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Abstract— Spectrum sensing allows cognitive radio systems to 

detect relevant signals in despite the presence of severe 

interference. Most of the existing spectrum sensing techniques 

use a particular signal-noise model with certain assumptions 

and derive certain detection performance. To deal with this 

uncertainty, learning based approaches are being adopted and 

more recently deep learning based tools have become popular. 

Here, we propose an approach of spectrum sensing which is 

based on long short term memory (LSTM) which is a critical 

element of deep learning networks (DLN). Use of LSTM 

facilitates implicit feature learning from spectrum data. The 

DLN is trained using several features and the performance of 

the proposed sensing technique is validated with the help of an 

empirical testbed setup using Adalm Pluto. The testbed is 

trained to acquire the primary signal of a real world radio 

broadcast taking place using FM. Experimental data show  that 

even at low signal to noise ratio, our approach performs well in 

terms of detection and classification accuracies, as compared to 

current spectrum sensing methods. 
 

Keywords—Spectrum scarcity, spectrum sensing, cognitive 
radio, deep learning, LSTM , Adalm Pluto. 

I. INTRODUCTION  
 

Wireless communication technologies are rapidly evolving 
and the growing number of wireless applications and services 
require addressing the spectrum shortage issue. The Federal 
Communications Commission (FCC), which is the United 
States' telecommunications authority, has shown that 
licenced bands are not used up to 75 to 90% of the time. The 
FCC Spectrum Policy Task Force published the findings of 
the measurement in a paper titled "FCC Report of the 
Spectrum Efficiency Working Group”[1]. A lot of study has 
been done in recent years on how to make efficient use of 
these spectrum bands that are either vacant or not being 
exploited to their full potential. With an opportunistic 
approach, cognitive radio (CR) is a vital technology that 
allows the restricted use of the inefficiently utilized frequency 
bands to be used more efficiently. The most important need 
for a CR is to detect the presence of licensed (primary) users 
in the spectrum, and then decide on resource allocation for 
unlicensed (secondary) users as a result of this detection. One 
of the most significant requirements for the allocation is that 
secondary users do not interfere with legal prime users in any 
way. To ensure interference-free access, secondary users 
must be able to consistently discover spectrum opportunities 

across frequency, time, and space, as well as vacate the 
assigned resources as soon as the primary user is active. In 
CR networks, whether the spectrum sensing function is 
executed correctly has a significant impact on 
communication performance and continuity. 

