
Gradus Vol 8, No 2 (2021) 123-128
ISSN 2064-8014

 123

SOFTWARE QUALITY IMPROVEMENT BY FAULT TREE
ANALYSIS

Zsolt Csaba Johanyák*

1 Department of Information Technology, GAMF Faculty of Engineering and Computer Science, John von
Neumann University, Hungary

https://doi.org/10.47833/2021.2.CSV.003

Keywords:
safety risk analysis
FTA
software quality

Article history:
Received 17 Aug 2021
Revised 22 Aug 2021
Accepted 28 Aug 2021

 Abstract
It is common problem with complex software systems that
although usually they work as intended, after some time of usage
security-critical flaws poop up. In order to alleviate this problem,
this paper aims to demonstrate the application potential and
benefits of the Fault Tree Analysis (FTA) which is a widely used
method in quality assurance. FTA is used as an integral part of
the software quality management process to identify the causes
of suspected security vulnerabilities by complementing the
widely used testing procedures.

1 Introduction

It is a quite usual scenario that a software system meets the requirements of the customers,
i.e. all the demanded functionality is built-in, but the product is not secure. For example, a Web
browser perfectly downloads and displays the pages requested by the user, runs the scripts placed
on them, but as a result of an unforeseen malicious instruction sequence, it makes the information
stored on the hard drive accessible. Often, due to the complexity of the software system, developers
are not able to identify all the security risks before the actual deployment. When these flaws are cost-
intensive in addition to the usual verification techniques it could be beneficial to use well-established
methods in the traditional areas of quality assurance, such as Fault Tree Analysis (FTA) [2][10] or
Failure Mode and Effects Analysis (FMEA) [6].

In this paper, we discus some application details of the FTA in case of a software project
illustrating the concepts by a practical example. The rest of this paper is organized as follows. Section
2 gives a short introduction to the ideas of FTA including the preliminary risk analysis and introducing
a short program written in C, followed by the exploration of cause and effect relationships and the
construction and explanation of the fault tree. The conclusions are drawn in Section 3

2 Fault Tree Analysis

FTA, by focusing on catastrophic events, allows the identification of environmental conditions
under which an otherwise correct system state (mode of operation) may become safety critical. The
method was originally developed in the 1960s in the United States by Bell Labs for the safety analysis
of the Minuteman missile system [2], and has subsequently been widely used in the mechanical and
electronics industries to assess the reliability of various systems.

In our case the aim of the analysis is to evaluate the safety of a software design or
implementation and to eliminate risks. As a result, the design can be modified to achieve the required
level of safety. Fault tree analysis allows

- to identify all errors and combinations of errors leading to a main event and their causes,
- detection of critical events and event chains,
- build test cases to identify the most dangerous modules,

* Corresponding author
 E-mail address: johanyak.csaba@gamf.uni-neumann.hu

https://doi.org/10.47833/2021.2.CSV.003

 Z.C. Johanyák

124

- clear and transparent documentation of the propagation mechanisms.
The design of software systems can be described as a forward chaining (data-driven) inference

process, where developers build incrementally refined components from initial data, expectations
and previously created components, not necessarily for the same conditions.

The method described below, in contrast, uses a backward chaining (goal-driven) technique.
The analyst looks at the system from a completely different perspective to the designer. It starts from
a hypothetical system failure (main event) and progressively explores the component and subsystem
failure modes that lead to the occurrence of that event. The clear work is supported by a fast-
structured graphical representation (Fig. 1 and 2).

Figure 1. Fault tree – part 1

Fault tree analysis is independent of the programming language and technique used. However,
in most cases cannot be independent from the hardware and operating system. The human factor,
user inattention or incompetence is often an important factor of the analysis.

FTA can be applied at all stages of the software life cycle, from the preliminary design to
maintenance operations, but it is recommended to be performed primarily at the end of software
design or coding phases.

2.1 Preliminary risk analysis

The software fault tree analysis is preceded by a risk analysis of the whole system, which
identifies undesirable events that could have serious consequences. It is important not to get lost in
the details here, the analysis team must have a clear boundary to identify which issues are safety
critical. However, one needs to be aware of the fact that in a complex system, not all threats can be
identified in advance, and thus the effectiveness of the method strongly depends on the knowledge
and expertise of the FTA team.

