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ABSTRACT 
In this paper, we obtain some Suzuki-type fixed point results 
in G-metric spaces and as well as discuss the G-continuity of 
the fixed point. The direction of our extension/generalization 
is new and very simple. An illustrative example is also given 

to show that our main result is extension of the existing ones. 
Moreover, we show that these maps satisfy property P. 
Application to certain class of functional equations arising in 
dynamical programming is also obtained.  
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1. INTRODUCTION  
The classical Banach contraction principle states that “every 
contraction on a complete metric space admits a unique fixed 

point”. This theorem is very important because it is very 
forceful tool in nonlinear analysis. Many fixed point theorems 
have been proved by various authors as generalizations of this 
result.  In 2008, Suzuki [8] introduced a new type of mapping 
and obtained the following interesting and simple 
generalization of Banach contraction principle:  

Theorem 1.1 [8]: Define a non-increasing function  from 
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Let (X, d) be a complete metric space and let T be a mappings 

from X into itself. Assume that there exists r  [0, 1) such that 

for every x, y  X 

      θ(r) d(x, Tx)  d(x, y) implies d(Tx, Ty)  r d(x, y).                                                              

Then there exists a unique fixed point z of T. 
Moreover,lim𝑛 𝑇

𝑛(x) = z  for all x∈ X.  

This result attracted several authors to work along these lines 
and subsequently Theorem 1.1 was generalized and extended 
in various ways (see for instance [1, 5, and 7]). 

In 2006, Z. Mustafa and B. Sims [10] introduced the notion of 
G-metric spaces as a generalization of the notion of metric 
spaces in which every triplet of elements is assigned to a non-
negative real number. Mustafa et. al.[12] initiated fixed point 

theory in this spaces.  Later on several authors obtained some 
fixed point results under various contractive conditions in G- 
metric spaces, (see [3, 4, 6, 9, 11-13]). 

The aim of this paper is to combine the idea of G-metric space 
and Suzuki-type fixed point theorems for a single map. Also 
we prove the uniqueness of the fixed point, as well as the G-
continuity of the fixed point. The result obtained here extends 
some existing ones. We also provide an example in support of 

our main result. Moreover, we show that these maps satisfy 
property P. An interesting fact about maps satisfying property 
P is that none of these maps have any non-trivial periodic 
points. Some papers dealing with property P are [2, 6]. At the 
end, an application regarding the existence and uniqueness of 
solutions of certain class of functional equations arising in 
dynamical programming is obtained. 

2. PRELIMINARIES 
Definition 2.1.[10] Let X be a nonempty set and let G : X  X 

 X → R+ a function satisfying the following axioms: 
(G1) G(x, y, z) = 0 if x = y = z, 
(G2) 0 < G(x, x, y) for all x, y 𝜖 X with x ≠ y, 

(G3) G(x, x, y)   G(x, y, z), for all x, y, z   X, with z  y, 
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in 

all the three variables), 

(G5) G(x, y, z)   G(x, a, a) + G(a, y, z), for all x, y, z, a   X, 
(rectangle inequality). 
   Then the function G is called a generalized metric, or, more 
specifically a G-metric on X, and the pair (X, G) is called a G-
metric space. 

Definition 2.2[10]. Let (X,G) be a G-metric space, let {xn} be 
a sequence of points of X, we say that {xn} is G-convergent to 

x if 0),,(lim
,




mn
mn

xxxG ; that is, for any   > 0, there 

exists k 𝜖 N such that G(x, xn, xm) <  , for all n, m   k 

(throughout this paper we mean by N the set of all natural 
numbers). We call x the limit of the sequence and write xn 

x or lim xn = x. 

Proposition2.3[10].Let (X, G) be a G-metric space. Then the 
following are equivalent: 
(1) {xn} is G-convergent to x, 
(2) G(xn, xn, x)   0, as n   , 

(3) G(xn, x, x)   0, as n   , 

(4) G(xm, xn, x)   0, as m, n   . 

Definition 2.4[10]. Let (X, G) be a G-metric space. A 

sequence {xn} is called G-Cauchy if for each  > 0, there is k 

∈ N such that  G(xn, xm, xl) <  , for all n, m, l   k, that is, if 

G(xn, xm, xl)   0 as n, m, l   . 

