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ABSTRACT 

Secret distribution and erasure convention - based approaches have been used in distributed storage 

systems to provide the confidentiality, integrity, and availability of critical information. To achieve 

performance goals in data accesses, these data fragmentation approaches can be combined with dynamic 

replication. In this paper, we consider data partitioning (both secret distribution and erasure convention) 

and dynamic replication in data grids, in which security and data access performance are critical issues. 

More specifically, we investigate the problem of optimal allocation of sensitive data objects that are 

divided by using secret distribution scheme or erasure convention scheme and/or replicated. The grid 

topology we consider consists of two layers. In the upper layer, multiple clusters form a network topology 

that can be represented by a general graph. The topology within each cluster is represented by a tree 

graph. We decompose the share replica allocation problem into two sub problems: the Optimal Inter 

cluster Resident Set Problem (OIRSP) that determines which clusters share replicas and the Optimal 

Intra need cluster Share Allocation Problem (OISAP) that determines the number of share replicas 

needed in a cluster and their placements. We develop two heuristic algorithms for the two sub problems.  
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1. INTRODUCTION 

Data grid is a distributed computing architecture that integrates a large number of data and 

computing resources into a single virtual data management system [2]. It enables the sharing 

and coordinated use of data from various resources and provides various services to fit the 

needs of high-performance distributed and data-intensive computing. Many data grid 

applications are being developed or proposed. These data grid applications are designed to 

support global collaborations that may involve large amount of information, intensive 

computation, real time, or nonreal time communication. Success of these projects can help to 

achieve significant advances in business, medical treatment, disaster relief, research, and 

military and can result in dramatic benefits to the society.  
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There are several important requirements for data grids, including information survivability, 

security, and access performance [1], [2]. Replication is frequently used to achieve access 

efficiency, availability, and information survivability. The underlying infrastructure for data 

grids can generally be classified into two types: cluster based and peer-to-peer systems [3]. In 

pure peer-to-peer storage systems, there is no dedicated node for grid applications (in some 

systems, some servers are dedicated). Replication can bring data objects to the peers that are 

close to the accessing clients and, hence, improve access efficiency. Having multiple replicas 

directly implies higher information survivability. In cluster-based systems, dedicated servers are 

clustered together to offer storage and services. However, the number of clusters is generally 

limited and, thus, they may be far from most clients. 

In this paper, we consider combining data partitioning and replication to support secure, 

survivable, and high performance storage systems. Our goal is to develop placement algorithms 

to allocate share replicas such that the communication cost and access latency are minimized. 

The remainder of this paper is organized as follows: Section 2 describes a data grid system 

model and the problem definitions. Section 3 introduces a heuristic algorithm for determining 

the clusters that should host shares. In Section 4, the results of the experimental studies are 

discussed. Section 5 discusses some research works that are related to this research. Section 6 

states the conclusion of this paper. 

2.  SYSTEM MODEL AND PROBLEM SPECIFICATION 

In this paper, we consider achieving secure, survivable, and high-performance data storage in 

data grids. To facilitate scalability, we model the peer-to-peer data grid as a two level topology 

(shown in Fig. 1). One or several such autonomous systems that are geographically close to 

each other can be considered as a cluster. The system consists of M clusters, H1 . . .,HM, which 

are linked together and form a general  

 

 
 

Figure 1  A sample graph of our system topology. 
 

Graph topology G
C
 = (H

C
, E

C
). Here, H

C
 = {H1, . . .,HM} and E

C
 is the set of edges connecting 

the clusters. Each edge represents a logical link which may be multiple hops of the physical 

links. It is likely that the clusters are linked to the backbone and should be modeled by a general 

graph.  
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Within each cluster, there may be many subnets from the same or multiple institutions. Among 

all the physical nodes in the cluster, some nodes, such as servers, proxies, and other  individual 

nodes, may be committed to contribute its  storage and/or computation resources for some data 

grid applications. These nodes are connected via logical links. Internet message routing is 

relatively stable in days or even weeks and the multiple routing paths generally form a tree. 

