HMSC}) and H2 is the cluster on

δ(Hx,{HMSC}) right next to HMSC, and |δ(Hx,H2)| = |δ(Hx, {HMSC})| - |δ(H2, {HMSC})|. Any other

path δ(Hx,H2)
1
 or δ(Hx, HMSC)

1
 has a distance no less than |δ(Hx, H2)|. With resident set

{HMSC,H2}, δ(Hx,H2) will continue to be the least distance path for cluster Hx to read from H2 in

G
C
, and δ(Hx, {HMSC, H2}) = δ(Hx, {HMSC}) - |δ(H2, {HMSC})|. For any cluster Hx that reads

{HMSC} through H2, δ(Hx, {HMSC}) will, at least, not increase if H2 is added into the resident set.

Then, we can easily get ReadCost
C
 (G

C
, {HMSC, H2}) + A

r
(H2)1 ≤ ReadCost

C
(G

C
, {HMSC}).

According to the heuristic resident set algorithm, we know A
r

(H2)
l
 > w

C
. Thus, Cost

C
(G

C
,

{HMSC, H2}) - Cost
C
(G

C
, {HMSC}) = UpdateCost

C
(G

C
, {HMSC, H2}) - UpdateCost

C
(G

C
 ,

{HMSC}) + ReadCost
C
 (G

C
, {HMSC , H2})- ReadCost

C
(G

C
,{Hmsc})≤ w

C
 - A

r
(H2)

l
 *|δ(H2,

{HMSC})|< 0.

Step 2. Assume that Cost
C

(GC, {HMSC, H2, . . .,Hk}) < Cost
C
(G

C
, {HMSC, H2, . . ., Hk-1}). We

show that Cost
C

(G
C
 , {HMSC , H2 , . . . , Hk}) > Cost

C
(G

C
, {HMSC, H2, . . .;Hk+1}), with k < n. It

can be seen that the proof is the same as above and we will not show it here.

By induction, we know that Cost
C

(G, {HMSC, H2, . . . , Hn}) < Cost
C
{G

C
, {HMSC, H2, . . ., Hn-1}).

Thus, Cost
C
 (G

C
,R

C
) < CostC(G

C
, {HMSC}). Also, from the induction process, we can conclude

that every time a new cluster Hi joins RC, the communication cost decreases, i.e.,

Cost
C
(G

C
,R

C
(i-1)) < Cost

C
 (G

C
,R

C
).

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

39

4. PERFORMANCE OF THE OIRSP HEURISTIC ALGORITHM

In this section, we compare the performance of the OIRSP heuristic algorithm with the
randomized K-replication, noreplication allocation, and complete replication strategies. We
study the impacts of three factors: 1) the graph size, which is the number of clusters in the
system; 2) the graph degree, which is the average number of neighbors of a cluster; and 3) the
update/read ratio, which is the ratio of the total number of update requests in the entire system
to the average number of read requests issued from a single cluster (these are the requests each
cluster needs to process).

5. RELATED WORK

Replication techniques are frequently used to improve data availability and reduce client

response time and communication cost. One major advantage of replication is performance

improvement, which is achieved by moving data objects close to clients. In this paper, we

consider the replica placement problem in data grids where critical data objects are partitioned

to assure data confidentiality and integrity. The replicas of partitioned shares are dynamically

allocated to improve access performance. Our approach minimizes the access cost of

partitioned data in data grids, while it ensures the required data confidentiality and integrity.

It can be considered that our work complements the work in such a way that one focus on the

performance issues and the other focus on the security assurance issues. Replication techniques

are frequently used to improve data availability and reduce client response time and

communication cost. One major advantage of replication is performance improvement, which is

achieved by moving data objects close to clients.

Data assurance is defined as the probability that the data is not compromised. They consider a

two-level network topology where a system is divided into clusters. It assumes that the

probability that the data shares are compromised when sent cross clusters is higher than that

when transmitted within the cluster or to the clients. Also, when data is secret shared but not

replicated, the data

assurance level is higher than that when data is replicated but not secret shared. To achieve

better data assurance, a distributed share allocation algorithm is presented to dynamically

allocate the original shares to different sub networks based on the client read and write patterns.

The algorithm converges to an optimal allocation that yields maximal data assurance. It simply

moves data shares to the clusters where there are more access demands. In this paper, we

consider the replica placement problem in data grids where critical data objects are partitioned

to assure data confidentiality and integrity. The replicas of partitioned shares are dynamically

allocated to improve access performance. Our approach minimizes the access cost of

partitioned data in data grids, while it ensures the required data confidentiality and integrity.

I consider the dynamic replication in this paper as by sending the selected message file from the

client in to Two different levels. In the First level I consider the file to be partitioned in to three

different Individual Routers like Router A, Router B and Router C. Now these three partitions

will select the path dynamically, that is initially we do not know exact bandwidth for every

Router. Dynamically the partitioned data will select the particular Router. In the Second level

these three partitions takes three different Sub Routers i.e., Sub Router A, Sub Router B and

Sub Router C dynamically. That is Router A can select either Sub Router A1 or Sub Router

B1or Sub Router C1 etc .

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

40

In the same way for Sub Routers A2, B2 and C2. Every Router selects the path dynamically

same as the initial message file does. Finally from these Sub Routers the individual partitions

are combined and the original message is reached to the particular server without any loss of

message. In these two different levels the message file from the client selects the path

dynamically. This improves the data confidentiality and integrity.