 Software quality improvement by Fault Tree Analysis

 125

Figure 2. Fault tree – part 2

To illustrate the concepts that arise in explaining the method, consider a simple program that
contains file operations and dynamic memory allocation. The task of the software is to read the
content of a text file and display it on the console. The main() function first asks the user for the file
name and then calls the Load() function, which opens the file, counts the new line characters,
allocates memory for an array of pointers that will store the addresses of the character arrays storing
the individual text lines. They are read from the file in a while loop. The Load() function returns with
the address of the pointer array and its size (number of lines) becomes also available thanks to the
reference type first argument of the function.

#include <stdio.h>
#include <string.h>

typedef char* text;

text* Load(int& i, char *fn)
{
 char z[81];
 FILE* fp;
 errno_t err;
 text* T = NULL;
 err = fopen_s(&fp, fn, "r");
 if (err == 0)
 {
 int no = 0;
 int c;
 while ((c = fgetc(fp)) != EOF)
 if (c == '\n') no++;
 T = new text[no];
 i = 0;
 rewind(fp);
 while (fgets(z, 81, fp) != NULL)
 {
 T[i] = new char[81];

 Z.C. Johanyák

126

 strcpy(T[i], z);
 i++;
 }
 fclose(fp);
 }
 return T;
}

int main()
{
 printf("File name: ");
 char fn[13];
 gets_s(fn);
 int no=0;
 text* T = Load(no,fn);
 if(T!=NULL)
 for(int i=0;i<no;i++)
 printf("%s", T[i]);
 getchar();
 return 0;

}

During the preliminary risk analysis, the team conducting the analysis highlighted the threat

described as "Program crash caused by buffer overflow". This threat will be considered as main
event (root of the fault tree) in the next step.

2.2 Exploring cause and effect relationships

The starting point for the analysis is the list of hazards identified in the preliminary risk analysis.
In the general case it can contain several threats. These are processed one by one, assuming the
occurrence of the main event they define. For each hazard on the list an individual fault tree will be
constructed, and so several fault trees are developed in parallel or in sequence. Starting from the
root cause (the main event), the events or deficiencies that caused the main event are identified and
then, one by one, these are explained, using a recursive technique, to arrive at a detailed
understanding of all the causes. In more complex situations, a fishbone (Ishikawa) diagram can be
used to make the work systematic and transparent.

An event can be triggered by several conditions. If any of these conditions alone can cause
the event, they are linked to the event through a logical "or" gate. If the failure occurs only when all
conditions are satisfied simultaneously, the linkage is made through a logical 'and' gate. This
extension shall continue until further explanation/development of the event is no longer possible.
The extension will also stop if the occurrence of an event is the effect of a hardware failure that is
independent of the software. The graphical representation of the fault tree applies the symbols
presented in Table 1.

In our example, a careful analysis of this small software shows that a buffer overflow can occur
in the following three scenarios: (1) after the user enters the file name, (2) after reading a text line
from the file, and (3) after reading the last text line from the file.

 Software quality improvement by Fault Tree Analysis

 127

Table 1. Graphical symbols [5]

Symbols Description

Description of the subsystems and events

,

OR gate, the output occurs if any input occurs

,

AND gate, the output occurs only if all inputs occur

Basic (primary) failure event

External (normal) event

Undeveloped event

Transfer symbol

The events represented by the leaves of the tree, can be divided into three classes:
- Basic (primary) failure event. It can be a random event. It does not require any further

expansion. It is a leaf node in the tree.
- External (normal) event. Is does not represent a fault, it is normally expected from the

system.
- Undeveloped event. It has no consequences or there is not enough information about it. It

is not further considered in the analysis.
A primary event is a failure that occurs under the prescribed operating conditions. Its cause

lies in the design or coding of the software module (component). The identification of all primary
events is one of the most important goals of FTA.

After identifying of all the conditions that can trigger the main event the next step is a qualitative
and/or quantitative analysis of the fault tree. The term quantitative analysis means that based on the
probabilities of occurrence of the basic, external and undeveloped events one determines the
corresponding probabilities of the intermediate events as well as the probability associated to the
main event. This helps to determine the real threat represented by the individual events.
Unfortunately, the needed probabilities are seldom available especially in case of new software
products. Therefore, a qualitative analysis is usually carried out where the main focus is on
identifying the minimal cut set, i.e. the smallest set of basic events that can trigger the main event.