A. Related Work 
 

Different spectrum sensing methods have been proposed to 
sense limited or unused frequency bands, such as energy 
detection sensing [3], waveform-based sensing [4],  matched 
filtering [5], cyclo-stationary-based sensing [7], eigenvalue-
based sensing [8], and  wavelet-based sensing [12]. Energy 
detection is a spectrum sensing approach that involves 
monitoring incoming signal energy and comparing it to a 
threshold to determine the presence or absence of the primary 
user. The noise power is used to determine the threshold 
function. Many studies have been published in order to 
determine the best threshold expression and increase 
spectrum sensing performance. If signal information such as 
bandwidth, operating frequency, modulation type and grade, 
pulse shape, and frame structure of the primary user are 
known, matched filtering detection approaches with shorter 
detection durations are favoured [9]. Cyclostationary 
detection uses the cyclostationarity properties of the received 
signals to detect primary user [7]. It detects the presence of 
primary users by exploiting the periodicity of the received 
primary signal. The principal user signals and noise power 
are not needed for Eigen value-based spectrum sensing [8]. 
The frequency bands of interest are commonly decomposed 
into a train of consecutive frequency sub-bands in the 
wavelet-based spectrum sensing approach [13]. Wavelet 
transform is used to detect abnormalities in these bands and 
determine whether the spectrum is full or empty. Although 
the analytical model-based techniques outlined above work 
well, they may not be appropriate for the real world [17]. 
For the needed duration, complexity, and detecting 
capabilities, each sensing technique offers distinct trade-offs. 
Machine learning (ML) and deep learning (DL) algorithms 
have gotten a lot of attention from industry and academia in 
the context of future wireless networks [14] because of their 
excellent learning ability using a data-driven approach and 
the rapid advancement in learning-based signal processing 
techniques [13]. Energy values and the Zhang statistic were 
employed as training features in a novel ANN-based hybrid 
sensing  suggested in [16].The authors of [15] suggested an 
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ANN-based spectrum sensing approach that uses energy and 
cyclostationary features to train the neural network. The 
authors in [22] used the same cyclostationary properties to 
switch to the convolutional neural networks (CNN) 
architecture for spectrum sensing. All of these research 
extract features in advance and then classify them using 
ANN. As a result, their performance will be heavily 
influenced by the advantages and disadvantages of previously 
derived attributes. The authors of [19] utilized spectrogram-
based detection of radar emissions in the 3.5 GHz range using 
DNN such as CNN and recurrent neural network (RNN). It 
was discovered that the new detection approach 
outperformed the traditional one. For time-series problems, 
LSTM architecture, which is an upgraded form of the RNN, 
is preferable [21]. This is due to the fact that LSTM uses 
several gates in a single neuron to better synchronize previous 
(past time-stamps) and current information (present time-
stamps) in a time series, and is thus widely utilized for 
temporal data. Further LSTM prevents the RNN from 
underperforming due to its inherent limitations. As a DL 
model, LSTM networks excel in learning the temporal 
connections in sequential data [15]. LSTM networks have 
been applied on wireless spectrum data in a few related 
studies in the literature. For example, in [22], authors 
presented an LSTM network-based spectrum prediction 
technique, while in [23], authors used an LSTM network-
based modulation classification approach. 
The aforementioned studies, on the other hand, have tackled 
the spectrum prediction problem and shown how different 
ML models compare in terms of accuracy. For CR networks, 
on the other hand, we propose an enhanced novel spectrum 
sensing scheme based on LSTM strategy. The detection 
probability  has been used as a significant performance 
parameter. The scheme uses energy detection , likelihood 
ratio statistics, likelihood based goodness of fit statistics, and 
max-min eigenvalue statistics scheme as features to the 
enhanced proposed model. 

B. Contribution and Structure of the paper 
 

The main contribution of the paper are as follows: 
 

• We discuss spectrum sensing as a classification 
problem and offer a deep learning-based spectrum 
sensing solution. The primary signal with features is 
used as the LSTM's input, and various types of 
signal and noise data are used to train the network. 

• The proposed method is compared to other current 
standard spectrum sensing methods. The results 
reveal that our method has a higher probability of 
detection than other standard methods. 

• The proposed model is validated using real time 
radio technology FM signals captured with the help 
of Adalm Pluto and the results found are 
satisfactory. It implies the model can be 
implemented in spectrum sensing of real time 
signals with satisfactory results. 

The rest of the papers are as follows: In Section II, the 
problem formulation is described along with preliminaries of 
LSTM. In Section III, we present a details of the proposed 

model and the measurement procedure. The experimental 
results are presented in Section IV. In Section V finally 
conclusions are drawn. 

II. PRELIMINARIES 
The problem of spectrum sensing can be represented as a 
binary hypothesis test: 
 

H1: r(n) =h s(n) + w(n);               (1)                     
H0: r(n) = w(n);                             
 

where r(n) denotes the received signal, s(n) is the broadcast 
signal, w(n) W(n) is the additive white Gaussian noise 
(AWGN) with zero mean, and h denotes channel gain [25]. 
The received signal comprises just noise if no signal is 
present; otherwise, it also contains the sent signal. The 
problem described in (1) may be expressed as a classification 
problem with two categories from the standpoint of 
classification. Signal is one of the types, while noise is the 
other. We evaluate the spectrum sensing algorithm 
performance by using the detection probability and  the false 
alarm probability:  
 

Pd = Pr {H1|H1}                               (2) 
Pf = Pr {H1|H0} 

A. LSTM Preliminaries 
For sequential data, RNNs are a strong model. RNNs are a 
tight superset of feedforward ANNs, with the addition of 
recurrent edges that span consecutive time steps, allowing the 
model to have a sense of time. 
RNNs are ANNs with an "underlying architecture of inter-
neuronal connections that comprises at least one cycle," as 
defined by LSTM networks.  
LSTM networks are specifically built to learn long-term 
dependencies and can overcome the problems that RNNs 
have in the past, such as vanishing and inflating gradients 
(Figure 1).[24-25] 
 

 
           Figure 1: The architecture of LSTM memory block [24]. 

