
Dealing with Communication Channels within
IEC61499 Component-Based Systems

Federico Pérez, Isidro Calvo, Fabian López

Dept. of Automatic Control and Systems Engineering
University of the Basque Country (UPV/EHU)

Bilbao, Spain
{federico.perez, isidro.calvo, fabian.lopez}@ehu.es

Ismael Etxeberria‐Agiriano
Dept. of Computer Languages and Systems

University of the Basque Country (UPV/EHU)
Vitoria, Spain

ismael.etxeberria@ehu.es

Received: May 18, 2019. Revised: July 16, 2021. Accepted: October 25, 2021. Published: November 24, 2021.

Abstract—Traditional approaches for developing automation

systems consider system itself hardly can be changed. Current
challenges in automation applications include the need of auto-
reconfiguration in response to process changes or event
triggering. In order to face these requirements, new automation
methodologies are necessary. Component-based technologies,
initially defined for achieving efficient, structured and reusable
designs can also be used to achieve adaptation. In this work, an
IEC 61499-based framework that uses the concept to deal with
reconfiguration issues is presented. The final output of the
framework is a distributed system IEC61499 compliant. A new
concept, the communication channel, is introduced providing a
new abstraction layer to deal with communication between
components. The joint use of automation components and
communication channels allows defining complex automation
systems in an easy way.

Keywords—Automation components, communication channels,
IEC61499, reconfiguration

I. INTRODUCTION
The quick changes in the demands to the industry makes

necessary a change in productive processes mind. In order to
solve it, the industrial engineering methods should be able to
acquire new capabilities as adaptability, reusability and
dynamic reconfigurability.

By other side, the use of advanced development tools has
become imperative in any project design system. One of the
main development activities in last years has been to provide
engineering tools with mechanism that allows to the designers
project development that supports several properties like:

- Sequential task automation during the engineering
process.

- Tools integration.

- Compatibility between development environments.

- Engineering solutions reusability.

In this context, has been observed that with the pass of the
years, the control applications have become too more complex
and traditional design methods are not suitable. It is necessary
the abstraction from complex structures to simple elements.
Traditional methodologies based on modular programming are
not enough to this kind of abstraction.

Moreover, one of the requirements that must keep these
development tools is to continue with established standards
compatibility. In the automation field is possible to talk about
two standards: one for the control devices programming and
the other for distributed control system design. IEC61131-3 [1]
is the first one and it´s the established standard in PLC
programming. By the other side, IEC61499 [2][3] is adapted to
the distributed control system design.

Nowadays, in both cases, more or less traditional
programming methodologies are used. In these methodologies
the program development is implemented in a closed to final
deployment application way. In this way, developed projects
are fully independent from the used hardware. This fact makes
that the reuse of these projects will be almost impossible.

Along last years, some tries to make compatible automation
projects between different platforms over IEC61131-3 have
been presented. Some of these works have used model
methodologies based on XML [4]. In this way, it is possible to
make compatible PLC projects from different suppliers.

In an IEC61499 control system the FB (Function Block) is
the main building block. Applications have been solved using
FB networks distributed over a system established by
devices/resource linked by network communications [5][6].

In classic methodologies a component is defined as a self-
contained part or a subsystem that can be used like building
block in the design of highest systems. The component
declaration is independent from its development [7].

The main target in the component development is its
reusability. The components are designed to be used and reused
in different applications, some of them before the definition.

Automation components are the start point to a highest
abstraction level in the distributed control system design.
Automation components networks allow a plant view in a
highest level to t he distributed automation systems design.
Moreover, this view represents a h ierarchic structure of the
production system elements from an abstract perspective.

The layout of this paper starts with this introduction.
Section II presents the related works about component-based
architectures. Section III shows the IEC61499 architecture
pointing to the problem that this article tries to solve. Section
IV presents the automation component concept with emphasis

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 123

on channels communication. Section V describes IEC61499
component-based automation pointing to the development
methodology. Finally, in section VI, some remarks are
summarized.

