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ABSTRACT
An important issue in robotics research is path tracking control
where the robot is required to follow a certain path. The error be-
tween the desired path and the actual path is to converge to zero.
This problem is more complicated when the robot dynamics is con-
sidered. This paper proposes a real time trajectory tracking con-
trol for a differential drive wheeled mobile robot (DDWMR) in
obstacle-free environment. The robot is guided to follow certain
reference path with a pre-calculated velocity profile. The controller
design and analysis of the system stability are guaranteed using
Lyapunov stability theory. The dynamic model of real DDWMR
is derived and used in the LabVIEW simulation environment for
testing the validity of designed controller. The obtained simulation
results illustrate the success of the proposed controller. Also to Test
the effectiveness of proposed controller, a comparison study with a
widely used backstepping based controller is performed.

Keywords
Trajectory tracking, nonholonomic robots, dynamic Modeling, dif-
ferential drive, Lyapunov stability, mobile robot

1. INTRODUCTION
The problem of Real-time trajectory tracking control of a mobile
robot is essential in the public arena today. Autonomous mobile
robots have different applications in the military field, industry and
in all areas of life. The issue of autonomous trajectory tracking
control of wheeled mobile robots have occupied a huge part of
research interest in the robotics field.

The path tracking problem of any mobile robot is mainly
how to generate the required linear and angular velocity that en-
ables the robot to follow a predefined path, i.e., the error between
the desired path and the actual path is to converge to zero. In recent
years there have been many researches on tracking control of a
mobile robot. Mostly include the kinematic model of DDWMR
while very few include dynamic model due to the complexity of
the model and high non-linearity degree.

Mainly the trajectory tracking control algorithms can be classified

into on of six categories [1]: (1) backstepping [2], [3]; (2) lin-
earization [4]; (3) sliding mode [5]; (4) fuzzy systems [6], [7]; (5)
neural networks [8]; and (6) neurofuzzy systems [9].

In this paper, the kinematics and the dynamic model of a
differential drive wheeled mobile robot (DDWMR) is presented.
This model itself is used as a motion controller in a closed loop
control scheme. In the absence of workspace obstacles, the basic
motion tasks assigned to the mobile robots may be reduced
to moving between two robot postures and following a given
trajectory. Also at the end of the paper a brief comparison with the
backstepping controller will be introduced.

This paper is organized as follows: in section II the basic
structure, kinematic and dynamic modeling of differential drive
wheeled mobile robot (DDWMR) are exposed. The proposed
control architecture is introduced in Section III. Simulation results
are shown in section IV. In section V we will compare our obtained
results with backstepping based controller. Finally, we conclude
the paper in Section VI.

2. KINEMATIC AND DYNAMIC MODELING OF
DDWMR

In this section the kinematic and dynamic models of a real
DDWMR are derived. The dynamic model is based on lagrange
approach.

2.1 Coordinate System
A top view of the DDWMR used in this work, is shown in Fig. 1.
The robot configuration consists of the main frame with two wheels
fixed on one axis with two identical motors and a front free wheel
(castor). The mobile robot motion is controlled by changing the
relative angular speed of the driving wheels.
In order to describe the state of the robot we will define two co-
ordinate systems, the reference frame {xr, yr} and vehicle frame
{xv, yv}. The state of the robot in a reference frame is represented
by the position of point b which is located at the center of the wheel
axle and the robot heading angle θ. The robot configuration in the
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Fig. 1. Differential Drive wheeled Mobile Robot

reference frame is symbolized as

pr =
[
x y θ

]T
, (1)

and in vehicle frame as

pv =
[
xv yv θv

]T
. (2)

The transformation of robot configuration from vehicle frame to
reference frame can be done through the following transformation

pr = R(θ)pv , (3)

where:

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (4)

2.2 Nonholonomic Constraints
Some assumptions and constraints must be declared Before pro-
ceeding with kinematic and dynamic model of DDWMR

(1) The robot motion is on a flat surface, meaning zero potential
energy,

(2) No lateral slip movement: This means that the robot center
point velocity will be in the direction of the x-axis of vehicle
frame and that the motion in the y-axis of vehicle frame will
be zero. Since the motion in the y-axis of vehicle frame will be
zero, then

ẏv = 0 . (5)

Using the transformation matrix to represent this constraints in
the reference frame, so ẋvẏv

θ̇v

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 ẋẏ
θ̇

 . (6)

So we can represent this constraint in reference frame as fol-
lowing

−ẋ sin θ + ẏ cos θ = 0 . (7)

(3) The second constraint is pure rolling without slipping, then
each wheel touches the ground in single point. The pure rolling
constraint is formulated as [10]

ẋ cos θ + ẏ sin θ + Lθ̇ = RωR , (8)

ẋ cos θ + ẏ sin θ − Lθ̇ = RωL . (9)

Equations 7 - 9 can be written in matrix form

 − sin θ cos θ 0 0 0
cos θ sin θ L −R 0
cos θ sin θ −L 0 −R




ẋ
ẏ

θ̇
ϕ̇R
ϕ̇L

 = 0 , (10)

or

A(p)ṗ = 0 , (11)

where Ap is the constraints matrix and it will be used in the deriva-
tion of the dynamic model.