 
An input layer, one or more hidden layers, and an output layer 
make up an LSTM network. The number of explanatory 
variables (feature space) is equal to the number of neurons in 
the input layer. The output layer's number of neurons 
represents the output space, in our example two neurons 
signaling if a stock outperforms the cross-sectional median in 
t + 1. The hidden layer contains the main feature of LSTM 
networks (s) made up of so-called memory cells. Each 
memory cell contains its own set of instructions. The three 
gates that keep and change the state of the cell st: a forget gate 
(ft), as well as an input gate (it) and an output gate (ot). The 
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framework a memory cell is shown in figure 2. At each 
timestep t, the input xt (one element of the input sequence) 
and the output ht-1 of the memory cells from the previous 
timestep t-1 are given to each of the three gates. As a result, 
the gates function as filters, each serving a distinct purpose: 

 
• The forget gate specifies which data is erased from 

the cell state. 
• The input gate determines which data is added to the 

cell state. 
• The output gate defines which cell state information 

is utilised as output. 

The vectorized equations below describe the updating of 
memory cells in the LSTM layer at each timestep t. The 
following notations are used in this case: 
 

• At timestep t, xt is the input vector. 
• Weight matrices are W f, x, Wf, h, WŚ,X, WŚ, h, W i, x, 

W i, h, W o, x, and W O, h 
• Bias vectors are bf , bŚ , bi , and bo  . 
• The activation values of the respective gates are 

represented by the vectors ft , it , and ot  . 
• The cell states and candidate values are represented 

by the vectors st and śt 

• ht is a vector that represents the LSTM layer's 
output. 

The cell states st and outputs ht of the LSTM layer at timestep 
t are determined as follows during a forward pass: 
The LSTM layer selects which information should be 
eliminated from its prior cell states st-1 in the first step. As a 
result, the current input xt , the outputs ht-1 of the memory 
cells at the previous timestep (t-1), and the bias terms bf of 
the forget gates are used to compute the activation values ft 
of the forget gates at timestep t. Finally, the sigmoid function 
scales all activation levels to a range of 0 (totally forget) to 1 
(totally recall).  
 

ft = sigmoid( Wf,x xt  + Wf,hht-1 + bf )                 (3)     
            

The LSTM layer determines which information should be 
added to the network's cell states(st) in the second step . This 
technique consists of two steps: first, candidate values st are 
computed that could be added to the cell states. Second, the 
input gates' activation values are calculated:  
 

Śt = tanh(WŚ,XXt + WŚ,h ht-1 + bŚ )                    (4) 
 
it  = sigmoid((Wi,XXt + Wi,h ht-1 + bi )                (5)                       

  
The new cell states st are determined in the third step based 
on the outcomes of the first two phases, with designating the 
Hadamard (elementwise) product: 
 

St = ft  ◌ St-1 + it   ◌  Śt .                                       (6) 
 

In the final phase, the memory cells' output ht is calculated 
using the following two equations: 
 

Ot = sigmoid(WO,XXt + WO,h ht-1 +bO )            (7) 

 
ht = Ot   ◌ tanh(St)                                            (8) 
 

When an input sequence is processed, the LSM network is 
shown its features timestep by timestep. As a result, the 
network processes the input at each timestep t as shown in the 
equations. The sequence's final output is returned once the 
last element has been processed. 
During training, the weights and bias terms are modified in 
the same way that they are in typical feed-forward networks 
to minimize the loss of the stated objective function across 
training samples. We pick cross-entropy as the objective 
function because we are working with a classification 
problem. 
The following formula is used to determine the amount of 
weights and bias terms to be trained: If h represents the 
number of hidden units in the LSTM layer and I represents 
the number of input features, then the number of LSTM layer 
parameters that must be trained is: 
 
4hi + 4h + 4h2 = 4(hi + h + h2) = 4(h(i + 1) + h ).            (9)  
 
Wf,x , WŚ,x ,Wi,x, and Wo, x are the dimensions of the four 
weight matrices applied to the inputs at each gate, 
respectively. The dimensions of the four bias vectors (bf, bŚ, 
bi, and bo) are denoted by the 4h. Finally, the dimensions of 
the weight matrices applied to the outputs at the previous 
timestep, i.e. Wf,x , WŚ,x ,Wi,x, and Wo, x are represented by the 
4h2. 

