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ABSTRACT 
Random forest can achieve high classification performance 

through a classification ensemble with a set of decision trees 

that grow using randomly selected subspaces of data. The 

performance of an ensemble learner is highly dependent on 

the accuracy of each component learner and the diversity 

among these components.  In random forest, randomization 

would cause occurrence of bad trees and may include 

correlated trees. This leads to inappropriate and poor 

ensemble classification decision. In this paper an attempt has 

been made to improve the performance of the model by 

including only uncorrelated high performing trees in a random 

forest. Experimental results have shown that, the random 

forest can be further enhanced in terms of the classification 

accuracy. 
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1. INTRODUCTION 
Random forest (RF) methodology is a machine learning 

technique useful for prediction problems. The RF algorithm, 

developed by Leo Breiman [1], applies bootstrap aggregation 

(bagging) [2] and random feature selection [3, 4] to individual 

classification or regression trees for prediction. There are 

many studies showing that RFs have impressive predictive 

performance in regression and classification problems in 

various fields, including financial forecasting, remote sensing, 

and genetic and biomedical analysis [5 -13]. Random Forest 

classifiers [1] attract increasing attention within the computer 

vision community. Variants like Random Ferns [14] and 

extremely randomized trees [15] are also well known. The 

research work in the area of random forest aims at either 

improving accuracy, or reducing time required for learning 

and classification or both. This research work aims to improve 

the accuracy of random forest.    
 

Random forest is now known to be one of the most efficient 

classification methods [16 -18]. However, owing to the 

complexity of data distribution in high dimensional future 

space, a random forest may include bad tree classifiers which 

can result in wrong classification results. The vote of all the 

trees to make an ensemble classification decision, it will make 

a wrong decision when there are a large proportion of bad 

trees included in random forest. To make optimization in the 

random forest deduct and exclude bad trees so as to reduce 

their negative effects on the performance of the random forest 

[19]. 

 

In random forest, randomization would cause occurrence of 

correlated trees which may affect the performance of random 

forest. By minimizing the correlation among these trees, the 

classification accuracy of the random forest can be improved. 

This paper aims to optimize, large number of decision trees in 

a random forest through the selection of only uncorrelated and 

good trees with high classification accuracies.  

 

2. RANDOM FOREST ALGORITHM 
Random forest is an ensemble classification method by voting 

the result of individual decision trees. In the past decade, 

various methods have been proposed to grow a random forest 

[1, 3, 19 & 20]. Among these methods, Breiman’s method [1] 

has gained increasing popularity because it has higher 

performance against other methods [21].  

 

Let D be a training dataset in an M-dimensional space X, and 

let Y be the class feature with total number of c distinct 

classes. The method for building a random forest [1] follows 

the process including three steps:  

 

Step 1: Training data sampling: use the bagging method to 

generate K subsets of training data {D1, D2, ..., DK} by 

randomly sampling D with replacement; 

 

Step 2: Feature subspace sampling and tree classifier building: 

for each training dataset Di (1≤ i ≤ K), use a decision 

tree algorithm to grow a tree. At each node, randomly 

sample a subspace Xi of F features (F << M), compute 

all splits in subspace Xi, and select the best split as the 

splitting feature to generate a child node. Repeat this 

process until the stopping criteria is met, and a tree 

hi(Di, Xi) built by training data Di under subspace Xi is 

thus obtained;  

 

Step 3:  Decision aggregation: ensemble the K trees {h1(D1, X1), 

h2(D2, X2), ... , hK(DK, XK)} to form a random forest 

and use the majority vote of these trees to make an 

ensemble classification decision. 

 

The algorithm has two key parameters, i.e., the number of K 

trees to form a random forest and the number of F randomly 

sampled features for building a decision tree. According to 

Breiman [1], parameter K is set to 100 and parameter F is 

computed by F= [ log2  M + 1].  For large and high 

dimensional data, a large K and F should be used. 
 