Proposition 2.5[10]. Let (X, G) be a G-metric space, then the 
following conditions are equivalent: 
(1) The sequence {xn} is G-Cauchy. 

(2) For every   > 0, there exists k N such that G(xn, xm, 

xm) <  , for all n, m ≥ k. 
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Proposition 2.6[10]. Let (X, G) be a G-metric space. Then f : 
X→ X is G-continuous at x ∈X if and only if it is G-

sequentially continuous at x, that is, whenever {xn} is G-
convergent to x, {f(xn)} is G-convergent to f(x). 
Proposition 2.7[10]. Let (X, G) be a G-metric space. Then the 
function G(x, y, z) is jointly continuous in all the three of its 

variables. 
Definition 2.8[10].A G-metric space (X, G) is called G-
complete if every G-Cauchy sequence is G-convergent in (X, 
G). 
Proposition 2.9[10] Let (X,G) be a G-metric space. Then for 

any x, y, z, a   X it follows that: 

(1)   G(x, y, z) = 0, then x = y = z, 

(2)   G(x, y, z) G(x, x, y) + G(x, x, z), 

(3)   G(x, y, y)   2G(y, x, x), 

(4)   G(x, y, z)   G(x, a, z) + G (a, y, z), 

(5)  G(x, y, z) 
3

2
(G(x, y, a) + G(x, a, z) + G (a, y, z)),  

(6)       G(x, y, z)   (G(x, a, a) + G(y, a, a) + G (z, a, a)). 
Definition 2.10[10]. A G-metric space (X, G) is called a 
symmetric G-metric space if 

       G(x, y, y) = G(y, x, x) for all x, y X. 
Proposition 2.11[10]. Every G-metric space (X, G) defines a 
metric space space (X, dG) by 
 (2.11.1)  dG(x, y) = G(x, y, y)+G(y, x, x),  
 for all x, y  X.    

Note that if (X, G) is a symmetric G-metric space, then   
(2.11.2)       dG(x, y) = 2G(x, y, y), for all x, y   X.                       
However, if (X, G) is not symmetric, then it holds by the G-
metric properties that 

(2.11.3)      
2

3
G(x, y, y)    dG(x, y)   3G(x, y, y),  

for all x, y   X.     
Definition 2.12 [6]. Let T be a self-mapping of G-metric 

space with fixed point set F (T)  . Then T is said to have 

property P if F (Tn) = F (T), for each n ∈ N. Equivalently, a 

mapping has property P if every periodic point is a fixed 
point. 

3. MAIN RESULTS 
Theorem 3.1. Let (X, G) be a complete G-metric space and 

let T be a mapping on X. Define a strictly decreasing function 

  from [0, 1) onto (1/2, 1] by  )(r  =
r1

1
.  Assume that 

there exists r   [0, 1) such that for every x, y ∈ X, 

(3.1.1) )(r  G(x, Tx, Tx)   G(x, y, y) implies  

               G(Tx, Ty, Ty)  r G(x, y, y).                                                                                 

Then there exists a unique fixed point z of T and 

)(lim xT n

n

= z  for all xX. Moreover, T is G-

continuous at z.  
Proof: If (X, G) is symmetric. From proposition 2.11, dG 
defined by dG(x, y) = 2 G(x, y, y) makes (X, dG) into a metric 
space. Substituting into (3.1.1) and then multiplying by 2 
yield 

)(r  dG(x, Tx)  dG(x, y) implies dG(Tx, Ty)  r dG(x, y). 

From Theorem 1.1, T has a unique fixed point since  

)()( rr     for all r   [0, 1). 

Suppose that (X, G) is not symmetric. Since )(r  ≤ 1,     

)(r G(x, Tx, Tx)  G(x, Tx, Tx) holds for every xX. By 

hypothesis,  

(3.1.2)  G(Tx, T2(x), T2(x))  r G(x, Tx, Tx) 

   

for all xX. Let uX  and define a sequence {un} in X by 
un = Tnu. Then (3.1.2) yields 

 G(un ,un+1 , un+1) = G(Tnu ,Tn+1u ,Tn+1u)   r  G(Tn-1u 

,Tnu ,Tnu) ……. rn G(u, Tu, Tu). 