II. RELATED WORK
This section summarizes related work on structuring

automation component architecture for industrial control
applications. An a utomation component is a production
software package or an automation module that encapsulates a
set of related functions and data.

A. Traditional Component Architectures
The component-based architectures come and compete with

object-oriented architectures. While object-oriented
architectures are modeled based on real objects or imaginary
objects they represent, in the component-based architecture
components are generated based on prefabricated objects [8].

One of the main essential elements that differentiate
components against objects is the interface concept. The
interfaces are the media to access the components. A
component must publish its interface to access it. An interface
is a set of related callable functions. Components can specify
separate interfaces and their implementation.

Most based on components works are related to
Component-Based Software Engineering (CBSE). Against
object orientation, CBSE concept is associated to real software
problems. To this day, CBSE is more related to computer
systems than with manufacturing systems. Works about CBSE
are directly related to technologies based on Java RMI,
CORBA-based standards and Microsoft COM-based standards
[9], or more recently, with middleware based on SOA, ICE or
DDS.

B. Automation Component Architectures
For some time there have been attempts to integrate

component architectures in industrial automation systems.

Within this environment, three alternative types to the use
of component based architectures are presented:

1. CBSE adaptation: Within this block there are a l ot of
grouped works that develop automation architectures
started from classic CBSE technologies. In this aspect can
be pointed jobs about RT-CORBA [10], DDS [11] and
SOA [12].

2. IEC61131-3 programming: In this case traditional PLC
architectures are used both for applications and to control
engineering. Within this field both industrial solutions and
academic solutions are presented. Between industrial
solutions could be named Profinet-CBA [13] that uses
Microsoft COM/DCOM technology. Moreover, as an
example of academic solutions, Estevez in [14] uses XML
as core in an integrated framework for a model-based
design.

3. IEC61499 programming: Within this standard, several
component orientation technologies and engineering tools
has been developed. Vyatkin at [15] introduces the term

“Intelligent Mechatronic Component” (IMC) for the
automation software design. This concept is very similar to
“Technological Module” proposed in Profinet-CBA. An
IMC is a machine or mechatronic component that is
provided with preprogrammed software. Each IMC
contains three elements: a p hysical mechatronic, a control
device and a logic software component. Thramboulidis at
[16] presents an Engineering Support System (CORFU-
ESS) available to develop distributed control architectures.
Within the system CASE tools are integrated that can be
used to the development of FBs, mechatronic components,
parameters, etc., providing a formal base using UML
modeling. Cengic at [17] introduce the term “automation
component” over IEC61499 inspired in the concept of
VHDL component. Black at [18] implements IMCs with
IEC61499 FBs within an approach to multiagent systems
with holonic principles that introduce an autonomous and
collaborative behavior. Moreover, IEC61499 tools like
FBDK [19] o after that 4DIAC-IDE [20] allows the
implementation of IEC61499 system generating
components through FBs. Moran at [21] presents a
methodology to compose developments using this kind of
tools emphasized the communication SIFBs to link the
components. In this last work, a component is each one of
standard elements such a FB, SIFB, resources, devices and
application. Each FB can be thought of as a special type of
component that encapsulates data and algorithms, as well as
a state machine to control its execution. An a pplication
consists of a network of FBs and forms the whole system
together with the communication network and the devices.
Hametner at [22] presents a scheme for the development of
engineering applications and maintain in the control system
and automation domain; In this work a new component
architecture is specified that supports component oriented
design, reusability and functional elements encapsulation.

III. IEC61499 ARCHITECTURE
The IEC61499 standard proposes an open architecture to

design distributed automation applications. This standard has
been defined to supports modular, reconfigurable and flexible
distributed control systems.

The IEC61499 standard specifies an architecture model for
distributed applications in a generic way for systems
automation.