Thus, for simplicity, we model the topology inside a cluster as a tree. Consider a cluster Hx. Let 

Gx =(Vx, Ex) represents the topology graph within the cluster, where Vx = {Px,1,Px,2, . . . , Px,Nx} 

denotes the set of Nx (N if only considering cluster Hx) nodes in cluster Hx, and Ex is the set of 

edges connecting nodes in Hx. Also, let Px
 root

 denote the root node in Hx (e.g., Px
 root

 Є Vx). We 

assume that all traffic in Hx goes through the network where Px
 root

 resides. Let δ (Px,I, Px,j) 

denote the shortest path between Px,I and Px,j in Hx, and | δ (Px,I, Px,j) denote the distance of δ 
(Px,I, Px,j). Also, let δ (Hx, Hy) denote the shortest path between Hx and Hy (actually, between Px

 

root
 and Py

 root
), and | δ (Hx, Hy) | denote the distance of  δ (Hx, Hy). We assume that δ (Px,I, Px,j) for 

any i, j, and x is much less than     |δ (Hx, Hz)|  for any y and z, where y ≠ z (i.e., the distance 

between any two nodes within a cluster is less than the distance between any two clusters).  

The data grid (represented by the set of clusters HC) hosts a set of data objects D (D can 

contain the application data or keys). One of the clusters is selected as the Master Server 

Cluster (MSC) for some data objects in D, denoted as HMSC (different data objects may have 

different HMSC). HMSC hosts these data objects permanently (it may be the original data 

source). These data objects may be partially replicated in other clusters in HC to achieve better 

access performance. Due to the increasing attacks on Internet, a node hosting some data objects 

in D has a significant chance of being compromised. If a node is compromised, all the plaintext 

data objects stored on it are compromised.  

2.1. Access Model and Problem Decomposition  

Data placement decisions are made based on historical client access patterns. We model access 

patterns by analyzing the number of read/write accesses from each node or each cluster. 

Consider a data object d. Let T denote the time period unit for collecting information of access 

patterns. Let     A 
r 

(Px,i) and A
w
(Px,i) denote the numbers of read and write accesses, 

respectively, initiated from node Px,i over time T. Also, let A
r
(Hx) and A

w
(Hx) denote the 

numbers of read and write accesses, respectively, initiated from a cluster Hx over time T. A
r
(H

x
) 

= ∑iA
r 
(Px,i) and A

w
(Hx)= ∑iA

w 
(Px,i). Let   W

C
 denote the total number of update requests on d in 

G
C
, i.e., w

C
 = ∑Hx A 

w
(Hx).  

Based on the client access patterns, subsets of the m shares of each data in D may be replicated 

to the clusters in H
C
. The set of clusters that hold shares is defined as the cluster level resident 

set. Let R
C
 denote the cluster level resident set, i.e., R

C
 = {Hx | clusters hold shares}. To 

minimize the communication cost, we consider that a cluster holds either none or at least l 

distinct share replicas (will be proven in Theorem 3.1). Also, we assume that each cluster holds 

only distinct shares (i.e., at most m) since, otherwise, extra efforts are required to avoid reading 

duplicated shares (a large m value ensure that a sufficient distinct shares can be allocated to 

each cluster). Intracluster residence set is the set of nodes that holds a share replica within a 

cluster. Let Rx denote the intracluster residence set of Hx, i.e., Rx = {Px,i | Px,i holds a share and 

Px,i is in Hx}. Correspondingly, |Rx| denotes the number of share replicas in Hx. We say Rx (or 

R
C
) is connected if and only if every node in Rx (or R

C
) has at least one path to any other node 

in Rx (or R
C
), and each node on the path also belongs to Rx (or R

C
). Otherwise, Rx (or R

C
) is 
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partitioned. In this case, Rx (or R
C
) contains multiple subgraph, Rx,1 , Rx,2, . . .,Rx,n (or R

C
1 , R

C
2 , . 

. .,R
C

n ), n > 1, Rx,i (or R
C

i ), 1 ≤  i  ≤  n, is a connected subgraph, and Rx,i and Rx,j (or R
C

i and R
C

j 

), i ≠ j,  are not connected.  

Now, consider the intracluster level. Let δ (Px,i, Rx) denote the shortest path from Px,i to any node 

in Rx, and δ (Px,i,P x
 root

 ) denote the shortest path from Px,i to the root node in Hx. Also, let δ (Hx, 

R
C
) denote the shortest path from Hx to the closest cluster in R

C
, and  |δ (Hx, R

C
)| is the distance 

of path   δ (Hx, R
C
) (only counting the cluster level cost). Let Ґ(Px,i, Rx, α )  denote the MST 

rooted at Px,i and includes a total of α nodes hosting shares in cluster Hx.|Ґ (Px,i, Rx, α)| 

represents the total distance of the MST. Let ҐC 
(R

C
) denote the MST from HMSC to all clusters 

in R
C
 at the cluster level. |ҐC

 (R
C
)| is the total distance of the MST ҐC 

(R
C
), but only considering 

the costs at the cluster level (i.e., the distance to the root node of each involved cluster). 