III. PROPOSED MODEL AND EXPERIMENTAL DETAILS 
 
The most essential feature of neural networks is their ability 
to learn non-linear functional mappings between input and 
output, allowing them to adapt to the non-linear features of 
PU signals. The network topology is built such that the 
network can be trained by adopting, among others, a 
renowned Back Propagation[15] algorithm. 
 

 
Figure 2. Proposed system model 

 
The most essential feature of ANN/DNN is their ability to 
learn non-linear functional mappings between input and 
output, allowing them to adapt to the non-linear features of 
PU signals. The network topology is built such that the 
network can be trained by adopting, among others, a 
renowned Back Propagation [15] algorithm. The goal of our 
suggested approach is to determine whether or not the PU 
channel is busy or idle. We employ a supervised learning 
scenario in this work, where the classifier is trained given 
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features and labels. The LSTM primarily incorporates energy 
detection , likelihood ratio statistics, likelihood based 
goodness of fit statistics, and max-min eigenvalue statistics 
scheme as its features. In this classifier, the labels are 0 and 1 
for when the channel is idle and busy, respectively. The 
various statistics  related to energy detection , likelihood ratio 
statistics, likelihood based goodness of fit statistics, and max-
min eigenvalue statistics scheme are as follows: 
The energy value E is shown by the discrete version of the 
received signal yi: 
 

E = ∑ |𝑦[𝑛] |𝑁
𝑖=1

2                                             (10) 
 

The logarithm of the likelihood ratio is given by [6]: 
 
𝐿(y) = 𝑛 log 𝜎𝑣 − log det ( Σ𝑛 + 𝜎𝑣

2
 ) − y∗ [( Σ𝑛 + 𝜎𝑣

2
 I𝑛 )−1 

− 𝜎𝑣
−2 I𝑛 ] y.                                                                  (11) 

 
              where I𝑛 is the identity matrix. 
 
Likelihood based Goodness of fit test (LLR-GoF): 
 

ZA = -∑  𝑁
𝑖=1 [ 𝑙𝑜𝑔 {𝐹𝑜(𝑋(𝑖)}

𝑛 − 𝑖 +
1

 2

+  
𝑙𝑜𝑔 {1−𝐹𝑜(𝑋(𝑖)}

𝑖 − 
1

2

 ]    (12) 

 
where N is the sample size and Fo is the known cumulative 
distribution function (CDF) of noise. 
 
Maximum-minimum eigenvalue (MME): 
 

R(NS) = 1

𝑁𝑠
 ∑  𝐿−1+𝑁𝑠

𝑛=𝐿 𝑥̂(n)𝑥̂†(n)                     (13) 
where † stand for Hermitian (transconjugate) 

 
Based on the theorems [26] , we have  
 

λmax ≈ 𝜎𝜂 
2

𝑁𝑠
 (√𝑁𝑠 + √𝑀𝐿 )2                                  (14) 

λmin ≈ 𝜎𝜂 
2

𝑁𝑠
 (√𝑁𝑠  − √𝑀𝐿 )2                                             (15) 

 
where Ns is the number of collected samples. Rs is the 
statistical covariance matrix of the input signal, ση

2 is the 
variance of the noise, (M,L) is order of the matrix. 
The first step is to generate simulated dataset and gather real 
time dataset using an empirical setup (Adalm Pluto) 
described in Section 3(c). The dataset is then diveded into 
training, validation and testing in 70:15:15 ratio ie training 
(70%), validation (15%) and testing (15%). Following that, 
we extract four features from the collected data. The scheme 
uses energy detection, likelihood ratio statistics (LLR), 
likelihood based goodness of fit statistics (LL-GoF), and 
max-min eignvalue statistics scheme as features to the 
enhanced proposed model. 
The signal's energy denoted as u1(i), where i is the ith training 
sample is the first feature, followed by likelihood ratio (LLR) 
denoted by u2(i) the second feature, the third feature is 
likelihood based goodness of fit statistics denoted by u3(i) and 
the fourth feature is the MME denoted by u4(i). As a result, 
the training vector U can be written as: U= {u1(i), u2(i), u3(i), 
u4(i)}. We employ a variety of optimization strategies in 
sensing with multiple hyperparameters, which may be used 
to increase performance in terms of detection probability.  