The building block in IEC61499 is the FB (Function
Block). IEC61499 extends the concept of FB in IEC61131-3
with additional mechanisms of event management and
distribution concept.

FBs are reusable software components that can be arranged
in a network to build an application. Each FB has predefined its
own set of inputs and outputs. The FB functionality is provided
by means of algorithms that process input data and generating
output data, while the event connections define the execution
order for the algorithms. The relations between events and
algorithms execution is carry out by a transition state diagram
called Execution Control Chart (ECC).

One application is composed by a FB network. Such
application can be distributed over several devices linked by a

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 124

communication network using Service Interface Function
Blocks (SIFBs). One SIFB is a special type of FB that can be
used to event and data transfer between the devices that
compose the hardware structure over the network
communications that links them.

The event and data connections in IEC61499 applications
are implemented easily in simple IEC61499 applications. The
distributed control applications development gets complicated
for complex applications where the number of FBs and
connection links multiplies.

The use of connecting lines to represent connections
between FBs events and data through graphical elements is a
good idea that is used in many of the graphic programming
tools. However, the great number of these connecting lines
prevents a clear view of the application and the system. From
the point of view of the application developer, it is necessary to
apply abstraction mechanisms that allow the application
distribution both system point of view and network.

IEC61499 uses the composite FB as mechanism to group
FB networks so it is possible to distinguish functional elements
within complex distributed applications. However, even using
composite FBs, the large number of events and data
connections between composite FBs makes the application get
complex to distribute, modify or reconfigure.

At this point, it is necessary an abstraction higher level to
identify the different elements/components of the application.
This new abstraction level can be achieved through the use of
automation components.

The design of applications using automation components
network will allow a new installation view. The design of
applications using automation components network will allow
a new installation view. This will make possible to consolidate
concepts such as maintainability, reusability, flexibility and
reconfigurability.

IV. AUTOMATION COMPONENTS
The automation components for IEC61499 presented in this

job are implemented through FB networks. These FBs can be
both basic and composite. The main difference between FBs
and automation components is that events and data intrinsically
related are grouped in connection ports (Fig. 1).

It is possible to distinguish two types of ports: input ports
(group set of event and data inputs) and output ports (group
sets of event and data outputs). Events and data grouped in
ports correspond to IEC61499 events and data generally
associated with the WITH modifier. This does not mean that
any basic or composite FB is directly transportable to an
automation component structure, but any automation
component can be implemented by FBs or FBs IEC61499
networks.

Communication port concept is comparable to the adapters
interfaces FB in IEC61499. However, unlike the adapters,
these do not behave as interfaces in a mirrored form as in
function for complex output (plugs) or complex inputs
(sockets). In this case, the communication ports may have
different sets of events and data in their twins interfaces.

Component_3Component_2Component_1

EQ11_1
EQ11_2
EQ11_3

DQ11_1
DQ11_2
DQ11_3
DQ11_4
DQ11_5
DQ11_6

FBT_1

FB_11

EI21_1 EQ21_1

DQ21_1
DQ21_2

DI21_1
DI21_2
DI21_3

FBT_2

FB_21

DQ22_1
DQ22_2

DI22_1
DI22_2

EI22_1 EQ22_1
EQ22_2

FBT_3

FB_22

DQ23_1DI23_1

EI23_1 EQ23_1

FBT_4

FB_23

EI31_1

DI31_1
DI31_2
DI31_3

EI31_2

FBT_5

FB_31

EI32_1
EI32_2

DI32_1
DI32_2

FBT_6

FBT_32

Fig. 1. FB-based programming to automation components.

Communication channels link the ports of different
automation components that compose the application (Fig. 2).
A communication channel is defined as a link mechanism for
automation components that allows a higher abstraction in the
IEC61499 application development.

The distribution of the components over different devices
does not prevent the mechanism of communication channels.
Instead, this mechanism, available in both local applications
and distributed applications, allows the abstraction of the
mechanisms and communication networks.