 The read access protocol tries to read the closest l share replicas. Consider a client C sending a 

read request to Px,i. If the local cluster of Px,i (i.e., Hx) holds shares (note that Hx holds either 

none or at least l share replicas), then it reads l shares within Hx (the l nodes are selected such 

that the communication cost is minimal). The access cost in this case is |Ґ (Px,i,Rx,l)| (assume 

that the communication cost between the client and Px,i is negligible). If Hx does not hold share 

replicas, then Px,i obtains all l shares from the closest cluster Hy where Hy ЄR
C
. The algorithm 

for transferring shares from the source cluster Hy to the requesting cluster Hx is defined as 

follows: 1) all the nodes in Hy holding the desired shares send the shares to Py
 root

  (encrypted 

using the session key between Hy and the client); 2) Py
root

 puts the pieces into one message and 

sends it to Px
root

 ; and 3) Px
root

  sends the shares to the requesting  node Px,i and Px,i forwards 

them to client C. Overall,  

The read cost is  |δ (Px,i, Px
root

 ) | + |δ (Hx, R
C
) |+| Ґ (Py

root
 ,Ry, l)|. 

Note that |Ґ (Px,i, Rx,l)|= 0 if Hx hosts less than l shares, 

and | δ(Px,i, Px
root

 )|+| δ (Hx, R
C
)| + | Ґ(Py

root 
,Ry,l)|= 0, otherwise. 

Let readCost denote the total read cost in the system. 

We have 

 

readCost 

 

                          | Ґ (Px,i,  Rx,l )|,                              if Hx  holds at least 1 shares,   

= ∑    ∑        

   Hx    i                        | (Px,I, Px
root

) | + | (Hx, R
C
)| 

 

                        +| Ґ(Py
root

 , Ry, l)|,             otherwise. 

 

 

Let updateCost denote the overall update cost in the system. We have 

UpdateCost = w
c 
 *  (|ҐC

 (R
C
)| + ∑ Hx |Ґ (Px

root
, Rx,| Rx|)|) 

                      + forwardCost. 
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Note that we do not consider the extra cost required for the detection and recovery of an invalid 

share. With both update and read cost, the total cost becomes Tcost = updateCost + readCost. 

Table 1 gives a summary of the notation used in this paper.  

We can decompose the partitioned data replica problem into two subproblems. The first 

problem is to decide which cluster should keep the share replicas at the cluster level, and we 

define it as the Optimal Intercluster Resident Set Problem (OIRSP). The second problem is to 

decide how many share replicas are needed for each cluster and how to allocate them within the 

cluster. We define it as the Optimal Intracluster Share Allocation Problem (OISAP). Each 

cluster is viewed as a single node in OIRSP. In the next two sections, we specify the two 

subproblems in details.  

2.2. OIRSP Specification  

We define the first problem, OIRSP, as the optimal resident set problem in a general graph 

(intercluster level graph) with an MSC HMSC. Our goal is to determine the optimal R
C
 that 

yields minimum access cost at the cluster level. For a cluster Hx Є R
C
 with | Rx | ≥ l, all read 

request from Hx are served locally and the cost is 0 at the cluster level. For a cluster Hx with | Rx 

| < l, it always transmits all read  access requests in Hx to the closest cluster Hy Є R
C
 to access l 

distinct shares, with |Ry| ≥ l. The read cost of cluster at the cluster level is A
r
 (H

x
) * | δ (Hx, R

C
)|.  

Let ReadCost
C
 (G

C
,
 
R

C
) denote the total read cost in G

C
 with the resident set R

C
, then  

ReadCost
C
 (G

C 
, R

C
)=  ∑Hx  A

r  
(Hx) * | δ(Hx, R

C
) |. 

 

Let UpdateCost
C
 (G

C 
,
  
R

C
) denote the total update cost in G

C
 with the resident set R

C
, then 

UpdateCost
C
 (G

C 
,R

C
) = w

C
 * | ҐC

 (R
C
)|. 

 

 

Thus, the total access cost in G
C
, denoted as Cost (G

C
,R

C
) is defined as follows: 

 

Cost
C
 (G

C
,R

C
) = UpdateCost

C
 (G

C
,R

C
) 

+ ReadCost
C
 (G

C
 ,R

C
). 

