DOI QR코드

DOI QR Code

New design of rice seed storage proteins

벼 종자 저장단백질 및 재설계 연구 동향

  • Kim, Young-Mi (Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Jong-Yeol (Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Ung-Han (Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Sang-Bong (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Ha, Sun-Hwa (Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lim, Sun-Hyung (Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration)
  • 김영미 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이종렬 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 윤웅한 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 최상봉 (명지대학교 생명과학정보학부) ;
  • 하선화 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 임선형 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2011.10.25
  • Accepted : 2011.11.07
  • Published : 2011.12.31

Abstract

Rice is one of the most important food crops since it is consumed by approximately 60% of the world's population. The most abundant component of rice grain is starch that is an important source of energy. The second abundant component is protein, which is an important protein source for people in many developing countries that rarely take animal protein. However, the rice protein lacks the essential amino acid lysine. Therefore, nutritional improvement in the essential amino acid composition of rice proteins is required. On the other side, rice grain has attracted attention as a diet and health food in developed countries, because its proteins have superior physiological and food processing properties. Thus, nutritional improvements in rice seed proteins by changing amino acid composition or introducing an useful protein or peptide have been studied. This review aims at assessing the current research status of biosynthesis, accumulation, genetic improvement of seed storage proteins by mutation or genetic engineering in rice.

벼는 세계 인구의 60%에 의해 소비되고 있는 주요 식량작물이며 그 종자의 주성분은 탄수화물로 인류의 중요한 에너지원이 된다. 미곡(米穀)은 주식으로 다량 섭취하게 되는데 특히 동물성 단백질의 섭취가 부족한 국가 또는 지역에서는 쌀 단백질이 콩 단백질과 함께 중요한 영양공급원이 되고 있어 벼의 종자단백질은 인류에 매우 중요한 영양성분이라 할 수 있다. 그런데 벼의 종자단백질은 필수아미노산인 라이신이 부족하므로 아미노산 조성 변경에 의한 영양적인 개량이 요구되기도 하는 한편 선진국에서는 혈압조절이나 면역증강 등 생리기능을 가진 건강증진용 기능성 단백질 또는 펩티드로 주목받고 있다. 따라서 벼의 종자단백질의 조성변경과 더불어 이종의 저장단백질의 도입에 의한 벼 종자단백질 개량 연구가 진행되어 왔다. 본 총설에서는 벼의 종자 저장단백질의 생합성과 축적 특징 및 저장단백질 집적의 유전적 제어 기작에 대하여 알아보고 또한 벼 종자 저장단백질 조성 변경, 이종단백질 도입에 의한 벼 종자 저장단백질 개량 연구 현황을 기술하고자 한다.