Here 




 
1

11 ),,(
n

nnn uuuG and {un} is a cauchy 

sequence in X. Since X is complete, so there exists a point z

X such that un   z. Now, we show that  

(3.1.3)   G(z, Tx, Tx)  r G(z, x, x)  

for all x   X with x z . 

Since un   z, there exists kN with n ≥ k such that  

G(un, z, z)  
6

1
G(x, z, z) and 

 G(un, un, z)  
6

1
G(x, z, z) for all nN with n ≥ k. 

Then we have 

   
)(r G(un, T un, T un)  G(un, T un, T un)  

                    = G(un ,un+1 , un+1)  

 G(un, z, z) + G(z, un+1 , un+1)     [by (G5)] 

  
6

2
G(x, z, z) =  

5

2
[

6

5
G(x, z, z)] 

=  
5

2
[G(x, z, z) -  

6

1
G(x, z, z)] 

  
5

2
 [G(x, z, z) - G(un, z, z)] 

 
5

2
 [G(x, un, un)]  

5

4
 [G(un, x, x)]   

< G(un, x, x). 
Hence by hypothesis 

G(un+1, Tx, Tx)   r G(un, x, x)  for all n ≥ k. 
Letting n  , we get  

    G(z, Tx, Tx)  r G(z, x, x) for all x∈ X with x  z. 
Thus (3.1.3) is obtained. We now, prove that z is a fixed point 

of T. Arguing by contradiction, we assume that Tz  z. We 
note that for x, y ∈ X, either 

(3.1.4)     )(r G(x, Tx, Tx)   G(x, y, y)   

 or    )(r   G(Tx, T2(x), T2(x))   G(Tx, y, y) holds. 

Now, )(r  G(Tx, T2(x), T2(x))   G(Tx, y, y), 

 implies that,   2 )(r G(Tx, T2(x), T2(x))  

 2 G(Tx, y, y)  4 G(y, Tx, Tx). 

This implies that  )(r G(Tx, T2(x), T2(x))  

 2 G(y, Tx, Tx). 

So, (3.1.4) can be written as 

(3.1.5)     )(r G(x, Tx, Tx)   G(x, y, y)   

 or    
2

1
 )(r G(Tx, T2(x), T2(x))   G(y, Tx, Tx). 

Indeed if 

)(r  G(x, Tx, Tx) >  G(x, y, y)   
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 and    
1

2
 )(r  G(Tx, T2(x), T2(x)) > G(y, Tx, Tx), 

then we have 

G(x, Tx, Tx)   G(x, y, y)   + G(y, Tx, Tx) 

          < )(r G(x,Tx, Tx)+
2

1
)(r G(Tx, T2(x), T2(x)) 

 )(r [G(x, Tx, Tx) +
2

r
 
G(x, Tx, Tx)] 

= 
r

r





1

2
1

G(x, Tx, Tx) < G(x, Tx, Tx), 

which is a contradiction. Hence either 

)(r  G(u2n, u2n+1, u2n+1)   G(u2n, z, z)   

 or   )(r G(u2n+1, u2n+2, u2n+2)   G(u2n+1, z, z) 

holds for every n∈N. Using (2.1.1), we obtain that either 

G(u2n+1, Tz, Tz)   r G(u2n, z, z)  

or G(u2n+2, Tz, Tz)   r G(u2n+1, z, z) 
holds for every n∈N. Since sequence {un} converges to z, the 

above inequalities imply that there exista a subsequence of 

{un} which converges to Tz. This implies that Tz = z, which is 
a contradiction. Hence Tz = z. 
We now show that the fixed point is unique. Suppose that w is 
another fixed point of T. 

Since  )(r G(z, Tz, Tz) =0   G(z, w, w), we have using 

(3.1.1) that 

G(z, w, w) = G(Tz, Tw, Tw)  r G(z, w, w) < G(z, w, w),  

which is a contradiction. Hence z = w. 

To show that T is G-continuous at z, let {yn} be any sequence 
in X such that {yn} is G-convergent to z. For n∈N, we have 

 )(r G(z, Tz, Tz) =0   G(z, yn, yn). 

