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ABSTRACT 

Processing of physiological signals often involves detection of 

peaks and finding intervals between them. Well developed 

methods are available for Electrocardiogram(ECG) QRS 

complex detection. However, there are only a few algorithms 

published for peak detection suitable for pulse wave signals 

such as arterial pressure wave and photoplethysmographic 

(PPG) signals. Algorithms for detection of QRS complex in 

ECG are based on the impulsive character of the signal and 

are not applicable for pulse wave signals, which are more 

sinusoidal in nature and the shape varies with age. In this 

background, a versatile algorithm based on the physiology of 

the pulse wave is developed to detect the peaks from a pulse 

wave signal such as PPG. The algorithm combines the 

technique of moving average of valley-peak differences with 

an adaptive threshold filtering to detect the systolic peaks. The 

algorithm is validated against a publicly available validation 

dataset and achieved a sensitivity of 99.82 and a positive 

predictivity of 98.88 when compared to expert manual 

annotations. This algorithm is computationally simple and can 

be easily implemented in real time processing hardware.  
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1. INTRODUCTION 
Detection of peaks often forms an essential part of time 

domain analysis of biomedical signals and patient monitoring. 

Peak detection is the process of finding the locations and 

amplitudes of local maxima in a signal that satisfies certain 

properties. Generally a signal sample x(n) is considered as a 

peak when it is greater than its previous sample and next 

sample (x(n-1) < x(n) > x(n+1)). Fortunately, the peak 

detection algorithms for Electrocardiogram (ECG) signals are 

well developed and widely available [1]. Whereas, there are 

only a few publications that describe algorithms to detect 

features in pulse wave signals such as arterial pressure wave 

and photoplethysmographic (PPG) signals [2–5].  

Most of the algorithms for detection of QRS complexes in 

ECG combine a band pass filter with a transformation, such as 

the signal derivative or the wavelet transform, to exploit the 

large slope and high frequency content of the QRS complex 

(10 to 25 Hz). This transformation generates a feature signal 

in which QRS complexes can be detected easily by a 

threshold. In contrast, PPG signals are more sinusoidal and 

less impulsive than ECG signals and most of its power is in a 

lower frequency range, typically from 0.7–3.5 Hz. Thus, the 

algorithms that rely on the impulsive shape of the QRS 

complex are inappropriate for PPG signals and cannot yield 

accurate results. 

       In the absence of suitable algorithms, PPG signals are 

manually annotated to get the desired components. Although, 

some researchers use their own semi automatic algorithms 

which may not match the performance, generality and the 

robustness of algorithms available for the analysis of ECG 

signal [6]. However, pulse-oximeters employ different 

techniques to detect peaks necessary for estimation of blood 

oxygenation level and, invariably these algorithms are 

proprietary and not available for use by others. There are a 

variety of other applications that require detection of systolic 

peaks such as measurement of baroreflex sensitivity [7], 

assessing the interaction between respiration and beat-by-beat 

ventricular parameters and stroke volume [8]. Pulse wave 

peak detection also helps to study large-artery damage [9] and 

peripheral vascular disease [10]. Further, the intervals 

between successive peaks in a pulse wave give a measure of 

the instantaneous heart rates in supine position [11-13]. It is 

also necessary to find systolic peaks of PPG signal to 

calculate pulse transmit time (PTT) and pulse wave velocity 

(PWV). PTT and PWV are extensively used for determining 

physiological parameters such as blood pressure[14], left 

ventricular ejection time (LVET), left ventricular pre-ejection 

period (LVPEP) [15] and arterial stiffness [16]. PTT is also a 

good indicator for monitoring patient’s blood loss during a 

surgical operation [17]. Hence peak detection has become 

very important in time domain analysis of PPG signal.  