6. CONCLUSIONS AND FUTURE RESEARCH

We have combined data partitioning schemes (secret sharing scheme or erasure coding scheme)

with dynamic replication to achieve data survivability, security, and access performance in data

grids. The replicas of the partitioned data need to be properly allocated to achieve the actual

performance gains. We have developed algorithms to allocate correlated data shares in large-

scale peer-to-peer data grids. To support scalability, we represent the data grid as a two-level

cluster based topology and decompose the allocation problem into two subproblems: the OIRSP

and OISAP.

The OIRSP determines which clusters need to maintain share replicas, and the OISAP

determines the number of share replicas needed in a cluster and their placements. Heuristic

algorithms are developed for the two subproblems. Several future research directions can be

investigated. First, the secure storage mechanisms developed in this paper can also be used for

key storage. In this alternate scheme, critical data objects are encrypted and replicated.

The encryption keys are partitioned and the key shares are replicated and distributed. To

minimize the access cost, allocation of the replicas of a data object and the replicas of its key

shares should be considered together. We plan to construct the cost model for this approach and

expand our algorithm to find best placement solutions. Also, the two approaches (partitioning

data or partitioning keys) have pros and cons in terms of storage and access cost and have

different security and availability implications.

 Moreover, it may be desirable to consider multiple factors for the allocation of secret shares

and their replicas. Replicating data shares improves access performance but degrades security.

Having more share replicas may increase the chance of shares being compromised.

Thus, it is desirable to determine the placement solutions based on multiple objectives,

including performance, availability, and security.

REFERENCES

 [1] M. Baker, R. Buyya, and D. Laforenza, “Grids and Grid Technology for Wide-Area Distributed

Computing,” Software-Practice and Experience, 2002.

[2] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, C. Kesselman, P. Kunszt, M. Ripeanu, B.

Schwartzkopf, H. Stockinger, and B. Tierney, “Giggle: A Framework for Constructing Scalable Replica

Location Services,” Proc. ACM/IEEE Conf. Supercomputing (SC), 2002.

 [3] I. Foster and A. Lamnitche, “On Death, Taxes, and Convergence of Peer-to-Peer and Grid

Computing,” Proc. Second Int’l Workshop Peer-to-Peer Systems (IPTPS), 2003.

 [4] V. Matossian and M. Parashar, “Enabling Peer-to-Peer Interactions for Scientific Applications on the

Grid,” Proc. Ninth Int’l Euro-Par Conf. (Euro-Par), 2003.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

41

 [5] N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, I. Foster, and S. Tuecke,

The Security Architecture for Open Grid Services, Version 1, 2002.

 [6] V. Paxson, “End-to-End Routing Behavior in the Internet,” IEEE/ACM Trans. Networking, vol. 5,

no. 5, pp. 601-615, 1997.

 [7] A. Mei, L.V. Mancini, and S. Jajodia, “Secure Dynamic Fragment and Replica Allocation in Large-

Scale Distributed File Systems,” IEEE Trans. Parallel and Distributed Systems,

vol. 14, no. 9, 2003.

[8] N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist,V. Welch, I. Foster, and S. Tuecke, The

Security Architecture for Open Grid Services, Version 1, 2002.

[9] www.gloriad.org/gloriad/projects/project000053.html, 2008.

[10] M. Rabin, “Efficient Dispersal of Information for Security, Load Balancing, and Fault Tolerance,” J.

ACM, vol. 36, no. 2, 1989.

[11] K. Ranganathan and I. Foster, “Identifying Dynamic Replication Strategies for a High Performance

Data Grid,” Proc. Second Int’l Workshop Grid Computing, 2001.

[12] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, 1979.

 [13] H. Stockinger, “Distributed Database Management Systems and the Data Grids,” Proc. 18th IEEE

Symp. Mass Storage Systems,2001.

[14] B.M. Thuraisingham and J.A. Maurer, “Information Survivability for Evolvable and Adaptable

Real-Time Command and Control Systems,” IEEE Trans. Knowledge and

Data Eng., vol. 11,no. 1, Jan. 1999.

[15] M. Tu, “A Data Management Framework for Secure and Dependable Data Grid,” PhD dissertation,

Univ. of Texas at Dallas, http://www.utdallas.edu/~tumh2000/ref/Thesis-Tu.pdf,July 2006.

[16] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal Placement of Replicas in Trees with Read,

Write, and Storage Costs,” IEEE Trans. Parallel and Distributed Systems, vol. 12, no. 6, 2001.

[17] O. Kariv and S.L. Hakimi, “An Algorithmic Approach to Location Problems—II: The p-medians,”

SIAM J. Applied Math., vol. 37, no. 3, 1979.

[18] H. Krawczyk, “Distributed Fingerprints and Secure Information Dispersal,” Proc. 12th Ann. ACM

Symp. Principles of Distributed Computing (PODC), 1993.

[19] H. Krawczyk, “Secret Sharing Made Short,” Proc. 13th Ann. Int’l Cryptology Conf. (Crypto), 1993.

 [20] S. Lakshmanan, M. Ahamad, and H. Venkateswaran, “Responsive Security for Stored Data,” IEEE

Trans. Parallel and Distributed Systems, vol. 14,

