
International Journal of Computer Applications (0975 – 8887) 

Volume 44– No20, April 2012 

42 

Multi-Objective Chance Constrained Capacitated 
Transportation Problem based on Fuzzy Goal 

Programming 

Surapati Pramanik 
Department of Mathematics, Nandalal Ghosh 

B.T. College, Panpur, P.O.- Narayanpur, 
District – North 24 Parganas, Pin Code-

743126, West Bengal, India 

Durga Banerjee 
Ranaghat Yusuf Institution,Rathtala,P.O.-

Ranaghat,District-Nadia,Pin Code-
741201,West Bengal, India 

 

   ABSTRACT 
This paper presents chance constrained multi-objective 

capacitated transportation problem based on fuzzy goal 

programming problem. Generally, in transportation 

problem the capacity of each origin and the demand of 

each destination are random in nature. The inequality 

constraints representing supplies and demands are 

probabilistically described. In many real situations, there 

are capacity restrictions on units of commodities which 

are shipped from different sources to different 

destinations. In the model formulation, supply and 

demand constraints are converted into equivalent 

deterministic forms. Then, we define the fuzzy goal 

levels of the objective functions. The fuzzy objective 

goals are then characterized by the associated 

membership functions. In the solution process, two fuzzy 

goal programming models are considered by minimizing 

negative deviational variables to obtain compromise 

solution. Distance function is used in order to obtain the 

most compromise optimal solution. In order to 

demonstrate the effectiveness of the proposed approach, 

an illustrative example of chance constrained multi-

objective capacitated transportation problem is solved. 
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1. INTRODUCTION 

Transportation problem (TP) is one of the most 

important application of  linear programming  in the real 

life situations. TP is mainly used to find out the shipping 

routes as well as the resourse allocation so that the total 

transportation cost would be minimum. The classical TP 

is a linear programming problem with equality 

constraints. Hitchcock [1] first developed the simpliest 

TP model in 1941. Koopmans [2] studied TP extensively 

in the form of activity analysis of production and 

allocation in 1951.  Charnes and Cooper [3] presented 

the stepping stone method in order to explain linear 

programming calculation in transportation problem in 

1954. Kantorovich[4]  studied the mathematical methods 

of organising and planning production in 1960. Haley [5] 

proposed the solid TP model with single objective in 

1963. Patel and Tripathy[6] discussed the variants of 

solid TP in 1989. Ringuest and Rinks [7] developed 

efficient interactive algorithm for solving multiobjective 

TP. Current and Min [8] designed multi objective TP 

networks. Appa [9] studied TP and its variants. The 

concept of  Appa was further developed by Brigden[10] 

with mixed type constraints. Misra and Das [11-12] 

considered the capacity restrictions in single objective 

solid TP. Klingman et al.[13] developed the NETGEN 

theory for generating large scale capacitated assignment 

transportation cost network problem. Wagner[14] made a 

note on a class of capacitated transportation problem. 

Pramanik and Roy [15] studied  fuzzy goal programming 

(FGP) approach to multi objective TP with capacity 

restrictions.  

Dantzig [16,17] developed the stochastic programming. 

In stochastic programming, the parameters are described 

by random variables with known distribution. The 

chance constrained programming (CCP)  was introduced 

by Charnes and Cooper in 1963[18]. In 1988, Hassin and 

Zemel [19] studied probabilistic analysis of the 

capacitated tranportation problem. They showed that 

asymptotic conditions on the supplies and demands 

assure a feasible solution to the problem. 

In 1992, Bit et al. [20]  studied the fuzzy programming 

approach to multi criteria decision making transportation 

problem. The coefficients in the objective functions and 

right hand side parameters of the constraints are crisp 

numbers. In 1994, Bit et al. [21]  also developed a fuzzy 

programming approach to chance constrained multi 

objective TP. They considered parameters as standard 

normal, log-normal, uniform random variables. 

In the recent past, Pramanik and Roy [22] Pramanik and 

Dey [23] studied FGP by considering only negative 

deviational variables in achievement functions. In this 

paper, the concept of Pramanik and Dey [23] is further 

extended to chance constrained FGP and its application 

in solving multi objective capacitated transportation 

problem (MOCTP).The right hand parameters of the 

constraints are random variables of known mean and 

variance. We consider the random variables as normal 

distribution with given mean and variance and we 

convert the normal random variables into standard 

normal random with zero mean,  unit variance. To 

convert the CCP with known confidence level into 

deterministic constraints, we use standard normal 

distribution table.  

Rest of the paper is organized in the following way: 

Section 2 describes multi-objective transportation 
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problem. Section 3 presents mathematical model of 

chance constrained multi-objective capacitated 

transportation problem. Section 4 is devoted to present 

proposed FGP formulation of chance constrained multi-

objective capacitated transportation problem. Section 7 

provides the selection of compromise solution using 

distance function. In Section 6, illustrative numerical 

example is solved to show the efficiency of the proposed 

approach. Section 7 presents the concluding remarks. 

Finally, Section 8 adds necessary references. 