CNQ1_1

CNQ1_2

CNQ1_3

Component_1

CNI2_1

CNI2_2

CNI2_3

CNQ2_1

CNQ2_2

CNQ2_3

Component_2

CNI3_1

CNI3_2

CNI3_3

Component_3

Fig. 2. Component based application.

The next revision of IEC61499 standard places greater
emphasis on means of communication between technological
devices separating the definition of the declaration system of
communication segments. In this regard, the communication
channels allow a step forward in the implementation of
distributed control applications since they release to the
application developer of the communication mechanisms
between devices.

A. Communication Channels
Communication channels abstract the event and data

communications in an application component-based.

From the point of view of the communication channel
architecture in the communication channel are grouped events
and data related (Fig. 3).

Communication channels in distributed control applications
are intrinsically linked to the declaration, definition and
configuration of the so called IEC61499 communication
segments.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 125

Fig. 3. Communication channel architecture.

Communication channels allow more services than event
and data connections available in IEC61499. Besides the
transfer services for events and data values, the communication
channels can be used for other functions:

- Synchronization for channel events and data.

- Handling events and data.

- Management for channel events and data.

- Management of communication services.

- Implementation of QoS policies.

- Diagnosis of communication.

From the point of view for application deployment, it is
possible to consider two types of communication channels:
local channels and network channels. Local channels are the
ones that there are at the same device while networks channels
employ communication networks for signal transmission.

Local communication channels can use different
communication mechanisms depending of the distribution or
not of the linked components between different resources in the
same device.

In case of local communication channels that link
components placed in the same resource, the implementation
mechanism to the channels could be very easy because, in the
simpler case, they corresponds with basic connections between
output events and input events, and the basic connections
between output data an input data of traditional IEC61499
applications.

In case of local communication channels that link
automation components placed in different resources, the
implementation mechanisms for these channels are very similar
to the network communication channels. They depend of
communication mechanisms between resources that, in this
aspect, can provide different types of devices.

Network communication channels join output ports with
input ports of automation components that are placed on
different devices. Obviously, devices that implement the
distributed application are linked through a network of
communication between them.

When the application is distributed across different devices
or resources, communication channels allow to abstract
communication mechanisms between such devices or
resources.

The implementation of local communication channels
between resources or network communication channels is
delivered via SIFBs. This requires the existence of different
SIFBs libraries each dependent mechanisms for the application
deployment.

Network communication channels and local
communication channels between resources translate into the
final IEC61499 system in SIFBs that implement
communication mechanisms client/server based or
publisher/subscriber based depending of the network that join
device or the resources offered by devices at local level.

V. IEC61499 AUTOMATION COMPONENT-BASED
This section presents the automation systems using

IEC61499 and its development towards a component-based
automation IEC61499 compliant. It starts from the traditional
IEC61499 automation and the subsequent introduction of
engineering tools to support the IEC61499 programming.

In all cases the final product is a system IEC61499 ready
for download in a distributed control system. To do this,
besides containing FBs networks that implement the control
algorithm, the system must incorporate necessary SIFBs to
implement communications between joined FBs, so that may
be considered, remote connections.

A. Classic IEC61499 Automation
In traditional IEC61499 application development the

resources for communication between distributed devices are
provided by SIFBs. These SIFBs can be introduced on the
application itself or after the mapping of the FBs making up the
application on the resources included in the devices (Fig. 4).

IEC61499 Application
with communication

resources

IEC61499 System with
communication resources

Mapping/Deployment

Fig. 4. Classic IEC61499 system development.

The introduction of communication SIFBs manually on
applications or once mapped on resources, poses an additional
task to automation engineer. This task makes difficult the work
of the engineer of automation, while introducing the control
program must master the techniques of data exchange.

This type of approach makes difficult application
maintenance, reuse or reconfiguring.