Keywords

References

  1. Altpeter F, popelka JC, Wieser H (2004) Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric gluten fraction in rye flour. Plant Mol Biol 54:783-792 https://doi.org/10.1007/s11103-004-0122-5
  2. Aoyma T, Fukui K, Takamatsu K, Hashimoto Y, Yamoto T (2000) Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats an genetically obese mie (yellow KK). Nutrition 16:349-354 https://doi.org/10.1016/S0899-9007(00)00230-6
  3. Araki E, Ikeda T, Ohgihara Y, Toyoda A, Yano H (2008) Develpment of transgenic rice (Oryzae sativa L.) expressing wheat high- and low-molecular-weight glutenin subunit proteins. Breed Sci 58:121-128 https://doi.org/10.1270/jsbbs.58.121
  4. Bechtel DB, Juliano BO (1980) Formation of Protein Bodies in the Starchy Endosperm of Rice (Oryza sativa L.): A Reinvestigation. Ann Bot 45:503-509 https://doi.org/10.1093/oxfordjournals.aob.a085852
  5. Bewley DJ, Black M (1985) Seeds, physiology of development and germination. Plenum press, New York, pp 1-27
  6. Choi SB, Wang C, Muench DG, Ozawa K, Franceschi VR, Wu Y, Okita TW(2001) Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 407:765-767 https://doi.org/10.1038/35037633
  7. Davis J, Iqbal MJ, Steinle J, Oitker J, Higginbotham DA, peterson RG, Banz WJ (2005a) Soy protein influences the development of metabolic syndrome in male obese ZDFxSHHF rats. Horm Metab Res 37:316-325 https://doi.org/10.1055/s-2005-861487
  8. Davis J, Steinle J, Higginbotham DA, Oitker J, Peterson RG, Banz WJ (2005b) Soy protein influences insulin sensitivity and cardiovascular risk in male lean SHHF rats. Horm Metab Res 37:309-315 https://doi.org/10.1055/s-2005-861475
  9. Fukuda M, Satoh-Cruz M, Wen L, Crofts AJ, Sugino A, Washida H, Okita TW, Ogawa M, Kawagoe Y, Maeshima M, Kumamaru T (2011) The small GTPase Rab5a is essential for intracellular transport of proglutelin from the golgi apparatus to the protein storage vacuole and endosomal membrane organization in developing rice endosperm. Plant Physiol 157:632-644 https://doi.org/10.1104/pp.111.180505
  10. Furukawa S, Tanaka K, Masumura T, Ogihara Y, Kiyokawa Y, Wakai Y (2006) Influence of rice proteins on eating quality of cooked rice and on aroma and flavor of sake. Cereal Chem 83:439-446 https://doi.org/10.1094/CC-83-0439
  11. Gadaleta A, Blechl AE, Nguyen S, Cardone MF, Ventura M, Quick JS, Blanco A (2008) Stably expressed D-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes. Mol Breed 22:267-279 https://doi.org/10.1007/s11032-008-9172-8
  12. Hamada S, Ishiyama K, Sakulsingharoj C, Choi SB, Wu Y, Wang C, Singh S, Kawaia N, Messing J, Okita TW (2003) Dual regulated RNA transport pathways to the cortical region in developing rice endosperm. Plant Cell 15:2265-2272 https://doi.org/10.1105/tpc.013821
  13. Iida S (1996) Screening and genetic analysis of rice [Oryza sativa] seed storage protein mutants. Gamma Field Symposia 34:31-48
  14. Iida S, Kusaba M, Nishio T (1997) Mutants lacking glutelin subunits in rice: mapping and combination of mutated glutelin genes. Theor Appl Genet 94:177-183 https://doi.org/10.1007/s001220050397
  15. Iida S, Miyhara K, Nishio T (1998) Rice mutant lines lacking ${\alpha}$-globulin. Breed Sci 48:45-49
  16. Ito M, Kato T, Mastuda T (2005) Rice allergenic proteins, 14-16 kDa albumin and ${\alpha}$-globulin, remain insoluble in rice grains recovered from rice miso (rice-containing fermented soybean paste). Bioci. Biotechnl. Biochem 69:1137-1144 https://doi.org/10.1271/bbb.69.1137
  17. Katsube-Tanaka T, Duldulao JB, Kimura Y, Iida S, Yamaguchi T, NakanoJ, Utsumi S (2004) The two subfamilies of rice glutelin differ in both primary and higher-order structures. Biochim Biophys Acta 1699:95-102 https://doi.org/10.1016/j.bbapap.2004.02.001
  18. Kawagoe Y, Suzuki K, Tasaki M, Yasuda H, Akagi K, Katoh E, Nishizawa NK, Ogawa M, Takaiwa F (2005) The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell 17:1141-1153 https://doi.org/10.1105/tpc.105.030668
  19. Kawakatsu T, Yamamoto MP, Hirose S, Yano M, Takaiwa F (2008) Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59:4233-4245 https://doi.org/10.1093/jxb/ern265
  20. Kawakatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality an storage organelle formation. Plant Physiol 154:1842-1854 https://doi.org/10.1104/pp.110.164343