 

 

The problem here is to decide the share replica resident set R
C
 in G

C
, such that the 

communication cost Cost
C
 (G

C
,R

C
) is minimized.  
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TABLE 1 

Summary of the Frequently Used Notation 

 

 

2.3. OISAP Specification 

When we consider allocation problem within a cluster Hx, we can isolate the cluster and 

consider the problem independently. As discussed earlier, all read requests from remote clusters 

can be viewed as read requests from the root node. Also, the w
C
 updates in the entire system can 

be considered as updates done at the root node of the cluster. Thus, we can simplify the notation 

when discussing allocation within Hx by referring to everything in the cluster without the cluster 

subscript. For example, we use G = (P, E) to represent the topology graph of Hx, where P = {P1, 

P2, . . . ,PN}. Similarly, P
root

 represents the root node of Hx, δ(Pi, Pj) represents the shortest path 

between two nodes inside Hx, and R represents the resident set of Hx.  

Let  ReadCost (R) denote the total read cost from all the nodes in cluster Hx: 

ReadCost (R) = ∑PiЄHx |Ґ (Pi, R, l)| * A
r
 (Pi): 

For each update in the system, the root node P
root

 needs to propagate the update to all other 

share holders inside Hx. Let WriteCost(R) denote the total update cost in Hx. Then 
 

WriteCost(R) = w
C 

*  | Ґ (P
root

, R, |R)|. 

 

Let Cost(R) denote the total cost of all nodes in Hx, then 

Cost (R) =  WriteCost (R) + ReadCost (R). 

Our goal is to determine an optimal resident set R to allocate the shares in Hx, such that Cost(R) 

is minimized. 
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3. OIRSP SOLUTIONS 

In this section, we present a heuristic algorithm for OIRSP. First (in Section 3.1), we discuss 

some properties that are very useful for the design of the heuristic algorithm. In Section 3.2, we 

present the heuristic algorithm that decides which cluster should hold share replicas to 

minimize access cost. 

3.1. Some Useful Properties 

We first show that if a cluster Hx is in R
C
 (an optimal resident set), then Hx should hold at least l 

share replicas (l is the number of shares to be accessed by a read request). If Hx is in R
C
 and Hx 

has less than l shares, then read accesses from Hx will anyway need to go to another cluster to 

get the remaining shares. If Hx holds no share replicas, then read accesses from Hx may need to 

get the l shares from multiple clusters. These may result in unnecessary communication overhead.  

Theorem 3.1. In a general graph G
C
,V  x, Hx Є G

C
, |Rx| = 0 or  |Rx| ≥ l. 

Proof. Assume that there exists one cluster Hx in R
C
, such that |Rx| < l. When the resident set is 

R
C
, a read request from Hx cannot be served locally and the remaining shares have to be 

obtained from at least one other cluster in G
C
 that holds those shares. Thus, | δ (Hx, RC| > 0. Let 

us construct another resident set R
C1

. R
C1

 is the same as R
C
 except that in R

C1
, Hx holds l distinct 

shares. Thus, in R
C1

, |δ(Hx,R
C1

)| = 0. So, the read cost for read requests from Hx becomes zero. 

Also, in G
C
, there may be clusters that read from Hx. Assume that Hx is the closest cluster in R

C
 

of Hy (Hy is not in R
C
). If the optimal resident set is R

C
, then Hy needs to read from Hx and some 

other clusters since Hx has less than l shares. Thus, we can conclude 

ReadCost
C
 (G

C
,R

C
) – ReadCost

C
 (G

C
,R

C1
) 

≥ A
r
(Hx) *|δ(Hx,R

C1
)| and, hence, 

ReadCost
C
 (G

C
,R

C1
) < ReadCost

C
 (G

C
,R

C
). 

Now let us consider the update cost. Note that we have UpdateCost
C
 (G

C
,R

C
) = w

C
*|Ґ

C
 (R

C
)|. 

Because R
C1

 and R
C
 are actually composed of the same set of clusters, so |ҐC

 (R
C1

)| = |ҐC
 (R

C
)|. 

Also, w
C
 is independent of the resident set. So, we have UpdateCost

C 
(G

C
,R

C1
) = 

UpdateCost
C
(G

C
,R

C
). 

Theorem 3.2. The optimal resident set is a connected graph within the general graph G
C
.  