The last step of FTA is the reduction or elimination of the risks that lead to the main event.
Here the usual solution is either to include verification measures into the code to detect the existence
of conditions in time to allow intervention or to redesign the code. Verifications can be done through
condition checks and feedback, which are commonly used in traditional programming, or through
exception handling, which is a popular technique in object-oriented approach.

&

>=1

 Z.C. Johanyák

128

3 Conclusions

Fault tree analysis provides a systematic, deductive approach to identify all the flaws of a
program that can lead to the occurrence of a non-desired safety-critical event, the so called main
event. This kind of search for safety-critical code represents a very small fraction of the whole work
invested in the software project, and the associated costs are negligible compared to the costs of
testing and verification. The resulting code is also much more robust.

Further research will consider the application of different computational intelligence methods
(e.g. [3][7][9][11]) during the analysis.

Acknowledgment

This research is supported by EFOP-3.6.1-16-2016-00006 "The development and
enhancement of the research potential at John von Neumann University" project. The Project is
supported by the Hungarian Government and co-financed by the European Social Fund.

References

[1] ***: NASA-GB-8719.13: NASA Software Safety Guidebook - 8000 - Safety, Quality, Reliability, Maintainability.
Available at: https://standards.nasa.gov/standard/nasa/nasa-gb-871913 [Accessed: Aug. 9, 2021].

[2] Ericson, C. "Fault Tree Analysis - A History" Proceedings of the 17th International Systems Safety Conference.
1999. Available at: https://standards.nasa.gov/standard/nasa/nasa-gb-871913 [Accessed: Aug. 9, 2021].

[3] E.H. Guechi, J. Lauber, M. Dambrine, G. Klančar and S. Blažič (2010): PDC control design for non-holonomic
wheeled mobile robots with delayed outputs, Journal of Intelligent and Robotic Systems, vol. 60, no. 3-4, pp. 395-
414, Dec. 2010. https://doi.org/10.1007/s10846-010-9420-0

[4] Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., and Lutz, R.: A Software Fault Tree Approach to
Requirements Analysis of an Intrusion Detection System, 1st Symposium on Requirements Engineering for
Information Security, Indianapolis USA, 2001. pp. 63 - 74.

[5] Kabir, S. (2017). An overview of fault tree analysis and its application in model based dependability analysis.
Expert Systems with Applications, 2017, 77, 114–135. https://doi.org/10.1016/j.eswa.2017.01.058

[6] Koncz, A., Pokorádi, L., Szabó, G.: Failure Mode and Effect Analysis and Its Extension Possibilities,
Repüléstudományi Közlemények, 2018, 30 : 1 pp. 247-254.

[7] Sz. Kovács, D. Vincze, M. Gácsi, Á. Miklósi and P. Korondi, "Fuzzy automaton based Human-Robot Interaction,"
2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2010, pp. 165-
169, https://doi.org/10.1109/SAMI.2010.5423746

[8] Leveson, N. G.: Safeware: System Safety and Computers, Addison-Wesley, New York, 1995.
[9] R.-E. Precup and S. Preitl, Development of fuzzy controllers with non-homogeneous dynamics for integral-type

plants, Electrical Engineering, vol. 85, no. 3, pp. 155-168, Jul. 2003. https://doi.org/ 10.1007/S00202-003-0157-7
[10] Signoret J.P., Leroy A. (2021) Fault Tree Analysis (FTA). In: Reliability Assessment of Safety and Production

Systems. Springer Series in Reliability Engineering. Springer, Cham., pp 209-225, https://doi.org/10.1007/978-3-
030-64708-7_16

[11] J. Vaščák and M. Rutrich: Path planning in dynamic environment using fuzzy cognitive maps, Proceedings of 6th
International Symposium on Applied Machine Intelligence and Informatics (SAMI 2008), Herľany, Slovakia, 2008,
pp. 5-9. https://doi.org/ 10.1109/SAMI.2008.4469153

https://standards.nasa.gov/standard/nasa/nasa-gb-871913
https://standards.nasa.gov/standard/nasa/nasa-gb-871913
https://doi.org/10.1007/s10846-010-9420-0
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1109/SAMI.2010.5423746
https://doi.org/%2010.1007/S00202-003-0157-7
https://doi.org/10.1007/978-3-030-64708-7_16
https://doi.org/10.1007/978-3-030-64708-7_16
https://doi.org/%2010.1109/SAMI.2008.4469153