B. IEC61499 Automation by Composer
The classic programming used in traditional IEC61499

programming environments is very close to traditional
IEC61131-3 programming to PLCs. In a modern programming,

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 126

engineering tools are used to facilitate the use of resources
beyond the control algorithms.

Moran at [23] presents the Composer CASE tool to support
the generation of systems with distributed control applications
in IEC61499 environments. The composer allows the
introduction of communications SIFBs starting from a system
with a functional application once deployed (Fig. 5). In this
case the tool is able to recognize the functional distribution of
the application and, at the same time, to introduce the
necessary communication resources from a library of
communications SIFBs. The result is an IEC61499 system that
melts functional applications and communication mechanisms.

The composer is a mechanism that, starting from IEC61499
applications and application distribution between different
devices and resources that make up the system, enables the
development of new distributed applications with the
communication mechanisms required for the application
deployment.

IEC61499 Application
without communication

resources

IEC61499 System without
communication resources

Mapping/Deployment

IEC61499 System with
communication resources

Composition

SIFBs Communication
Library

Fig. 5. IEC61499 system development with composition.

From this point of view, the composer becomes a basic
application that allows configuration of distributed control
applications easily.

The composer can be considered as a tool prior to a control
system as dynamic reconfiguration that allows reconfiguration
of the distributed application independently of the own
distribution of the functional control elements.

C. IEC61499 Automation Component-Based
The component-based automation starts from an

application which is expressed simpler than an IEC61499
application. However, as in the IEC61499 applications, it is
necessary to map automation components on the
devices/resources that make up the automation system. In this
way it is obtained an automation system component based (Fig.
6).

The corresponding view to manipulate the system is not, as
in the case of traditional IEC61499 programming, the view of
the resources, where mapped elements are observed in addition
to the elements of the device/resource. In this case the essential

system view corresponds with application view. No matter how
functional elements (automation components) are distributed.
The essential object is the application itself.

However, the component system includes the distribution
and it is an essential element from the operational standpoint in
the distributed control system.

In order to obtain an IEC61499 system without observed
communication resources, it is necessary a t ranslation tool.
This tool starts from component based system and from a
library of automation components. This library contains the
definition of automation components that allows the
implementation of its instances.

Components Application

Components System

Mapping/Deployment

IEC61499 System with
communication resources

Composition

SIFBs Communication
Library

IEC61499 Translator

IEC61499 System without
communication resources

Components Library

FBs Library

Fig. 6. IEC61499 system development with components, translate and

composition.

Once obtained the IEC61499 system without
communication resources, it is possible to use the same tool
composer that used in the previous section (Fig. 5). Thus, it is
possible to obtain a complete IEC61499 system which contains
the needed communication resources.

As seen, in case of distributed applications using
automation components, it is possible to use the composer,
starting from the generated system with the translation tool.
However, this procedure is not optimal from the point of view
of the generation of the final system. Composer tool depends
largely on S IFBs library and lose many of the advantages of
working with communications channels. Additionally, the
composer tool is too general and introduces too much overhead
on the connections between devices.

Therefore, it is more optimal to use a new composer that
works directly with the distributed components instead of
dealing with distributed FB networks, as shown in Fig. 7.

The proposed development environment (framework) to the
generation of the IEC61499 system with communication

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 127

resources, shown in Figure 7, starts from three interface editing
tools:

1. Channel Editor: The channel editor allows generating XML
interfaces for communication channels. Jointly with the
communication channels, the interfaces to the
communication ports of the automation components are
created. Input ports may differ from the output ports for the
same channel in terms of the services they can add to their
own channels (data and event handling, quality of service,
etc.). The result of editing the channel is a XML interface
that integrates within a library of communication channels.

2. Component Editor: The component editor generates the
XML interfaces for automation components. The
component editor takes information from the library of
channels and the interfaces in the IEC61499 FB library.
The FBs library is the library comes from IEC61499
compatible editors. The result of the edition of a component
is a XML interface that integrates within a library of
automation components.