Finally, a dense layer for the output dimension to be set 
according to the number of data classes is entered into the 
output of the last LSM cell consisting of the features 
correlation and dynamic characteristics of the complete 
sensing input sequence. We use a softmax function [14] to 
normalize the neural network output into [dФ|H0 (u), dФ|H1 (u)], 
where dФ|H0 (u) + dФ|H1 (u) = 1, which stands for the opinion 
that the input u belongs to state H0 and H1, respectively and 
Ф is model parameter. 

A. Feature Extraction 
 

To begin, data pre-processing procedures are performed on 
the collected data, with the data set being split into three 
categories: training, validation, and testing. Next to calculate 
the features in the training dataset N samples are extracted 
out wherein AWGN  is added to the training dataset. For the 
scenario when only noise is created, feature samples of size 
N are also extracted in the similar way. Then the two 
components are sum together and each row of the dataset then 
serves as a detection in single instance. The training dataset 
contains an equal number of primary signal feature instances 
and AWGN feature instances to make the neural network 
bias-free. The labels are appended to the data collection, with 
label 1 denoting signal plus noise and indicating that the PU 
channel is busy. Similarly, label 0 denotes merely noise, 
meaning that the PU channel is empty. 

B. Network Training, Validation and Testing 
 

To begin, utilizing previous knowledge of the training 
dataset, the features from the training dataset are computed 
and labelled as 0 for null hypothesis (H0 noise only) and 1 for 
alternative hypothesis (HA existence of primary signal) based 
on the sample size (N). Following that, random instances of 
features with their labels are retrieved and given to the LSTM 
model based on the batch size. The model predicts the output 
and improves its prediction using the back-propagation 
technique. The number of iterations given to the LSTM 
training mechanism determines how often this process 
occurs. 
After the various LSTM model designs have been trained 
with the appropriate training dataset and iterations (Epoch), 
the best overall architecture must be chosen. Define an 
architecture that best suits the training set as one method to 
figure this out. In general, however, this does not necessarily 
result in a generalized model, which is why the cross-
validation dataset is utilized to determine a suitable LSTM 
architecture. The validation data-set is used to find the model 
with the greatest performance on the validation data-set using 
various hyperparameters. The validation dataset is created 
from the signal data and processed in the same way that the 
training data is. The combined feature data is then sent to all 
of the LSTMs’ stored models, each with its own set of 
hyperparameters. Different classifiers' ability to recognize 
correctly is identified, and then the selection stage begins. In 
this case, the classifier with the highest accuracy is chosen 
and utilized to evaluate the proposed scheme. 
We move to the final phase of evaluating the sensing strategy 
after training and validating the suggested LSTM 
architecture. The testing dataset is combined with AWGN to 
obtain signals with necessary SNR in order to determine the 
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detection probability Pd. The data is then spread into small 
samples (for example N=100 sample ) and features such as 
energy , LLR, LLR-GoF and MME statistics are retrieved. 
The trained network receives these properties as input. Pd is 
calculated by dividing the number of times the neural network 
predicts that the channel is busy by the total number of 
samples for a given SNR. The probability of false alarm (Pf) 
is evaluated similarly, but instead of test data, utilizing 
AWGN sequences to extract features. In the output of the last 
LSM cell a dense layer is entered, consisting of features of 
the correlation and dynamic properties of the whole sensing 
input sequence for the output dimension to be determined 
according to the number of data classes. In order to normalize 
the neural network output, a softmax function [14] is used. 
 

C. Measurement Platform 
 

 
Figure 3: The following diagram shows the interaction between 
Simulink®, the Pluto Receiver block, and the radio hardware. 
 
The measurement platform made use of a combination of 
hardware and software in this work. Analog 
Devices® ADALM-PLUTO (AD9361) is used as a hardware 
device to capture the real time primary signal data. In our 
study we are limited to FM broadcast signal only due to its 
ready availability from commercial radio stations. However 
the system can be configured to deal with all types of signals. 
 