 

The peak detection algorithm of Mateo Aboy et.al [2] use 

multistage complex processing, and has the  inherent 

disadvantage of using heart rate for fixing of cut off 

frequencies and interval decision logic. The heart rate is 

determined using Blackman Tukey power spectral density, 

which adds to the complexity of the algorithm. Another 

important algorithm applicable to pulse wave signals is that of  

Ernesto F Treo et.al [3]. But it is meant for only beat 

separation and interval measurement and can’t be used for 

peak detection. Hangsik Shin et al proposed an adaptive 

threshold method for peak detection of PPG signals, which is 

based on processing of minimum and maximum amplitudes of 

signal along with time intervals. This method has a limitation 

that it cannot classify incident wave peak and reflected wave 

peak of PPG signal, when the reflected wave peak is large and 

close to the incident wave peak[4]. 

Bistra Nenova proposed an automatic algorithm for detecting 

pulse wave which is based on a seven-rule decision logic. In 
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this method, four points in each rising edge of pulse are 

detected and similarity of closely positioned rising edges is 

estimated. The current rising edge is considered a valid edge 

in the pulse wave when the estimated similarity satisfies one 

of the seven decision rules. The authors did not provide any 

performance measures such as sensitivity and specificity etc. 

The algorithm is very lengthy and lots of computations are 

required and more over each rising edge has to be tested with 

a seven-rule decision logic [5]. In this background, a versatile 

algorithm governed by the physiological aspects of pulse 

wave is developed to detect the systolic peaks in the 

plethysmographic signal. 

 
Fig 1: Typical Volume or Pressure pulse wave: AP1-

systolic peak amplitude, AP2-dicrotic peak amplitude, 

AV1 and AV2 are the corresponding valley amplitudes 

 

2. ALGORITHM DESCRIPTION 

2.1 Overview 
The algorithm developed is based on considering the 

physiology of the cardiovascular system. The typical volume 

pulse wave shape of the peripheral artery is shown in figure 1. 

There are two peaks corresponding to two waves, systolic 

wave and dicrotic wave. The valley between these two waves 

is called dicrotic notch. The location of the dicrotic notch 

changes from subject to subject and also depends on the age 

[18]. This prevents the use of simple threshold to detect 

systolic peaks as compared to peak detection in ECG. The 

algorithm uses the relative amplitudes of corresponding 

systolic and dicrotic waves to distinguish the systolic peaks 

from the dicrotic peaks. The algorithm detects the systolic 

peaks from the PPG signal and takes care to eliminate the 

minor peaks due to dicrotic notches and noise by using the 

wave amplitudes in combination with a moving average 

technique. The difference between successive valley 

amplitude and peak amplitude (valley – peak difference 

(VPD)) gives the amplitudes of systolic and dicrotic waves. 

The algorithm employs moving average of valley- peak 

differences along with local threshold filters to identify the 

systolic peaks. All the spurious peaks due to noise and 

dicrotic peaks are eliminated by looping, until the number of 

peaks remains unchanged in two successive iterations. The 

flow diagram of the algorithm is given in figure 2. Different 

stages in processing a typical signal S1 are shown in figure 3. 

The algorithm is implemented in LabVIEW 7.1 software. 

2.2 Preprocessing 
The first step in the algorithm is to process the signal to 

enhance the signal components by using a 3-point moving 

average smoothing filter. The filter is applied forward and 

backward to eliminate any phase shift produced due to 

filtering the signal.  

2.3 Maxima & minima detection 
The second step detects all the peaks and valleys and their 

locations in the signal. Given the PPG signal time series 

S(n)={s1,s2,s3…..sN}, the peaks and the valleys are those  

points that satisfy the following criteria  

Peaks , P(n)  =    S(n): S(n-1)<S(n)>S(n+1) ;  

 n=1,2,3…N                (1) 

 And Peak locations Lp(i) = n : S(n-1)<S(n)>S(n+1) ; 

 i=1,2,3…m                (2) 

Valleys, V(n) =    S(n): S(n-1)>S(n)<S(n+1);  

 n=1,2,3…N                             (3) 

And Valley locations Lv(j) = n : S(n-1)>S(n)<S(n+1); 

 j=1,2,3…m                                           (4) 

respectively.  