2.MULTI-OBJECTIVE 

CAPACITATED TRANSPORTATION 

PROBLEM 

A transportation problem helps us to find out the way in 

which resources are allocated properly from origins to 

destinations so that total transportation costs, time, 

deterioration during transportation etc. would be 

minimal. 

We consider p sources (origins) Oi (i = 1, 2, …, p) and q 

destinations  Dj (j = 1, 2,…, q).  At each source Oi (i = 1, 

2, …, p), let ai  be the amount of  product to be shipped 

to the q destinations  Dj in order to satisfy the demand bj   

(j = 1, 2,…, q) there. In many practical problems, ai and 

bj cannot be deterministically provided. Here, ai, bj are 

considered as random variables with known distribution. 

In addition, there exists a penalty k
ijc associated with 

transporting a unit of product from source Oi to 

destination Dj for the k-th criterion. In general, k
ijc  

denotes the transportation costs, delivery time, damage 

charges (loss of quality and quantity of transported 

items), underused capacity, etc.  Let xij be the variable 

that represents the unknown quantity transported from i-

th origin to j-th destination. Since, we are interested in 

capacitated TP, there are limitations on the amount of 

resources allocated in different cells. Let rij be the 

maximum amount of quantity transported from i-th 

source to j-th destination i.e. xij ≤ rij. This restriction is 

called the capacitated restriction on the route i to j.   

 

Considering k penalty criteria, the mathematical model 

for MOCTP with chance constraints can be written as: 

min Zk = ,xc ij

p

1i

q

1j

k
ij 

 

     k = 1, 2,…, K                                (1) 
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
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(3) 

0 ≤ xij ≤ rij                                                                             (4) 

0 < i < 1, 0 < j < 1,                                                          (5) 

Here, i , j  are the known confidence levels for the 

constraints and the TP is unbalanced TP. 

3. MATHEMATICAL MODEL 

INVOLVING CHANCE CONSTRAINED 

MOCTP (CCMOCTP) 

In various real life CCMOCTPs, three cases may arise (i) 

only ai is random (ii) only bj is random (iii) both ai, bj are 

random. We are interested in developing the model by 

considering both ai, bj as random. Case (i) and case (ii) are 

particular cases of case iii). Here, ai and bj follow normal 

distribution with known mean E(ai), E(bj) and variance 

var(ai), var(bj) respectively. The chance constraints are 

converted into equivalent deterministic forms by the 

prescribed mean, variance and confidence levels. The 

process is described in subsection 3.1. 

3.1 Construction of Equivalent 

Deterministic Constraints 

Consider the chance constraints of the form:  
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Here  (.) and  -1(.) represent the distribution function and 

inverse of distribution function of standard normal variable 

respectively. 

Now consider   Prob( j

p

1i
ij bx 



) ≥ 1- j         j = 1, 2,…, q . 

Then, the constraints can be rewritten as:  

Prob(
)bvar(
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)b(Ex
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Then the model reduces to deterministic multi-objective 

transportation problem as follows:  

min ,xcZ ij
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   0 ≤ xij ≤ rij      i = 1, 2,…, p and j = 1, 2,…, q                 (11) 

4. FGP FORMULATION OF CCMOCTP  

Generally, the objective function Zk represents the TP cost, 

time, damages during transportation. Our intension is to 

minimize Zk subject to the system constraints (9), (10) and 

(11). Let the individual best and worst solution of the 

objective function subject to system constraints be 
k
LZ and 

k
UZ  respectively. The fuzzy goals appear as Zk

~
 k

LZ . The 

linear membership function for the fuzzy goal can be written 

as: 
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Here (
k
L

k
U ZZ  ) is the tolerance range for the k-th goal. 

Using the model studied by Pramanik and Dey [23] 

membership goal of each membership function can be 

written as: 

 )Z( k
k +d-k = 1,                                                               (13) 

Here d-k is the negative deviational variable.  

Now, the FGP model for CCMOCTP can be formulated as: 

Model-Ia): 

min Zk = k
K

1k

kdw 


                                                             (14) 

subject to 

1 ≥ d-k ≥ 0                                                                           (15) 

and the constraints (9),(10),(11) and (13). 

Here wk =1/(
k
L

k
U ZZ  )                                                      (16) 

is the associated weight for the k- th objective  function.                                                                            

Model Ib): 

 min Zk = k
K

1k

d


                                                                 (17) 

subject to the constraints  

(9), (10),(11), (13) and (15).                                              (18)                   

 

Model-II 

min                                                                                  (19) 

subject to the constraints   ≥ d-k                                      (20)  

and (18).                      

 

5. SELECTION OF COMPROMISE 

 SOLUTION 

In the context of multi-objective decision making , we 

cannot reach the ideal solution points because of 

incommensurable objective goals and different conflicting 

constraints. Decision makers (DMs) try to find out the 

solution which is closest to the ideal point solution 

considering all objectives and constraints in the decision 

making situation. In this connection, several distance 

functions have been studied [24, 25]  to find out the 

satisfactory solutions. Here, we use the distance function of 

the type sm = 

m/1
K

1k

mkk ))Z(1( 







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

for m = 1, 2; k = 1, 2, 

…, K. 