2.3 Kinematic Model
For the DDWMR, the primary motivation behind kinematic is to
obtain the robot speeds as a function of the driving wheels speeds.
The linear and angular speeds of the DDWMR in the vehicle frame
can be calculated as

v =
vR + vL

2
= R

(ϕ̇R + ϕ̇L)

2
, (12)

and

ω =
vR − vL

2L
= R

(ϕ̇R − ϕ̇L)

2L
. (13)

Then the linear and the angular speeds of the DDWMR in the ref-
erence frame can be calculated as follows

ẋ = v cos θ = R
(ϕ̇R + ϕ̇L)

2
cos θ , (14)

ẏ = vsinθ = R
(ϕ̇R + ϕ̇L)

2
sin θ , (15)

θ̇ = ω = R
(ϕ̇R − ϕ̇L)

2L
. (16)

Now consider a DDWMR at certain position (x, y, θ) which has a
non-zero distance with the desired position (xd, yd, δ) as shown in
Fig.2.

x  

y θ

ℓ

б

Current position

Desired position

xd

y
d

yr

x r

Fig. 2. Current and Goal Positions of robot

The robot can be represented in polar coordinates involving error
distance

` =

√
(xd − x)2 + (yd − y)2 , (17)
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and heading angle error

ψ = δ − θ , (18)

as in the following equation ˙̀

ψ̇

δ̇

 =

 − cos(ψ) 0
sin(ψ)/` −1
sin(ψ)/` 0

[ v
ω

]
(19)

2.4 Dynamic Modeling
The dynamic model of the DDWMR is very important for simu-
lation of different control algorithms. In this work the lagrangian
approach is used to drive the equations of motion of DDWMR. The
Lagrangian equation in general is

d

dt
(
∂L

∂ṗi
) + (

∂L

∂pi
) = F −AT (p)λ , (20)

where the Lagrangian function L is the difference between the ki-
netic energy and the potential energy of the robot. According to the
above assumptions the potential energy equals zero, then the La-
grangian function equals the the kinetic energy only. F is the force
vector, Ap is the constraints matrix and λ is the Lagrange multipli-
ers for the robot constraints. The total robot kinetic energy is the
summation of robot frame kinetic energy and the wheels kinetic
energy. Then

L = T = Tf + Tw , (21)

where

Tf =
1

2
mfv

2
c +

1

2
Icθ̇

2 , (22)

Tw =
1

2
mw(v2R + v2L) + Imθ̇

2 +
1

2
Iw(ϕ̇2

R + ϕ̇2
L) . (23)

Where mf is the robot mass excluding motors and wheels, mw is
the mass of motors and wheels together. Ic is the inertial moment
of the robot about the vertical axis passes through the center of
mass, Im and Iw are the inertial moments of the motors and wheels
about the vertical axis passes through the center of mass and the
wheel axis respectively. Representing the velocities as function of
reference coordinates using the relation v2i = ẋ2i + ẏ2i , we get

v2R + v2L = 2(ẋ2 + ẏ2 + 2(Lθ̇)2) , (24)

v2c = ẋ2 + ẏ2 + 2aθ̇(ẏ cos θ − ẋ sin θ) + (aθ̇)2 , (25)

where a is the distance between the center of mass c and mid-point
on the axis between the two wheels b. Then

L =
1

2
m(ẋ2 + ẏ2) +mfaθ̇(ẏ cos θ − ẋ sin θ)

+
1

2
Iw(ϕ̇2

R + ϕ̇2
L) +

1

2
Iθ̇2 ,

(26)

where

m = mf + 2mw , (27)

I = Ic +mfa
2 + 2mwL

2 + 2Im . (28)

Applying the lagrangian equation 20 on the obtained lagrangian
function, easily we can see that

mẍ−mfa(θ̈ sin θ + θ̇2 cos θ) = C1 , (29)

mÿ +mfa(θ̈ cos θ − θ̇2 sin θ) = C2 , (30)

Iθ̈ +mfa(ÿ cos θ − ẍ sin θ) = C3 , (31)

Iwϕ̈R = τR + C4 , (32)

Iwϕ̈L = τL + C5 . (33)

These equations can be written in form of the general equations of
motion [11]