3. HIGHLY UNCORRELATED TOP 

PERFORMING TREES 

3.1 Tree Importance and Correlation 

Evaluation 
As Dietterich has proposed in [22], the performance of an 

ensemble learner is highly dependent on two factors: one is 
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the accuracy of each component learner; the other is the 

diversity among these components.  

 

This paper is concerned with both accuracy and diversity 

factors among trees. First, evaluate the accuracy of individual 

trees with AUC accuracy as a measure of the importance of a 

tree. Then select good trees based on AUC high accuracies 

from a large number of trees. The selected good trees are 

clustered based on the correlation among the trees. As a result 

of clustering each cluster contains similar or highly correlated 

group of trees. The intra cluster similarities among the trees 

are high and the inter cluster similarities among the trees are 

low. From each cluster select a high performing tree which 

results in uncorrelated high performing group of trees. Thus 

the uncorrelated high performing trees are obtained, finally 

ensemble these uncorrelated good trees to form a Random 

forest with high classification performance. 
 

3.2 High Performing and Uncorrelated 

High Performing Trees 
High performing trees are those having high AUC accuracy in 

a random forest. Individual trees will fall in this high 

performing group when they have high AUC accuracy. 

Depending on the dataset the AUC cut point to determine the 

high performing trees may vary. Based on the AUC cut point 

the high performing trees i.e. a number of P trees are selected 

from the random forest.   
      

Uncorrelated high performing trees are those having high 

AUC accuracy and also having less correlation among them in 

a random forest.  The correlations among the high performing 

trees are measured, based on which the uncorrelated high 

performing trees i.e. a number of Q trees are selected from the 

random forest. Individual trees will fall in this group when 

they perform high and having less correlation among them.     

3.3 Enhanced Random Forest (ERF) 

Algorithm  
The sample dataset D in M-dimensional feature space X, and a 

number of P good trees are selected from a random forest, 

from these P trees the number of Q uncorrelated good trees 

are selected. The method to build an enhanced random forest 

from X with Q uncorrelated high performing trees follows the 

following five steps. 

 

Step 1: Data sampling: use bagging method to generate K in-

of-bag data subsets {IOB1, IOB2, ..., IOBK }, by 

randomly sampling D with replacement; 

 

Step 2: Tree classifier building: use each in-of-bag data 

subset IOBi to build a tree and then give the 

evaluation value to the tree. Continue this step until 

all trees are generated and processed; 

 

Step3:  Tree ordering: sort all these K trees in their AUC 

descending order;  

 

Step 4:  Selection of high performing trees: select the top P 

trees with high AUC values. 

Step 5:  Enhanced random forest building: The correlations 

between the predicted probabilities of these P trees 

are observed.   

ρ = 
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The observed ρ is used as input in the variable clustering 

procedure and Q correlated clusters of trees are obtained. In 

each cluster sort the trees in their AUC descending order. 

Select a tree from each cluster with high AUC values which 

gives Q uncorrelated high performing trees and ensemble 

these trees into an enhanced random forest. Use the majority 

vote of these trees to make an ensemble classification 

decision.  

 

The pictorial representation of enhanced random forest 

building is shown in Fig1.   

The enhanced random forest method has two more key 

parameters, i.e., the number of P top performing trees from 

which Q uncorrelated high performing trees are selected to 

form an enhanced random forest. 
 

4. DATA SOURCE   
The heart disease dataset are collected from one of the leading 

diabetic research institute in Chennai, India. The clinical data 

set specification provides concise, unambiguous definition for 

items related to diabetes. Data on the Risk factors were 

collected from 6073 diabetic subjects of MV Diabetics Lab., 

Chennai, laying emphasis on the 267 subjects of heart disease.  

  Detailed information of the bank marketing UCI datasets can 

be available in the UCI Machine Learning Repository [23 & 

24]. Telecom Churn datasets are collected from one of the 

leading telecom company in India. The credit risk assessment 

dataset information is also collected [25].  

5. RESULTS  
A series of experiments were conducted on four datasets such 

as, heart disease dataset, bank marketing dataset, telecom 

churn dataset and credit risk assessment dataset. All datasets 

are high dimensional. In each dataset, it is concluded that the 

proposed enhanced random forest (ERF) performs 

consistently better than the conventional random forest (RF). 