Proof. Assume that R
C
 is an optimal resident set for G

C
 and it is not connected. Since R

C
 is not 

a connected graph, there are two subgraphs R
C1

 and R
C2

 that are not connected. Without loss of 

generality, assume that cluster HMSC Є R1
C
 and R2

C
 is the closest subgraph to R1

C
 in the update 

propagation minimal spanning tree of R
C
. Since G

C
 is connected, at least one path existed that 

connects R1
C
 and R2

C
. Let δ (R1

C
 , R2

C
 ) denote the path connecting R1

C
 and R2

C
 in G

C
 with the 

minimal distance (or minimum number of hops between R1
C
 and R2

C
 if distance is measured by 

the number of hops) and let |δ(R1
C
 , R2

C
 )| denote the distance. Since R1

C
 and R2

C
 are 

disconnected, there exists a cluster Hx Є δ (R1
C
, R2

C
) and Hx Є R

C
. 

Let us consider a new resident set R
C1

 such that R
C1

 is the same as RC, except that all clusters on 

path δ (R1
C
, R2

C
) are in R

C1
. For each cluster H

x
 Є δ(R1

C
 ,R2

C
 ), |δ(Hx ,R

C1
)| = 0. Together with 
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Theorem 3.1, we know that ReadCost
C
 (G

C
 , R

C
 ) < ReadCost

C
 (G

C
 ,R

C1
). For each update in 

G
C
, an update propagation message is propagated from R1

C
 to R2

C
 through δ(R1

C
 , R2

C
 ), no 

matter whether R
C
 or R

C1
 is the residence set, since δ(R1

C
 , R2

C
) is the shortest path between R1

C
 

and R2
C
 in G

C
. Thus,   

UpdateCost
C 

(G
C
,R

C1
) = UpdateCost

C
(G

C
,R

C
). 

Since R
C1

 yields a lower read cost than and has the same update cost as R
C
, we can conclude 

that Cost
C
 (G

C
,R

C1
) <  Cost

C
 (G

C
,R

C
). Thus, R

C
 is not a minimal residence set. And, we can 

conclude that the optimal resident set is a connected graph in G
C
.  

 

 
 

Fig. 2. Sample G
C
 and SPT (G

C
 , R

C
). (a) The original G

C
 with R

C
 = {H1, H2,H3}. (b) Super node 

S and SPT (G
C
, R

C
) constructed by Build_SPT. 

3.2. A Heuristic Algorithm for the OIRSP 

The goal of OIRSP is to determine the optimal resident set R
C
 in G

C
. G

C
 is a general graph. 

Each edge in G
C
 is considered as one hop.  

It has been shown that the problem is NP-complete. Thus, we develop a heuristic algorithm to 

find a near-optimal solution. Our approach is to first build a minimal spanning tree in G
C
 with 

R
C
 being the root and then identify the cluster to be added to R

C
 based on the tree structure. The 

clusters in G
C
 access data hosted in R

C
 along the shortest paths, and these paths and the clusters 

form a set of the shortest path trees. Since all the nodes in R
C
 are connected, we view them as 

one virtual node S. Then, S, all clusters that are not in R
C
, and all the shortest access paths form 

a tree rooted at S, which is denoted as SPT(G
C
, R

C
) (an example of the tree is shown in Fig. 2b). 

We develop an efficient algorithm Build_SPT to construct SPT(G
C
,R

C
) based on the current 

resident set R
C
. To facilitate the identification of a new resident cluster, we also define V

C
 (G

C
, 

R
C
) as the vicinity set of S, where V Hx Є V

 C
(G

C
,R

C
), we have Hx Є R

C
 and Hx is a neighboring 

cluster of S. Note that from Theorem 3.2,we know that the clusters in R
C
 are connected. 

Build SPT (G
C
,R

C
) first constructs V

C
(G

C
,R

C
) by visiting all neighboring clusters of R

C
. If a 

cluster Hx in V
C
(G

C
,R

C
) has more than one neighbor in R

C
, then one of them is chosen to be the 

parent cluster. Next, Build SPT (G
C
, R

C
) traverses G

C
 starting from clusters in V

C
(G

C
,R

C
). From 

a cluster Hx, it visits all Hx’s neighboring clusters. Assume that Hy is a neighboring cluster of 

Hx. When Build_SPT visits Hy from Hx, it assigns Hx as Hy’s parent if Hy does not have a parent. 