  21. Kim W, Okita T (1988) Structure, expression, and heterogeneity of the rice seed prolamines. Plant Physiol 88:649-655 https://doi.org/10.1104/pp.88.3.649
  22. Krishnan HB, White JA, Pueppke SG (1992) Characterization and localization of rice (Oryza sativa L.) seed globulins. Plant Sci 81:1-11 https://doi.org/10.1016/0168-9452(92)90018-H
  23. Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K (1988) Mutants for rice storage proteins. Theor Appl Genet 76:11-16 https://doi.org/10.1007/BF00288825
  24. Kumamaru T, Uemura Y, Inoue Y, Takemoto Y, Siddiqui SU, Ogawa M, Hara-Nishimura I, Satoh H (2010) Vacuolar Processing Enzyme plays an Essential Role in the Crystalline Structure of Glutelin in Rice Seed. Plant Cell Physiol 51:38-46 https://doi.org/10.1093/pcp/pcp165
  25. Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455-1467 https://doi.org/10.1105/tpc.011452
  26. Lee JY, Kim YT, Kim BM, Lee JH, Lim SH, Ha SH, Ahn SN, Nam MH, Kim YM (2010) Cloning of low-molecular-weight glutenin subunit genes an identification of their protein products in common wheat (Triticum aestivum L.). Kor J Breed Sci 42:547-554
  27. Li X, Wu Y, Zhang DZ, Gillikin JW, Boston RS, Franceschi VR, Okita TW (1993a) Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262:1054-1056 https://doi.org/10.1126/science.8235623
  28. Li X, Franceschi VR, Okita TW (1993b) Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell 72:869-879 https://doi.org/10.1016/0092-8674(93)90576-C
  29. Masumura T, Shibata D, Hibino T, Kato T, Kawabe K, Takeba G, Tanaka K, Fujii S (1989) cDNA cloning of an mRNA encoding a sulfur-rich 10 kDa prolamin polypeptide in rice seeds. Plant Mol Biol 12:123-130 https://doi.org/10.1007/BF00020497
  30. Masumura T, Hibino T, Kidzu K, Mitsukawa N, Tanaka K, Fujii S (1990) Cloning and characterization of a cDNA encoding a rice 13 kDa prolamin. Mol Gen Genet 221:1-7 https://doi.org/10.1007/BF00280360
  31. Mitsukawa N, Hayashi H, Yamamoto K, Kidzu K, Konishi R, Masumura T, Tanaka K (1998) Molecular cloning of a novel glutelin cDNA from rice seeds. Plant Biotech 15:205-211 https://doi.org/10.5511/plantbiotechnology.15.205
  32. Mitsukawa N, Konishi R, Kidzu K, Ohtsuki K, Masumura T, Tanaka K (1999) Amino acid sequencing and cDNA cloning of rice seed storage proteins, the 13kDa prolamins, extracted from type I protein bodies. Plant Biotech 16:103-113 https://doi.org/10.5511/plantbiotechnology.16.103
  33. Motoyama T, Okumoto Y, Tanisaka T, Utsumi S, Maruyama N (2010) Co-expression of ${\alpha}'$ and ${\beta}$ subunits of ${\beta}$-conglycinin in rice seeds and its effect on the accumulation behavior of the expressed protein. Transgenic Res 19:819-827 https://doi.org/10.1007/s11248-009-9359-8
  34. Muench DG, Wu Y, Zhang Y, Li X, Boston RS, Okita TW (1997) Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol 38:404-412 https://doi.org/10.1093/oxfordjournals.pcp.a029183
  35. Muench DG, Ogawa M, Okita TW (1999) The prolamins of rice. Kluwer Academic Publishers, Dordrecht, The netherlands, pp 93-108
  36. Nishio T, Iida S(1993) Mutants having a low content of 16-kDa allergenic protein in rice (Oryza sativa L.). Theor Appl Genet 86:317-321
  37. Ogawa M, Kumamaru T, Satoh H, Iwata N, Omura T, Kasai Z, Tanaka K (1987) Purification of Protein Body-I of Rice Seed and its Polypeptide Composition. Plant Cell Physiol 28:1517-1527
  38. Ogawa M, Kumamaru T, Satoh H, Omura T, Park T, Shintaku K, Baba K (1989) Mutants for rice storage proteins. Theor Appl Genet 78:305-310
  39. Ohyama A, Maruta Y, Ito T, Ueki J, Hiei Y, Nitta N (2001) Environmental risk evaluation of rice plants transformed with chimeric antisense cDNA for glutelin. Jan Soc Breed 3:139-149
  40. Okita T, Hwang Y, Hnilo J, Kim W, Aryan A, Larson R, Krishnan H (1989) Structure and expression of the rice glutelin multigene family. J Biol Chem 264:12573-12581
  41. Osborn T (1924) The vegetable proteins. London, FL: Longmans, Green and Co
  42. Ozvald M, Jenes B, Tomoskozi S, Bekes F, Tamas L (2007) Expression of the 1Dx high molecular weight glutenin subunit proteins in transgenic rice. Cereal Res Comm 35:1543-1549 https://doi.org/10.1556/CRC.35.2007.4.1
  43. Popineau Y, Deshayes G, Lefebvre J, Fido R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight subunit transgenes. J Agric Foo Chem 49:395-401 https://doi.org/10.1021/jf001015j