Thus using (2.1.1), we get 

G(z, Tyn, Tyn) = G(Tz, Tyn, Tyn) r G(z, yn, yn). 

Letting n  , we get  

            .0),,(lim 


nn
n

TyTyzG  

Hence  {Tyn} is G-convergent to z = Tz. So T is G-continuous 
at z. 

The following result is Theorem 5.1.7 of [11] and 
Corollary 3.4 of [9]. 
Corollary 3.2. Let (X, G) be a complete G-metric space and 

let T be a mapping on X. Assume there exists r  [0, 1) such 

that for every x, y ∈ X, 

(3.2.1) G(Tx, Ty, Ty)  r G(x, y, y).                                                                                 

Then there exists a unique fixed point z of T and 

)(lim xT n

n

= z for all x∈ X. Moreover, T is G-continuous 

at z.  
Proof: It follows directly from Theorem 3.1.1. 
 
Corollary 3.3. Let (X, G) be a complete G-metric space and 

let T be a mapping on X. Define a strictly decreasing function 

  from [0, 1) onto (1/2, 1] by  )(r  =
r1

1
.  Assume that 

there exists r  [0, 1) such that for every x, y ∈ X, 

)(r  G(x, Tmx, Tmx)   G(x, y, y) implies 

G(Tmx, Tmy, Tmy)  r G(x, y, y).                                                                                

Then there exists a unique fixed point z of T. Moreover, Tm is 
G-continuous at z.  

Proof.  From Theorem 3.1, we conclude that the maps  Tm  
has a unique fixed point say z. Now, Tz = T (Tmz) = Tm+1z = 
Tm(Tz), meaning that Tz is also a fixed point of Tm.By the 
uniqueness of z, we get Tz = z. 

The following example illustrates our main result. 

Example 3.4 Let X = {(0, 0), (0, 4), (4, 0), (0, 5), (5, 0), (4, 

5), (5, 4)}.                                                            
Define G: X 

× X × X → R+ by   
G[(x1, x2), (y1, y2), (z1, z2)] = max{d[(x1, x2), (y1, y2)], d[(y1, 
y2), (z1, z2)], d[(x1, x2), (z1, z2)]},  
where  d: X × X → R+ is defined as 

d[(x1,x2), (y1,y2)] = .2211 yxyx   

Let T be such that 

T(x1,x2) =









212

211

),0(

)0,(

xxifx

xxifx
 

Then T does not satisfy the condition (3.2.1) of Corollary 3.2 
at x = (4, 5), y = (5, 4). However, all the hypotheses of 
Theorem 3.1 are satisfied for the map T and (0, 0) is unique 
fixed point of T.  

Remark.3.5 The example 3.4 does not satisfy the conditions 
of Corollary 3.2 so from it we cannot say that T has a fixed 
point or not, but from Theorem 3.1 we can say that T has a 
unique fixed point in X. Therefore Theorem 3.1 is a proper 

generalization of Theorem 5.1.7 of [11] and Corollary 3.4 of 
[9]. 

4. PROPERTY P. 
In this section, we shall show that maps satisfying (3.1.1) 
possess property P. 

Theorem 4.1. Under the conditions of Theorem 3.1, T has 
property P. 
Proof: From Theorem 3.1, T has a fixed point. Therefore, F 

(Tn)  , for each positive integer n ≥ 1. Fix a positive 

integer n > 1 and let z ∈ F (Tn). We claim that z F(T), that is,  

z is a fixed point of T. Suppose that z  Tz. Then 

)(r  G(Tn-1z, Tnz, Tnz) ≤   G(Tn-1z, Tnz, Tnz) .                        

Using (3.1.1), we have 
G(T(Tn-1z), T(Tnz), T(Tnz)) ≤ r G(Tn-1z, Tnz, Tnz)                                         
that is, G(Tnz, Tn+1z, Tn+1z) ≤ r G(Tn-1z, Tnz, Tnz). 
Continuing like this, we have  

G(Tnz, Tn+1z, Tn+1z) ≤ 
nr  G(z, Tz, Tz), 

That is,  G(z, Tz, Tz)≤ 
nr  G(z, Tz, Tz), which is possible 

only if G(z, Tz, Tz) = 0, 

that is,   z = Tz. Thus   z  F(T). Hence T satisfies property P. 