Here m = number of peaks = number of valleys 

2.4 VPD Processing 
In this stage, it is ensured that the processing begins with a 

valley. The location of first peak and first valley are compared 

and if the peak comes first, then it is discarded and the signal 

is taken starting from the valley. This implies that the 

discarded peak has no corresponding valley. 

S(n)= {s1,s2,s3…..sN} is the original signal;    

    n = 1,2,3,………, N 

P(i)={p1,p2,p3…pm} is the series of all peaks;     

 i = 1,2,3,………,m 

Lp(i)=( lp1, lp2, lp3… lpm) is the series of locations of peaks;  i 

= 1,2,3,………,m 

V(j)=(v1,v2,v3…vm) is the time series of all valleys; 

j = 1,2,3,………,m 

Lv(i)=( lv1, lv2, lv3… lvm) is the series of locations of valleys;  j 

= 1,2,3,………,m 

VPD(k)=P(k)-V(k);   k = 1,2,3,………,m                     (5) 

After the calculation of VPDs, the algorithm searches the VPD 

series for the instances where 

VPD(k) < 0.7*{VPD(k-1)+VPD(k)+VPD(k+1)}/3     (6) 

This is considered as an over detection so, corresponding P(i) 

and P(i) location, Lp(i) is removed from the candidate series. 

This VPD processing is repeated until the number of peaks in 

the two successive iterations remains the same. This 

eliminates all the dicrotic peaks and peaks due to noise and 

artifacts. 

 

3. METHODS & DATA  

3.1 Data acquisition and manual 

annotation 
The annotated databases like MIT-BIH, AHA are available 

for the assessment of QRS detection algorithms. There are no 

standard data bases available to assess the performance of 

peak detection algorithms for photoplethysmographic signals. 

Therefore, initially the performance of the algorithm was 

assessed on PPG signals acquired by the authors at their 

Institute, National Institute of Technology, Warangal, India. 
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Raw signal, S(n)

Apply 3-point moving average smoothing filter in forward

and backward directions

Find all peaks and valleys in the signal

Peaks,  P(i)  =   S(n): S(n-1)<S(n)>S(n+1)

Valleys,   V(j)  =   S(n): S(n-1)>S(n)<S(n+1)

Find the locations of peaks and valleys

If first peak location <

first valley location

Discard the first peak value and peak location

Calculate valley to peak differences (VPD)

VPD(n)=P(n)-V(n)

Search VPD(n) for

VPD(n)  0.7*{VPD(n-1)+VPD(n)+VPD(n+1)} / 3

YES

NO

Discard all Peaks and their locations for which

VPD(n) satisfies the above condition

Find the total number of peaks

If the number of peaks in

two successive iterations is

same

Final True Peaks and

True locations

NO

YES

  

Fig  2:  Flow chart of the peak detection algorithm 

A self designed opto-electronic sensor is placed at the finger 

phalanx, which passes the red light through the finger and 

detects the transmitted light. The photoplethysmographic 

signal is the record of the arterial blood pulsations in the 

finger produced by the cardiovascular system. The peaks in 

PPG pulse wave signal represent the peaking of arterial blood 

after each cycle of blood ejection through left ventricular 

contraction.  

The PPG signals are recorded by using a USB data acquisition 

card NI USB 6009 of National Instruments, USA on 47 

volunteers (20 to 65 years, 30 male and 11 female), some of 

who are diabetic and also have known cardiovascular 

problems. The signals are acquired for duration of 5-minutes 

with 14-bit resolution and 256 Hz sampling rate. The subjects 

are allowed to rest 10-minutes before the acquisition and the 

data is acquired with the subjects in supine position in order to 

reduce the baseline drift and artifacts. The experimental setup 

is shown in figure 4. One expert manually annotated all the 47 

PPG records by visually identifying each peak using a 

program written in MATLAB software. A total of 4603 beats 

(56 minutes data) are randomly selected from the 47 records, 

by taking 1 or 2 minutes data from each record. The algorithm 

is applied to these randomly chosen segments without taking 

into consideration whether they contain portions of artifact.  
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Fig 3: Different stages while processing a typical signal. S1 