)Z( kk is the membership value for the k-th objective 

function. The solution for which the distance would be the 

minimum should be taken as the best compromise solution. 

To identify the FGP model that gives the best satisfactory 

result, we use the distance function.  



6. ILLUSTRATIVE EXAMPLE 
To demonstrate the potentiality of the proposed FGP models, 

we consider the following example. Here, we consider three 

origins and three destinations. The TP cost, time and the 

damage charges (both quality and quantity damage) during 

the transportation are represented by three square matrices of 

order three. The matrices are given bellow: 

Cost matrix: 
81015
71412

1343
       

Time matrix:    
10128
642
319

 

Damage charge:  
612
743
1198
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Then the objective functions can be represented by 

min Z1 = 

(3x11+4x12+13x13)+(12x21+14x22+7x23)+(15x31+10x32+8x33) 

                                                                                           (21)                                                                                                                                                                                                                                               

min Z2  = 

(9x11+x12+3x13)+(2x21+4x22+6x23)+(8x31+12x32+10x33)   (22)                                                                     

minZ3=(8x11+9x12+11x13)+(3x21+4x22+7x23)+(2x31+x32+6x33) 

                                                                                           (23)                                                                     
subject to   
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The capacitated constraints are given below: 

0 ≤ x11 ≤ 6, 0 ≤ x12 ≤ 7, 0 ≤ x13 ≤ 13, 0 ≤ x21 ≤ 6,  

0 ≤ x22 ≤ 2, 0 ≤ x23 ≤ 13, 0 ≤ x31 ≤ 4, 0 ≤ x32 ≤ 7,  

0 ≤ x33 ≤ 14.                                                                       (30) 

The mean, variance and the confidence levels are described 

below: 

E(a1) =12, var (a1) = 9, 1 = 0.01 

E(a2) =15, var (a2) = 4, 2 = 0.02 

E(a3) = 20, var (a3) = 7, 3 = 0.03 

E(b1) = 9, var (b1) = 2, 1 = 0.01 

E(b2) =13, var (b2) = 8, 2 = 0.02 

E(b3) = 21, var (b3) = 16, 3 = 0.03                               (31) 

Using (9), (10) and (31), the chance constraints defined in 

(24) to (29) can be converted into equivalent deterministic 

constraints as: 

 

975.18x
3

1j
j1 



, 11.19x
3

1j
j2 



, 987.24x
3

1j
j3 



, 

7119.5x
3

1i
1i 



, 1876.7x
3

1i
2i 



46.13x
3

1i
3i 



         (32)        

The tolerance ranges for the three objective functions are 

taken as [141.2317, 265.2392], [64.0092, 254.7742], 

[101.6461, 223.0061]. Following the proposed FGP models, 

we obtain the compromise solution (See Table 1) as: x11 = 

0.0619, x12 = 7, x13 = 0, x21 = 5.650, x22 = 0, x23 = 13.46, x31 = 

0, x32 = 0.1876, x33 = 0. 

The obtained values of the membership functions for three 

objective functions are 0.5899, 0.80154, 0.39678 and the 

obtained values of Z1
, Z2

, Z3 are respectively 192.0817, 

101.8683, 174.8528. The obtained values of distance 

functions are respectively S1 = 1.2117, S2 = 0.7559. 

 

Table1. Comparison of optimal solutions of the numerical example based on  distance functions
 

Approach
 

Solution point 

 

Objective values 

 

Membership values 

 

S1 S2 

Proposed 

model (Ia)
 

5.7119,7,0,0,0,13.46,0,0.1876,0 

 

141.2317,141.4183,203.10

28. 

1,0.5942,0.1640 1.24178 0.92927 

Proposed 

model (Ib)
 

0.0619,7,0,5.650,0,13.46,0, 

0.1876,0. 

192.0817, 101.8683, 

174.8528. 

0.5899,0.80154, 

0.39678 

1.2117 0.7559 

Proposed 

model (II)
 

1.7151,3.6645,0,3.9968,0,13.4,

0,3.5231,0. 

 

197.2157,150.1313, 

156.4349 

0.5485,0.5485,0.5485 1.3544 0.7819 

 

 

Note: Considering the distance functions S1, S2 the solution given by the model (Ib) is the most satisfactory solution. 

7. CONCLUSION 

This paper presents chance constrained fuzzy goal 

programming and its application for solving CCMOTP. Two 

chance constrained FGP models are presented. Distance 

function is used to obtain the compromise solution. The 

illustrative example shows that the proposed FGP models 

offer three different solution set. In general, it cannot be 

possible to state which FGP model offers better optimal 

solution. Therefore, it is better to solve the problem by suing 

the proposed FGP models, and then apply distance function to 

obtain the most satisfactory solution.  Proposed FGP models 

can also be used in many practical field problems like 

assignment problems, plant management, planning of 

resources allocation, travelling salesman problems etc. with 

random demands and supplies. The concept presented in this 

paper can also be applied in multi-objective fractional 

programming problem for non-hierarchical as well as 

hierarchical organization such as bilevel fractional 

programming problem, multilevel fractional programming 

problem with single and multiple objectives. 
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