In this case, Hy is in the same tree as Hx, and Hy’s tree root is set to Hx’s (which is a cluster in 

R
C
). Since all read requests from Hy go through the root, say Hz, A

r
(Hy) is added to A

r
(Hz)

1
 for 
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later use (for new resident cluster identification). In case Hy already has a parent, the distances 

to S via the original parent and via Hx are compared. If Hx offers a shorter path to S, then Hy’s 

parent is reset to Hx and the corresponding adjustments are made. To achieve a faster 

convergence for new R
C
 identification, Hy’s parent is also changed to Hx if Hx’s tree root Hz has 

a higher value of A
r
(Hz)

1
, when the distances to S via Hy’s original parent and via Hx are equal. 

The detailed algorithm for Build_SPT is given in the following (assume that V
 C

(G
C
,R

C
) is 

already identified). In the algorithm, each node Hx has several fields. Hx. root and Hx. parent are 

the root and parent clusters of Hx, respectively. Hx. dist is the distance from Hx to Hx’s root (at 

the end of the algorithm, it is the shortest distance). We also use Next (Hx) to denote the set of 

Hx’s neighbors.  

 

Build_SPT (G
C
, R

C
) 

{  For all Hx, Hx1 Є V
 C 

(G
C
,R

C
) 

{  Insert Hx into Queue; Hx. root   --- Hx; Hx. dist       0; 

A
r 
(Hx )

1
 A

r
(Hx); } 

While (Queue # Ө 

{ Hx       Remove a node from Queue; 

For all Hy, Hy  Є  Next (Hx) ^ Hy Є RC 

{ If (Hy is not marked as visited) then 

{ Insert Hy into Queue; Hy. dist           Hx. dist + 1; 

Hy. parent         Hx; Hy. root         Hx. root; 

A
r 
(Hy. root)

1
       A

r
(Hy. root)

1
+ A

r
(Hy); Mark Hy as 

visited; } 

Else 

{ If (Hy. dist > Hx. dist + 1V((Hy. dist=  

Hx. dist + 1) ^  A
r
(Hy. Root)

1
 < A

r
(Hx. root)

1
)) then 

{ A
r(
Hy. root)

1 
         A

r(
Hy. root)

1
- A

r
(Hy); 

Hy. dist         Hx. dist + 1; Hy. parent          Hx; 

Hy. root          Hx. root; 

A
r
(Hy. root)

1
          A

r
(Hy. root)

1
+ A

r
(Hy); } } 

} } } 

 

Actually, the check for Hy.  dist > Hx .dist + 1 in the algorithm is not necessary since a queue is 

used (a node is always visited from a neighbor with the shortest distance to S). A sample 

general graph G
C
 with current resident set R

C
 = {H1, H2, H3} is shown in Fig. 2a. The 

corresponding SPT(G
C  

, R
C
) is shown in Fig. 2b, where R

C
 is represented by the super node 

labeled as S. When constructing SPT (G
C
, R

C
), S’s immediate neighbors, including H4, H5, H6, 

H7, H8, and H9, are visited first. H4 is visited twice but H1 is selected as the parent since H4 is 

visited from H1 first and there is no need for adjustment when it is visited the second time. 

From the clusters nearest to S, the clusters that are two hops away from S, including H10, H11, 

H12, H13, H14, and H15, are visited. Finally, the nodes that are further away from S are visited.  

 

We develop a heuristic algorithm to find the new resident set for G
C
 in a greedy manner. We try 

to find a new resident cluster in V 
C 

(G
C
,R

C
) and, once found, update R

C
 accordingly. The 

algorithm is shown below. R
C
 is initialized to {HMSC}. The algorithm first constructs SPT 

(G
C
,R

C
) and identifies V 

C
(G

C
,R

C
). Then, a cluster Hy with the highest A

r
(Hy)

l
 is selected. If 

A
r
(Hy)

1
 > w

C
, then Hy is added to R

C
. If A

r 
(Hy)

1
 ≤  w

C
, then the algorithm terminates since no 
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other nodes can be added to R
C
 while reducing the access communication cost. Note that, in 

each step, only one cluster can be added into R
C
 because SPT (G

C
,R

C
) and A

r
(Hx)

1
 changes when 

R
C
 changes.  

 

R
C
        {HMSC}; 

Repeat 

{Build SPT (G
C
,R

C
); 

Select a cluster Hy, where Hy has the maximum 

A
r
(Hy)

l
 among all clusters in V

 C
(G

C
,R

C
); 

If A
r
(Hy)

l
 > w

C
 R

C
        R

C
 U  {Hy}; } 

Until (A
r
(Hy)

l
 ≤  w

C
) 

 

Theorem 3.3. In a general graph G
C
, if |R

C
| > 1, then Cost

C 
(G

C
,R

C
) < Cost

C
(G

C
, {HMSC}). 