is the original signal; W1 gives the locations and 

amplitudes of all peaks in the signal; W2 is the valley to 

peak differences of corresponding peaks; W3 is the VPDs 

after processing; S2 is the original signal with the detected 

peaks shown corresponding to W3 VPDs 

3.2 Performance measures 
The Association for the Advancement of Medical 

Instrumentation (AAMI) proposed guidelines to assess the 

algorithms performance. They are sensitivity (Se) and positive 

predictivity (+P). Sensitivity and positive predictivity are 

defined as  

TP
Se

TP FN



             TP

P
TP FP

 


 

where TP is the number of true positives, FN is the number of 

false negatives and FP is the number of false positives. False 

negative is a beat identified by an expert if the algorithm did 

not identify a beat within a specified acceptance interval. 

False positive is a beat identified by the algorithm but the 

expert did not identify a beat within the same acceptance 

interval. Se indicates the percentage of true beats that were 

correctly detected by the algorithm. The +P indicates the 

percentage of beats correctly detected, which were labeled as 

true beats by the expert.  
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3.3 Validation of Algorithm 
Fortunately, the authors Mateo Aboy et.al [4] have provided 

their validation dataset at http://bsp.pdx.edu  to facilitate other 

developers to validate their beat detection algorithms. The 

database contains two PPG signals each of 60 minutes 

duration with expert annotated detections generated by two 

different experts (DT and JM). The signals are sampled at 125 

Hz with a resolution of 8-bits. The dataset includes segments 

of significant artifact. The algorithm’s performance was first 

assessed using the expert manual annotations (DT) on 15866 

beats, corresponding to two 60 minute records. Secondly, the 

performance of the algorithm was assessed against the two 

expert manual annotations (DT and JM) on 2649 beats of 

randomly selected PPG signals. 

 

Fig 4: Experimental setup used for acquiring PPG signals 

4. RESULTS 
The Se and +P values of the algorithm obtained for the PPG 

signals recorded by the authors is reported in Table 1. Table 1 

also shows the false positives, false negatives and acceptance 

interval. Acceptance interval is the time interval between a 

true peak (annotated by an expert) and a detected peak, for 

which the detected peak can be considered as a true peak. For 

instance, if the PPG signal is recorded with 256 Hz sampling 

rate, each sample of the signal is separated by 3 ms. An 

acceptance interval of 8 ms means that a detected peak can be 

treated as true peak it is at a distance of ± 2 samples. The 

values in the Table1 are based on treating the expert manual 

annotations for all 4603 beats randomly selected from 47 PPG 

records as true peaks. The Se and +P values were obtained for 

an acceptance interval of 4 ms (± 1 sample) compared with 

the expert annotations. Table 2 reports sensitivity and positive 

predictivity of the detection algorithm for PPG signals of 

validation database. This Table shows the Se and +P results 

for acceptance intervals of 8.0, 16.0, 24.0, 32.0, 40.0, and 48.0 

ms (corresponding to ± 1 sample to ± 6 samples deviation, as 

the validation data set is sampled at 125 Hz) compared to 

expert annotations. These results used the expert manual 

annotations (DT) on randomly selected 15866 beats as true 

peaks. The segments considered by expert DT include regions 

of significant artifact. Table 3 reports the algorithm’s 

sensitivity and positive predictivity validated against two 

experts manual annotations of 2649 beats of randomly 

selected PPG signals of validation database for acceptance 

intervals  of 16.0 and 24.0 ms. The Table shows the proposed 

algorithm performance (PA) against two experts (DT and JM) 

of Mateo Aboy et al  paper and the consistency of the  

proposed algorithm with the M. Aboy et al Algorithm (AD). 

The average sensitivity of the algorithm is 99.82 

(99.58+99.97+99.92)/3; with a positive predictivity of 98.88 

(99.15+99.36+98.13)/3, for an acceptance interval of 24 ms (± 

3 samples) with the validation dataset (see Table 2 &Table 3). 