The area under the ROC curve (AUC) is used as a metric to 

evaluate the performance of the algorithms. 
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Fig 1: Enhanced Random Forest Building (ERF) 

 

5.1. Performance Analysis 
The proposed enhanced random forest method is compared 

with Breiman’s method, the average accuracy of 10 results 

were computed by performing 10 rounds of experiments on 

each dataset. In each round k number of trees are build, from 

which P good trees are selected with high AUC accuracy and 

in turn Q uncorrelated top performing trees with high AUC 

value are extracted  (ranging from 10 to 100 trees with 

increments 10) to form an Enhanced Random Forest 

(Preferably we select K, P and Q in the 

ratio3:2:1respectively). The random forest is also build by 

Breiman’s method by selecting all trees in the forest. The 

average accuracy of different random forest consisting 

different number of trees generated by the enhanced random 

forest method (corresponding to column ERF) and Breiman’s 

method from four datasets are shown in Table1. The proposed 

method achieves high classification accuracy on the four 

datasets.  

 

Table 1: Comparison of Prediction accuracy between Random Forest (RF) and Enhanced Random Forest (ERF) 

  Datasets 

 

Trees 

Diabetics  Telecom-Churn  Credit Risk Assessment  Bank Marketing 

RF ERF RF ERF RF ERF RF ERF 

10 0.641593 0.700779 0.815325 0.826198 0.638977 0.70452 0.857375 0.917448 

20 0.728251 0.787241 0.821538 0.833805 0.695832 0.734039 0.915213 0.943812 

30 0.785307 0.834538 0.82461 0.833698 0.71945 0.75351 0.932823 0.95381 

40 0.808334 0.869901 0.827558 0.833998 0.743807 0.770992 0.942946 0.961072 

50 0.829153 0.888482 0.82854 0.837345 0.754347 0.774235 0.946472 0.961208 

60 0.852854 0.90456 0.828835 0.837973 0.755276 0.784447 0.950284 0.965008 

70 0.866162 0.920235 0.829878 0.837291 0.759511 0.78701 0.953707 0.965555 

80 0.878885 0.925368 0.83058 0.837693 0.764423 0.790013 0.95613 0.967249 

90 0.887760 0.933315 0.83187 0.838693 0.767241 0.791656 0.957911 0.964174 

100 0.896588 0.938918 0.831898 0.84013 0.773265 0.792327 0.959223 0.968122 
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5.2. Accuracy Improvement  
The preceding section has shown that the enhanced random 

forest outperforms the original random forest. The accuracy of 

random forest is improved by maximizing the individual tree 

strength and minimizing the correlation among the trees in the 

forest. In the above mentioned four datasets, the accuracy 

improvement ranging from 1% to 6% has achieved with 

enhanced random forest than the original random forest.  

Based on the complexity pattern of the dataset the percentage 

of accuracy improvement may vary. The proposed enhanced 

random forest method achieves high classification accuracy 

on the four datasets is shown in Fig.2. The dotted blue curves 

represent the accuracy obtained with random forest and the 

red curves represent the accuracy obtained with enhanced 

random forest.  

 

 

 
 

Fig. 2a: Heart Disease 

 

Fig. 2b: Telecom Churn 

 

           

                           Fig. 2c: Credit Risk Assessment 
 

 Fig. 2d. Bank Marketing 
 

Fig 2: Comparison of Prediction accuracy between Random Forest (RF) and Enhanced Random Forest (ERF) 

 

6. CONCLUSION 
This paper presents an evaluation method to assess the 

importance and correlation of individual trees, and proposed 

an enhanced random forest algorithm incorporating a tree 

selection step based on the calculated tree importance and 

correlation. This work aims to improve the classification 

accuracy of random forest with the properties of strength and 

correlation. Experimental results on various datasets have 

shown that the classification accuracy is improved when a 

random forest is composed of good and uncorrelated trees 

with high classification accuracies, while neglecting 

correlated and bad trees with low accuracies.   
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