  44. Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, LazzeriP, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115-120 https://doi.org/10.1006/jcrs.1999.0265
  45. Satoh-Cruz M, Crofts AJ, Takemoto-Kuno Y, Sugino A, Washida H, Crofts N, Okita TW, Ogawa M, Satoh H, Kumamaru T (2010) Protein Disulfide Isomerase Like 1-1 Participates in the Maturation of Proglutelin Within the Endoplasmic Reticulum in Rice Endosperm. Plant Cell Physiol 51:1581-1593 https://doi.org/10.1093/pcp/pcq098
  46. Satoh H, Kumamaru T, Yoshimura S, Ogawa M (1994) New 57 kDa glutelin genes on chromosome 9 in rice. Rice Genet Newslett 11:158-161
  47. Satoh H, Kumamaru T, Ogawa M, Shiraishi M, Im BG, Son MY, Takemoto Y (1995) Spontaneous "57H" mutants in rice. Rice Genet Newslett 12:194-196
  48. Satoh H, Li WX, Takemoto Y, Ito T, Kumamaru T (1999) glup4 controlling a 57H character was located on chromosome 12 in rice. Rice Genet Newslett 12:98-100
  49. Shewry PR, Halfold NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947-958 https://doi.org/10.1093/jexbot/53.370.947
  50. Sirtori CR, Lovarti MR, Manzoni C, Moneti M, Pazzucconi F, Gatti E (1995) Soy and cholesterol reduction: clinical experience. J Nutr 46:598-605
  51. Sirtori CR, Lovarti MR (2001) Soy proteins and cardiovascular disease. Curr Atheroscler Rep 3:47-53 https://doi.org/10.1007/s11883-001-0010-2
  52. Suzuki K, Hattori A, Tanaka S, Masumura T, Abe M, Kitamura S (2005) High-coverage profiling analysis of genes expressed during rice seed development, using an improved amplified fragment length polymorphism technique. Funct Inter Genomics 5:117-127 https://doi.org/10.1007/s10142-004-0125-y
  53. Takaiwa F, Oono K (1991) Genomic DNA sequences of two new genes for new storage protein glutelin in rice. Jpn J Genet 66:161-171 https://doi.org/10.1266/jjg.66.161
  54. Takaiwa F, Sakuta C, Choi SK, Tada Y, Motoyama T, Utsumi S (2008) Co-expression of soybean glycinin A1aB1b and A3B4 enhances their accumulation levels in transgenic rice seed. Plant Cell Physiol 49:1589-1599 https://doi.org/10.1093/pcp/pcn135
  55. Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K (1996) Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol Biol 30:1207-1221 https://doi.org/10.1007/BF00019553
  56. Takano T, Tsubaki K, Ikezawa Z, Nishio T (1993) Evaluation of a rice (Oryza sativa) mutant as a material of hypoallergenic rice. Japanese J Breed 43:389-394 https://doi.org/10.1270/jsbbs1951.43.389
  57. Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T (2002) The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol 128:1212-1222 https://doi.org/10.1104/pp.010624
  58. Tanaka K, Sugimoto T, Ogawa M, Kasai Z (1980) Isolation and characterization of two types of protein bodies in the rice endosperm. Agri Biol Chem 44:1633-1639 https://doi.org/10.1271/bbb1961.44.1633
  59. Ueda Y, Satoh-Cruz M, Matsusaka H, Takemoto-Kuno Y, Fukuda M, Okita TW, Ogawa M, Satoh H, Kumamaru T (2010) Gene-gene interactions between mutants that accumulate abnormally high amounts of proglutelin in rice seed. Breed Sci 60: 568-574 https://doi.org/10.1270/jsbbs.60.568
  60. Utsumi S (1992) Plant food protein engineering. Adv Food Nut Res 36:89-208 https://doi.org/10.1016/S1043-4526(08)60105-9
  61. Xu JH, Messing J (2009) Amplification of prolamin storage protein genes in different subfamilies of poaceae. Theor Appl Genet 119:1397-1412 https://doi.org/10.1007/s00122-009-1143-x
  62. Yamagata H, Sugimoto T, Tanaka K, Kasai Z (1982a) Biosynthesis of Storage Proteins in Developing Rice Seeds. Plant Physiol 70:1094-1100 https://doi.org/10.1104/pp.70.4.1094
  63. Yamagata H, Tanaka K, Kasai Z (1982b) Evidence for a precursor form of rice glutelin subunits. Agri Biol Chem 46:321-322 https://doi.org/10.1271/bbb1961.46.321
  64. Yoon UH, Kim CK, Lee GS, Hahn JH, Lee J, Kim Y, Ji HS, Mun JH, Lee TH, Kim TH (2011) Structural and expression analysis of glutelin genes in Oryza sativa L. J Plant Biotechnol 38:176-185 https://doi.org/10.5010/JPB.2011.38.2.176

Cited by

  1. Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112458
  2. Overexpressing wheat low-molecular-weight glutenin subunits in rice (Oryza sativa L. japonica cv. Koami) seeds vol.9, pp.2, 2019, https://doi.org/10.1007/s13205-019-1579-x