 

5. APPLICATION TO FUNCTIONAL 

EQUATIONS 
In this section we prove existence and uniqueness of solution 
for a class of functional equations in G-metric space using 
theorem 3.1. 
Let U and V be Banach spaces, W U, D  V and R is the 
field of real numbers. Let X= B(W) denote the set of all 
bounded real valued functions on W. Define G: X × X × X → 

R+ by  

    G(h1,h2, h3) =max{ d(h1, h2), d(h2, h3), d(h3, h1)} 
where d: X × X → R+ is defined as  
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d(h1, h2)=  )()(
sup

21 thth
Wt




 

then (X,G) is G-complete metric space. Consider the 
following functional equation  

p(x) =  ))),((,,(),(
sup

yxpyxMyxg
Dy




, 

x∈W ,                      (5.1.1)          

where g: W×𝐷 → 𝑅 and M: W×𝐷 × R→ 𝑅 are bounded 

functions. We consider W and D as the state and decision 

spaces, respectively,  :𝑊 × 𝐷 → 𝑊 represents 

transformation of the process and p(x) represents the optimal 
return function with initial state x. 

Let a function    be defined as in Theorem 3.1 and the 

mapping T: X →X by   

T(h(x)) =  ))),((,,(),(
sup

yxhyxMyxg
Dy




,  

x∈W , h∈X .          (5.1.2)   

Now we prove the existence and uniqueness of the solution of 
the functional equation (5.1.1). 

Theorem 5.1 Suppose that there exists a r ∈[0,  1) such that for 

every 
 (x, y) ∈W×𝐷, h1, h2∈X, t ∈W, the inequality  

(5.1.3) )(r G(h1, Th1, Th1)   G(h1, h2, h2) ,  

implies that  

)()())(,,())(,,( 2121 ththrthyxMthyxM 

holds, then the functional equation (5.1.1) has a unique 
bounded solution in X. 

Proof  Let 
 
be an arbitrary positive real number and h1, 

h2∈X. For x∈W, we choose y1, y2 ∈ D so that 

(5.1.4)  T(h1(x)) < g(x, y1) + M(x, y1, h1(𝜏1))  +   
 
,    

   

(5.1.5)   T(h2(x)) < g(x, y2) + M(x, y2, h2(𝜏2))  +   
 
,
 
     

   
where  𝜏1 = 𝜏(x, y1) and 𝜏2 = 𝜏(x, y2). 

From  the definition of mapping T, we have 

(5.1.6)  T(h1(x)) ≥ g(x, y2) + M(x, y2, h1(𝜏2)),    

   
(5.1.7)   T(h2(x)) ≥ g(x, y1) + M(x, y1, h2(𝜏1)),   

    
If the inquality (5.1.3) holds, then  from  (5.1.4) and (5.1.7), 

we obtain 

 



))(,,())(,,(

))(())((

121111

21

hyxMhyxM

xhTxhT
 

  








)()(

))(,,())(,,(

21

1211

xhxhr

hyxMhyxM
 

                                                                              (5.1.8)         
Similarly, from (5.1.2), (5.1.5) and (5.1.6), we obtain 

 )()())(())(( 2112 xhxhrxhTxhT  

                                                                            (5.1.9)         
 

Hence from (5.1.8) and (5.1.9) we have 

 )()())(())(( 2121 xhxhrxhTxhT  

                                                                          (5.1.10) 

Since the inequality (5.1.10) is true for all x∈W and arbitrary 

𝜆 >0, then we have 

)(r G(h1, Th1, Th1)   G(h1, h2, h2)  implies that   G(Th1, 

Th1, Th2) ≤   𝑟 G(h1, h1, h2). 

Thus all the conditions of Theorem 3.1 are satisfied for 
the mapping T and hence the functional equation (5.1.1) has a 
unique bounded solution. 

6.  CONCLUSION  

From the above discussion, it is clear that our results are quite 
simple, general and includes several fixed point theorems in 
metric spaces and G-metric spaces as special cases. Further 
the results of this paper may be extended to a pair of maps, 

three and more maps in G-metric spaces.  
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