M(p)p̈+ V (p, ṗ)ṗ = B(p)τ −AT (p)λ , (34)

where M(p) is the symmetric positive definite inertia matrix,
V (p, ṗ) is the centripetal and coriolis matrix, B(p) is the input
matrix, τT =

[
τR τL

]
is the input vector, AT (p) is the matrix

associated with the kinematic constraints, and λ is the Lagrange
multipliers vector. We can see that

M(p) =


m 0 −mfa sin θ 0 0
0 m mfa cos θ 0 0

−mfa sin θ mfa cos θ I 0 0
0 0 0 Iw 0
0 0 0 0 Iw

 ,
(35)

V (p, ṗ) =


0 0 −mfaθ̇ cos θ 0 0

0 0 −mfaθ̇ sin θ 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (36)

B(p) =


0 0
0 0
0 0
1 0
0 1

 , (37)

λ =


λ1

λ2

λ3

λ4

λ5

 . (38)

Back to the kinematic model, the model can be written in the fol-
lowing form

ẋ
ẏ

θ̇
ϕ̇R
ϕ̇L

 =
1

2


R cos θ R cos θ
R sin θ R sin θ
R/L

−R/L
2 0
0 2


[
ϕ̇R

ϕ̇L

]
, (39)

or

ṗ = Q(p)η . (40)

It is Straightforward to show that QT (p)AT (p) = 0. Differentiat-
ing Equation 40, substituting the expression for ṗ and p̈ into 34,
and premultiplying byQT (p) to convert the motion equation to the
unconstrained form, then we have

M̄(p)η̇ + V̄ (p, ṗ)η = B̄(p)τ , (41)
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where:

M̄(p) = QT (p)M(p)Q(p) (42)

=

[
Iw + R2

4L2 (mL2 + I) R2

4L2 (mL2 − I)
R2

4L2 (mL2 − I) Iw + R2

4L2 (mL2 + I)

]
,

V̄ (p, ṗ) = QT (p)M(p)Q̇(p) +QT (P )V (p, ṗ)Q(p) (43)

=

[
0 R2

2L
mfaθ̇

−R2

2L
mfaθ̇ 0

]
,

B̄(p) = QT (p)B(p) (44)

=

[
1 0
0 1

]
.

Or we can write the equation in terms of v and ω as in the following
form

(m+
2

R2
Iw)v̇ − amfω

2 =
(τR + τL)

R
, (45)

(I +
2L2

R2
Iw)ω̇ + amfvω =

L(τR − τL)

R
. (46)

Equations 45 and 46 are used to simulate our real robot whose dy-
namic parameters are listed in Table 1.

Table 1. Robot dynamic model parameters
Parameter Value (unit) Description
L 10 cm The distance between the drive wheel

and the axis of symmetry.
R 7.5 cm Wheel radius.
a 5 cm The distance between the center of mass

and drive wheel axis.
m 6 kg Total robot weigh with onboard load.
mf 4 kg Robot frame weigh.
I 5 kg.m2 Mass moment of inertia about the center

of mass c.
Iw 0.005 kg.m2 Inertial moment of the motors and wheels

about the wheel axis.

3. TRACKING PROBLEM AND CONTROL
ALGORITHM

In this section the control algorithm that we will use in this pa-
per is derived. The role of the control algorithm is to enable the
robot to go to the desired goal and follow the target trajectory.
That is achieved by using the posture error to provide the robot
with the reference linear and angular velocities. The description of
tracking problem can be described as follows. Given the desired
robot posture pd =

[
xd yd δ

]T while the robot currently is at

p =
[
x y θ

]T and the controller must generate the linear and
the angular velocities such that lim

t→∞
p = pd. A general structure for

the tracking control system is presented in Fig. 3.
To grantee the convergence and the stability of our controller, a
Lyapunov function candidate is chosen as

V = V1 + V2 =
`2

2
+
ψ2

2
(47)

 Dynamic 

   model

Eq. 45, 46 

Kinematic

   model

Eq. 14 - 16

trajectory

 tracking 

controller

Eq. 50 , 51

PID
Path

generator 

υ

ω ω

υ
Error

calculator 

Eq. 18, 19

τR

τL

ℓ

d
P

P

Fig. 3. Tracking controller system architecture.

It is clear that V > 0 and that V = 0 only if there is no error in
robot posture, then V is appositive definite function. By taking the
time derivative of Lyapunov function, we have

V̇ = ` ˙̀ + ψψ̇ (48)

If we substitute for ˙̀ and ψ̇ from model equation (19)

V̇ = `(−v cos(ψ)) + ψ(
v sin(ψ)

`
− ω) (49)

Then we can choose the driving velocities to be

v = k`` cos(ψ) (50)

ω = k` sin(ψ) cos(ψ) + kψ tanh(kψψ) (51)

Where k` and kψ are positive numbers, then the derivative of the
Lyapunov function will be in the form of

V̇ = −k``2cos2(ψ)− kψψ tanh(kψψ) (52)

It is clear that the derivative of the Lyapunov function V is a nega-
tive function, then the point eP = 0 is asymptotically stable.