Furthermore, every time a new cluster Hx (Hx satisfies the cost constraint) is added to current 

resident set R
Cl

(R
Cl

 C R
C
), the communication cost decreases, i.e., Cost

C
(G

C
,R

Cl 
U{Hx}) < 

Cost
C
(G

C
, R

Cl
).  

 

Proof. According to Theorem 3.1, V x, Hx Є R
C
, |Rx|≥  l. The algorithm works by adding one 

cluster at a t i m e . Let R
C
= {H1, H2, . . .,Hn}, |R

C
| = n and H1= HMSC. Assume that Hi is added 

at the (i- 1) th step to R
C
. If we show that after adding each cluster, the cost reduces, then we 

can conclude that Cost
C
(G

C
,R

C
) < Cost

C
(G

C
, {HMSC}). We use induction to prove this.  

 

Step 1. We show that Cost
C 

(G
C
; {HMSC;H2}) < Cost

C
(G

C
, {HMSC}). According to the algorithm, 

H2 Є V
C
(G

C
, {HMSC}), then UpdateCost

C
(G

C
,{HMSC, H2})= UpdateCost

C
(G

C
,{HMSC})+ w

C
* 

|δ(H2,{HMSC})|. For each cluster Hx that reads {HMSC} through H2, δ(Hx, {HMSC}) is the shortest 

path in G
C
 from Hx to {HMSC}. It is obvious that H2 Є δ(Hx, {HMSC}) and H2 is the cluster on 

δ(Hx,{HMSC}) right next to HMSC, and |δ(Hx,H2)| = |δ(Hx, {HMSC})| - |δ(H2, {HMSC})|. Any other 

path δ(Hx,H2)
1
 or δ(Hx, HMSC)

1
 has a distance no less than |δ(Hx, H2)|. With resident set 

{HMSC,H2}, δ(Hx,H2) will continue to be the least distance path for cluster Hx to read from H2 in 

G
C
, and δ(Hx, {HMSC, H2}) = δ(Hx, {HMSC}) - |δ(H2, {HMSC})|. For any cluster Hx that reads 

{HMSC} through H2, δ(Hx, {HMSC}) will, at least, not increase if H2 is added into the resident set. 

Then, we can easily get ReadCost
C
 (G

C
, {HMSC, H2}) + A

r 
(H2)1 ≤  ReadCost

C
(G

C
, {HMSC}). 

 

According to the heuristic resident set algorithm, we know A
r 

(H2)
l
 > w

C
. Thus, Cost

C
(G

C
, 

{HMSC, H2}) -  Cost
C
(G

C
, {HMSC}) =  UpdateCost

C
(G

C
, {HMSC, H2}) - UpdateCost

C 
(G

C
 , 

{HMSC}) + ReadCost
C
 (G

C
, {HMSC , H2})-  ReadCost

C
(G

C
,{Hmsc})≤  w

C
 -  A

r
(H2)

l
 *|δ(H2, 

{HMSC})|< 0. 

 

Step 2. Assume that Cost
C 

(GC, {HMSC, H2, . . .,Hk}) < Cost
C
(G

C
, {HMSC, H2, . . ., Hk-1}). We 

show that Cost
C 

(G
C
 , {HMSC , H2 , . . . , Hk})  > Cost

C
(G

C
, {HMSC, H2, . . .;Hk+1}), with k < n. It 

can be seen that the proof is the same as above and we will not show it here.  

By induction, we know that Cost
C 

(G, {HMSC, H2, . . . , Hn}) < Cost
C
{G

C
, {HMSC, H2, . . ., Hn-1}). 

Thus, Cost
C
 (G

C
,R

C
) < CostC(G

C
, {HMSC}). Also, from the induction process, we can conclude 

that every time a new cluster Hi joins RC, the communication cost decreases, i.e., 

Cost
C
(G

C
,R

C
(i-1)) < Cost

C
 (G

C
,R

C
).  
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4.  PERFORMANCE OF THE OIRSP HEURISTIC ALGORITHM 

In this section, we compare the performance of the OIRSP heuristic algorithm with the 
randomized K-replication, noreplication allocation, and complete replication strategies. We 
study the impacts of three factors: 1) the graph size, which is the number of clusters in the 
system; 2) the graph degree, which is the average number of neighbors of a cluster; and 3) the 
update/read ratio, which is the ratio of  the total number of update requests in the entire system 
to the average number of read requests issued from a single cluster (these are the requests each 
cluster needs to process). 