3. Communications Editor: The communications editor
generates the XML interfaces for communication
mechanisms between components. The result of
communication editing is a XML interface that integrates
FB and SIFB networks for communication. This library
includes both local and remote communication
mechanisms. The component editor takes information from
the channels library and the compliant IEC61499 SIFB
library. Furthermore, in the same interfaces information
corresponding to the generation of the compliant IEC61499
segments communication interfaces is also introduced.

The component application editor allows composing an
application from the components library. The edition of the
application is independent from its deployment. Only use the
component library comes from the component editor. Ports
between components are connected by communication
channels regardless of the final distribution of the components.

The result is applications much easier to handle and easily
reconfigurable.

The deployment tool allows editing the system. It is able to
instantiation of devices, resources in devices and mechanisms
and communication networks. It starts from the IEC61499
compliant devices and resources library and the
communications library created with the communication editor.

The deployment tool also allows mapping the automation
components on the resources that belongs to the devices.

The result of applying the deployment tool on a component
application is a system based on automation components.

The deployment tool provides two views from the
automation component-based system: the project view and the
network view. In the project view the devices with their
resources and component instances deployed on each resource
are shown. This allows quick access to t he automation
components for diagnosis and maintenance.

Moreover, in the network view can be observed the control
devices distribution and their resources on different network
segments. It is needed that resources will appear because it is
possible to define different communication mechanisms
between resources within the same device. In the same way
than the project view, the network view allows quick access to
devices and resources for diagnosis and maintenance.

Finally, the component composer generates a full
IEC61499 system with communication resources included.
This system is IEC61499 compliant and, therefore, can be used
by any IEC61499 compliant tool.

The component composer starts from the components
system generated by the deployment tool, but should have
access to the information contained in the compliant IEC61499
libraries and the libraries used in the different developed
processes during editing.

Components Application

Components System

Deployment Tool

IEC61499 System with
communication resources

Component composer

Component Editor Channel Editor Communication
Editor

Channels Library Communications
LibraryComponents Library

FBs Library

Component
Application Editor

Devices/Resources
Library

SIFBs Communic.
Library

Fig. 7. IEC61499 system development with components, translate and composition.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 128

As indicated previously, the new generated compliant
IEC61499 system is much more optimized than that the
generated by the composer explained in Section C. This is
because the method of communication channels allows a much
more efficient mechanism than the SIFBs direct association
with networks communication used by the previous composer.

VI. CONCLUSIONS
The component based development methodology for

distributed control systems presented in this article allows an
easy generation of IEC61499 compliant systems.

Automation components employment allows a higher
abstraction level while increasing the possibilities for
reusability and adaptability.

The communication channels mechanism allows
abstracting any type of communication mechanism in the
application development. This provides great advantages over
traditional methods for developing distributed applications
under the IEC61499 standard. Furthermore, the possibilities of
application reconfiguration, and even the possibility of
dynamic reconfiguration mechanisms are improved.

Using the above development environment is possible to
create complex distributed control applications in a simple
way. These automation components based applications can
finally be edited by any IEC61499 compliant editor.

ACKNOWLEDGMENT
This work has been supported by the MCYT&FEDER

under project MICINN09/163 and UPV/EHU project
EHU11/35.

REFERENCES
[1] International Electrotechnical Commission, “IEC 61131-3:

Programmable Controllers. Part 3: Programming Languages”,
International Standard, 2003.

[2] International Electrotechnical Commission “IEC 61499-1: Function
Blocks - Part 1 Architecture”, International Standard, First Edition,
Geneva, 2005.

[3] International Electrotechnical Commission “IEC 61499-2: Function
Blocks - Part 2 Software tool requirements”, International Standard,
First Edition, Geneva, 2004.