The algorithm showed a Se of 99.89 and +P of 99.95 for an 

acceptance interval of 4 ms (± 1 sample) with the data 

acquired by the authors. 

Table 1.  Sensitivity and positive predictivity of the 

algorithm for the PPG signals, acquired by the authors. 

Table shows the Se and +P for acceptance interval (AI) of 

4.0 ms and number of false negatives and false positives 

out of 4603 peaks 

AI Se +P FN FP 

4 ms 99.89 99.95 5 2 

Table  2. Sensitivity and positive predictivity of the peak 

detection algorithm for PPG signals of validation database 

(M. Aboy). The table shows the Se and +P results for 

acceptance intervals of 8.0, 16.0, 24.0, 32.0, 40.0, and 48.0 

ms. These results used the expert manual annotations 

(DT) on randomly selected 15866 beats. The segments 

included regions of artifact. 

 8 ms 16 ms 24 ms  32 ms 40 ms 48 ms 

Se 85.66 97.12 99.58 99.76 99.79 99.82 

+P 84.41 95.71 98.13 98.31 98.34 98.37 

Table  3. Algorithm’s sensitivity and positive predictivity 

validated against two experts manual annotations of 2649 

beats of randomly selected PPG signals of validation 

database for acceptance intervals  of 16.0 and 24.0 ms. The 

table shows the algorithm performance (PA) against two 

experts (DT and JM) and the consistency of the  proposed 

algorithm with the M. Aboy et al Algorithm (AD). 

 AI Se +P 

PA-DT 16 ms 99.77 98.95 

PA-JM 16 ms 99.81 99.25 

PA-AD 16ms 99.55 99.21 

PA-DT 24 ms 99.97 99.15 

PA-JM 24 ms 99.92 99.36 

PA-AD 24 ms 99.62 99.29 

5. DISCUSSION 
Figure 5 shows an example of segment from validation 

dataset, which is corrupted by clipping artifact. In general, the 

normal beats which are close to the regions of artifact will be 

affected and could not be detected through the algorithm. By 

decreasing the VPD threshold value the normal beats which 

are close to the artifact can be detected but, there is also a 

chance of increasing false positives. A threshold coefficient 

value of 0.7 is sufficient for a signal with low artifacts. If the 

signal contains artifacts of amplitude 10 times greater than the 

amplitude of normal peaks, then a threshold coefficient of 0.1 

is required. This algorithm is computationally simple as there 

is no inter beat interval logic used in this algorithm. It can be 

efficiently implemented in a real time processing hardware for 

short term data, as the VPD threshold is adaptive and 

calculated locally using only three beats. Compared to the 

beat detection algorithm by M. Aboy et al [4], the algorithm 

presented in the paper exhibits better performance using the 

same validation database of M. Aboy et al, at all acceptance 

intervals, for both Se and +P values. There is a chance of 

increasing false positives when threshold coefficient is 

decreased, but it can be overcome by using inter-beat interval 

logic. 
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Fig  5: Example showing a PPG signal of the validation data set and the systolic peak identified b the detection algorithm of  M 

Aboy et al , two experts and the detection algorithm. In this case, the experts and the algorithms labeled different peaks in the 

region of artifact 

 

6. CONCLUSION 
In this paper, an automatic beat detection algorithm to detect 

the systolic peaks of PPG signals is described. This type of 

algorithms is needed in many clinical and research 

applications such as pulse rate variability etc. The algorithm 

uses the relative amplitudes of corresponding systolic and 

dicrotic waves to distinguish the systolic peaks from the 

dicrotic peaks. The algorithm detects the systolic peaks from 

the PPG signal and takes care to eliminate the minor peaks 

due to dicrotic notches and noise by using an adaptive 

threshold obtained from the moving average of the wave 

amplitudes. The algorithm is validated against a publicly 

available validation dataset and it achieved a sensitivity of 

99.82 and a positive predictivity of 98.88 when compared to 

expert manual annotations. This algorithm is computationally 

simple and can be implemented in hardware. 
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