4. SIMULATION RESULTS
In this section the performance of proposed controller is tested us-
ing NI-LabVIEW control design and simulation toolkit. In the fol-
lowing subsections we will show some of the results that prove the
stability and convergence of used controller. The controller param-
eters are chosen as: k` = 2, kψ = 3. The sampling time is set to
0.001 second.

4.1 Go to Goal
The desired goal for the robot is described as xd = 3 and xd = 4.
Goal point is sent to controller which directs the vehicle towards
the goal. The robot starts at (-1, 0, 0). Then the error at t = 0 is
eP =

[
4 4 π/4

]T . Fig. 4 shows the result of go to goal simula-
tion. Fig. 4.A shows the tracking performance of the robot in xy-
plan. Fig. 4.B shows the tracking errors in x, y directions and in
orientation. Fig. 4.C shows the controller output (linear and angu-
lar velocities).

4.2 Path Tracking
4.2.1 Circular Path Tracking. The desired goal for the robot is
to follow the path described as xd = 1 + sin t and yd = 1− cos t,
or in general (xd − 1)2 + (yd − 1)2 = 1 . The robot starts at (-1,
-1, 0) with initial error eP =

[
2 1 0

]T . Fig. 5 shows the result
of circular path tracking simulation. Fig. 5.A shows the tracking
performance of the robot in xy-plan. Fig. 5.B shows the controller
output (linear and angular velocities). Fig. 5.C shows the desired
and the actual values of x. Fig. 5.D shows the desired and the actual
values of y.
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Fig. 4. Go to goal. A: The tracking performance; B: The tracking errors in
x and y directions, and in orientation; C: The linear and angular velocities.
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Fig. 5. Simulation tracking for circular path. A: The tracking performance;
B: The linear and angular velocities; C, D: The desired and the actual values
of x and y respectively.

4.2.2 Figure-eight Path Tracking. The desired goal for the
robot is to follow the path described as xd = 1 + sin 2t and
yd = 1− cos t. The robot starts at (-1, -1, 0) with initial error
eP =

[
2 1 0

]T . Fig. 6 shows the result of Figure-eight path
tracking simulation. Fig. 6.A shows the tracking performance of
the robot in xy-plan. Fig. 6.B shows the controller output (linear
and angular velocities). Fig. 6.C shows the desired and the actual
values of x. Fig. 6.D shows the desired and the actual values of y.

4.2.3 Ellipsoidal Path Tracking. The desired goal for the
robot is to follow the path described as xd = 1 + sin t and
yd = 1− cos(t+ π/4), Where f = 2πHz. The robot starts at (-
1, -1, 0) with initial error eP =

[
2 1.29 0.576

]T . Fig. 7 shows
the result of ellipsoidal path tracking simulation. Fig. 7.A shows
the tracking performance of the robot in xy-plan. Fig. 7.B shows
the controller output (linear and angular velocities). Fig. 7.C shows
the desired and the actual values of x. Fig. 7.D shows the desired
and the actual values of y.
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5. COMPARISON TO BACKSTEPPING BASED
CONTROLLER

In this section, the backstepping algorithm based control is com-
pared to our Lyapunov based tracking controller proposed in this
work. The backstepping based tracking control technique used
infig:Circle-sim [12] is given by the following equations

v = vd cos eθ + kxex , (53)

and

ω = ωd + kyvdey + kθvd sin eθ , (54)

where kx, ky , and kθ are the controller parameters, and exey
eθ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xd − xyd − y
θd − θ

 . (55)

5
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The backstepping tracking control defined in equation (53) and
(54) is simulated here under the same conditions as the proposed
controller. The Fig. 8 Shows the tracking performance of both
controller for a circular path. As we can see that the proposed
controller is more faster in reaching the reference trajectory than
the backstepping based controller.
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Fig. 8. Tracking performance comparison between backstepping con-
troller and proposed controller.

Also, we can see in Fig. 9 the large difference between the
startup linear and angular velocities in both controller. The
proposed controller velocity profile is more practical than that
produced from back stepping controller.
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6. CONCLUSION
In this paper, the kinematic and dynamic models of DDWMR are
introduced. Non-linear dynamics based tracking controller is sug-
gested, which is capable of producing continuous and smooth ve-
locity commands. The tracking controller simulation shows that the
system is asymptotically stable, and that the tracking errors are en-
sured to move toward to zeros. Also we compared the results ob-
tained using the proposed controller to the result of backstepping
based controller.
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