[4] Marcos, M., Estévez, E., Pérez, F., Van Der Wal, E., “XML Exchange
of Control Programs”, IEEE Industrial Electronics Magazine, Vol.3, pp.
32-35, 2009.

[5] Lewis. R., Modelling control systems using IEC 61499, Control
Engineering Series 59. The Institution of Electrical Engineers, 2001.

[6] Zoitl, A., Vyatkin, V., “IEC 61499 Architecture for Distributed
Automation: The “Glass Half Full” View”, IEEE Industrial Electronics
Magazine, Vol.3, No. 4, pp. 7-23, 2009.

[7] Szyperski, C., Component Software: Beyond Object-Oriented
Programming, Addison-Wesley Professional, 2002.

[8] Heineman, G.T., Councill, W.T., Component based software
engineering: putting the pieces together, Addison-Wesley Professional,
2001.

[9] Hull, M.E.C., “Approaches to component technologies for software
reuse of legacy systems”, Computing & Control Engineering Journal,
Vol. 12, Issue 6, pp. 281-287, 2001.

[10] OMG, Object Management Group, “Real Time-CORBA Specification”,
Version, 1.2, January 2005. Available at: www.omg.org , 2004

[11] OMG, Object Management Group, “Data Distribution Service for real-
time systems, version 1.2”, 2007. Available from www.omg.org, 2007.

[12] Tsai, W.T., Lee, Y.H., Cao, Z., Chen, Y., Xiao, B., “RTSOA: Real-Time
Service-Oriented Architecture”, 2nd IEEE Int. Service-Oriented Syst.
Eng. (SOSE’06), pp 49-56, 2006.

[13] Profinet-CBA, Profibus-Profinet International, WebSite:
http://www.profibus.com/, last access April 2012.

[14] Estévez, E., Marcos, M., Orive, D., “Automatic generation of PLC
automation projects from component-based models”, International
Journal of Advanced Manufacturing Technology, Vol. 35, Nº. 5-6, pp.
527-540, 2007.

[15] Vyatkin, V., Intelligent mechatronic components: control system
engineering using an open distributed architecture, Proceedings of the
8th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’03), vol. 2, pp. 277-284, 2003.

[16] Thramboulidis, K., “IEC 61499 in Factory Automation” Proceedings of
the International Conference on Industrial Electronics, Technology and
Automation, CISSE-IETA 05, 2005.

[17] Cengic, G., Ljungkrantz, O., Akesson, K., “A Framework for
Component Based Distributed Control Software Development Using
IEC 61499”, Proceedings of the 11th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’06), pp. 782-
789, 2006.

[18] Black, G., Vyatkin, V., Intelligent Component-Based Automation of
Baggage Handling Systems With IEC 61499, IEEE Transactions on
Automation Science and Engineering, vol. 7, issue 2, pp. 337-351, 2010.

[19] Tutorials- Basic Concepts of IEC 61499 Tutorial FBDK (Function Block
Development Kit) Website: http://www.holobloc.com/, last access: April
2011.

[20] 4DIAC - Open Source for Distributed Industrial Automation, WebSite:
http://www.fordiac.org/, last access April 2011.

[21] Morán, G., Pérez, F., Estévez, E., Orive, D., Marcos, M., “ Achieving
Distributed Control Applications Using IEC 61499 and Communication
Standards”, 43th CIRP Conference on M anufacturing Systems
(CIRP'2010), pp. 1028-1035, 2010.

[22] Hametner, R., Zoitl, A., Semo, M., “Automation Component
Architecture for the Efficient Development of Industrial Automation
Systems”, 6th annual IEEE Conference on Automation Science and
Engineering, pp. 156-161, 2010.

[23] Morán, G., Pérez, F., Orive, D., Estévez, E., Marcos, M., “Automatic
Composition of IEC 61499 D istributed Control Applications”, 16th
IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA’11, pp. 1-7, 2011.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.19 Volume 15, 2021

E-ISSN: 1998-4308 129