ADALM-PLUTO  has one receive channel and one transmit 
channel that can operate in full duplex and can generate or 
measure RF analogue signals from 325 to 3800 MHz at up to 
61.44 Mega Samples per Second (MSPS) with a 20 MHz 
bandwidth. It is based on the AD9363. With the default 
firmware, the Pluto SDR is completely self-contained, fits 
nicely inside a shirt pocket or backpack, and is powered 
entirely by USB. The FM Broadcast Demodulator Baseband 
System object   converts the 228 kHz input sampling rate to 
45.6 kHz, which is the sampling rate for the audio device. The 
de-emphasis lowpass filter time constant is set to 75 
microseconds in the FM broadcast standard. The received 
mono signals are processed in this example. Stereo signals 
can also be processed by the demodulator. The FM Broadcast 
Demodulator Baseband object uses a peaking filter to 
perform stereo decoding by picking out the 19 kHz pilot tone 
from which the 38 kHz carrier is generated. The FM 
Broadcast Demodulator Baseband block down converts the 
L-R signal, centered at 38 kHz, to baseband using the 
resulting carrier signal. After that, the L-R and L+R signals 
are de-emphasized for 75 microseconds. The L and R signals 
are separated and converted to a 45.6 kHz. 

Channels with the optimum centre frequency, decimation 
rate, and gain factor are chosen. The gain factor is chosen so 
that the received signal has the highest SNR possible, and the 
decimation rate guarantees that the reception bandwidth is 
greater than or equal to the original signal bandwidth. A total 
of 108 samples are taken for each channel. In the initial 
samples, a pre-processing step is  used to filter the signals and 
remove any abrupt peaks. The pre-processed data is then split 
into three data sets: training (70%), validation (15%), and 
testing (15%).  

IV. EXPERIMENTAL RESULTS 
 
The test findings for the proposed strategy are reported in this 
section. We have used Keras' library with TensorFlow 
backend to develop and develop models in our 
implementations. As a result, our trained LSTM network's 
topology is as follows: 

• Four features and 540 timesteps in the input layer. 

• LSTM layer with a dropout value of 0.1 and with      
h = 25 hidden neurons is created. 

• This design produces roughly 3000 LSTM 
parameters and leads to a significant number of 
about 93 parameter training examples. In the event 
of noisy training data, a large number of 
observations per parameter provides for more robust 
estimates and decreases the risk of overfitting. 

• A standard setup has two neurons in the output layer 
(dense layer) with a softmax activation function. 

 
Figure 4: Autocorrelation curve of the received FM signal 

For varying values of SNR, Figure 4, illustrates the 
autocorrelation curve of the FM signal collected using Adalm 
Pluto from the empirical setup. The data samples are 
temporally connected if the autocorrelation is not zero. This 
is due to the fact that the autocorrelation value does not 
quickly go to zero. This work uses an LSTM-based sensing 
framework to take advantage of the temporal correlation. 
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Figure 5a: Pd Vs SNR comparison for different values of N 
(simulation dataset) 

 

Figure 5a: Pd Vs SNR comparison for different values of N 
(FM signal data) 

In Figures 5a and Figure 5b the impact of N on the detection 
probability of the proposed LSTM spectrum sensing 
technique for FM band data and simulation dataset is 
examined. It shows the Pd v/s SNR curve for various values 
of  N, where Pd is detection probability. As N increases, we 
may note that the probability of detection also increases. In 
Figure 5b similar pattern is seen that implies that the model 
validation with real time FM signal band works in similar 
fashion as that of the simulated signal. Hence this model can 
be implemented to test other real time signal as well. 

     
                                   Figure 6: Pd vs Pf plot 

Figure 4 depicts Pd vs. Pf operational characteristics with FM 
Broadcast signal dataset and simulation dataset. Pf and Pd 
rise in tandem with the fraction of cases in the low SNR 
range. The magnitudes of the PU signal are similar to noise 
at low SNRs. As a result, the LSTM network has trouble 
distinguishing between the PU signal and noise. 
 