5. RELATED WORK 

Replication techniques are frequently used to improve data availability and reduce client 

response time and communication cost. One major advantage of replication is performance 

improvement, which is achieved by moving data objects close to clients.  In this paper, we 

consider the replica placement problem in data grids where critical data objects are partitioned 

to assure data confidentiality and integrity. The replicas of partitioned shares are dynamically 

allocated to improve access performance. Our approach minimizes the access cost of 

partitioned data in data grids, while it ensures the required data confidentiality and integrity.  

It can be considered that our work complements the work in such a way that one focus on the 

performance issues and the other focus on the security assurance issues. Replication techniques 

are frequently used to improve data availability and reduce client response time and 

communication cost. One major advantage of replication is performance improvement, which is 

achieved by moving data objects close to clients. 

Data assurance is defined as the probability that the data is not compromised. They consider a 

two-level network topology where a system is divided into clusters. It assumes that the 

probability that the data shares are compromised when sent cross clusters is higher than that 

when transmitted within the cluster or to the clients. Also, when data is secret shared but not 

replicated, the data 

assurance level is higher than that when data is replicated but not secret shared. To achieve 

better data assurance, a distributed share allocation algorithm is presented to dynamically 

allocate the original shares to different sub networks based on the client read and write patterns.  

The algorithm converges to an optimal allocation that yields maximal data assurance. It simply 

moves data shares to the clusters where there are more access demands. In this paper, we 

consider the replica placement problem in data grids where critical data objects are partitioned 

to assure data confidentiality and integrity. The replicas of partitioned shares are dynamically 

allocated to improve access performance. Our approach minimizes the access cost of 

partitioned data in data grids, while it ensures the required data confidentiality and integrity. 

I consider the dynamic replication in this paper as by sending the selected message file from the 

client  in to Two different levels. In the First level I consider the file to be partitioned in to three 

different   Individual Routers like Router A, Router B and Router C. Now these three partitions 

will select the path dynamically, that is initially we do not   know exact bandwidth for every 

Router. Dynamically the partitioned data will select the particular Router. In the Second level 

these   three partitions takes three different Sub Routers i.e., Sub Router A,  Sub  Router  B and 

Sub Router C  dynamically. That is Router A can select either Sub Router A1 or Sub Router 

B1or Sub Router C1 etc .  
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In the same way for Sub Routers A2, B2  and  C2. Every Router selects the path dynamically 

same as the initial message file does. Finally from these Sub Routers the individual partitions 

are combined and the original message is reached to the particular server without any loss of 

message. In these two different levels the message file from the client selects the path 

dynamically. This improves the data confidentiality and integrity. 

6.  CONCLUSIONS AND FUTURE RESEARCH 

We have combined data partitioning schemes (secret sharing scheme or erasure coding scheme) 

with dynamic replication to achieve data survivability, security, and access performance in data 

grids. The replicas of the partitioned data need to be properly allocated to achieve the actual 

performance gains. We have developed algorithms to allocate correlated data shares in large-

scale peer-to-peer data grids. To support scalability, we represent the data grid as a two-level 

cluster based topology and decompose the allocation problem into two subproblems: the OIRSP 

and OISAP.  

The OIRSP determines which clusters need to maintain share replicas, and the OISAP 

determines the number of share replicas needed in a cluster and their placements. Heuristic 

algorithms are developed for the two subproblems. Several future research directions can be 

investigated. First, the secure storage mechanisms developed in this paper can also be used for 

key storage. In this alternate scheme, critical data objects are encrypted and replicated. 

The encryption keys are partitioned and the key shares are replicated and distributed. To 

minimize the access cost, allocation of the replicas of a data object and the replicas of  its key 

shares should be considered together. We plan to construct the cost model for this approach and 

expand our algorithm to find best placement solutions. Also, the two approaches (partitioning 

data or partitioning keys) have pros and cons in terms of storage and access cost and have 

different security and availability implications. 

 Moreover, it may be desirable to consider multiple factors for the allocation of secret shares 

and their replicas. Replicating data shares improves access performance but degrades security. 

Having more share replicas may increase the chance of shares being compromised. 

Thus, it is desirable to determine the placement solutions based on multiple objectives, 

including performance, availability, and security. 
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