 
 
Figure 7a: Comparison of classification accuracies with other 
machine learning algorithms (simulation dataset) 
 

 
Figure 7b: Comparison of classification accuracies with other 
machine learning algorithms (FM signal data) 
 
In terms of training and classification accuracy, the proposed 
LSTM method is compared to existing machine learning 
techniques such as ANN, DNN, Random forest, SVM, and 
Gaussian Naive Bayes. Figures 7(a),(b) compares the 
proposed LSTM  model to various machine learning models 
in terms of classification accuracy. With 20 numbers of  
epochs, the ANN-based sensing system [17] was trained. The 
least number of samples required to split an internal node in 
the random forest classifier was two, and the tree was divided 
until either each leaf had one sample or all the samples in the 
leaves were pure. With a variance smoothing of 10-8, the 
Naive Bayes classifier was trained [13]. The proposed LSTM 
based spectrum sensing delivers a substantially enhanced 
classification precision compared with the different 
algorithms at lower SNR; but at the cost of longer training 
and execution periods. the sensing performance improves 
because LSTM cells leverage the temporal dependencies 
contained in the signal, which other models do not. 
Furthermore, the Gate structure (i.e., Update, Forget, and 
Output gates) regulates the information flow in LSTM, 
allowing it to perform effectively on temporal data. As a 
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result, the suggested LSTM method outperform other 
machine learning based spectrum sensing methods. The 
proposed model also works approximately similar with real 
time FM signal band dataset that can be clearly visualize from 
the above graphs. Hence it implies that the proposed model is 
well suited to be implemented in spectrum sensing for other 
real time signals as well. 

V. CONCLUSION 
Here we have discussed the design of a spectrum sensing 
scheme based on LSTM. The experimental results shows that 
the proposed method is suitable for application in real world 
situations. Further, it has better probability of correct 
detection and low false alarm rate compared to other  existing 
machine learning techniques such as ANN, DNN, Random 
forest, SVM, and Gaussian Naive Bayes. In  an extended 
form, the proposed model can be modified for a range of real 
world signal and situations. 

REFERENCES 
 

[1] FCC, Federal Communications Commission Spectrum Policy Task 
Force, Report of the Spectrum Efciency Working Group. Technical 
report. USA (2002) 

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. 
Ayyash, “Internet of Things: A survey on enabling technologies, 
protocols, and applications,” IEEE Communications Surveys & 
Tutorials, 2015, vol. 17, no. 4, pp. 2347-2376. 

[3] F. F. Dighan, M.-S. Alouini, and M. K. Simon, “On the energy 
detection of unknown signals over fading channels,” in Proc. IEEE 
ICC, 2003, vol. 5, no. 1, pp. 3575-3579. 

[4] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for 
cognitive radio applications,” IEEE Communications Surveys & 
Tutorials, 2009, vol. 11, no. 11, pp. 116-130. 

[5] F. Salahdine, E. Ghazi, N. Kaabouch, W.F. Fihri, “Matched filter 
detection with dynamic threshold for cognitive radio networks”,In 
Proceedings of the International Conference on Wireless Networks and 
Mobile Communications (WINCOM), Marrakech, Morocco, 2015, 
vol. 20, no. 23,  pp. 1–6. 

[6] Y. Zeng, C. L. Koh, and Y. Liang, “Maximum eigenvalue detection: 
Theory and application,” in IEEE ICC, 2008, vol. 32, no. 5, pp. 4160–
4164. 

[7] J. Lundén, S. A. Kassam, and V. Koivunen, “Robust nonparametric 
cyclic correlation-based spectrum sensing for cognitive radio,” IEEE 
Transactions on Signal Processing, 2010, vol. 58, no. 1, pp. 38-52. 

[8] Y. Zeng and Y.C. Liang, “Eigenvalue-based spectrum sensing 
algorithms for cognitive radio,” IEEE Transactions on 
Communications, 2010, vol. 57, no. 6, pp. 1784-1793. 

[9] E. H. Gismalla, “Performance Analysis of the Periodogram-Based 
Energy Detector in Fading Channels,” IEEE Trans. Signal Process., 
2011, vol. 59, no. 8, pp. 3712-3721. 

[10] Y. Zhang, Q. Zhang, and S. Wu, “Entropy-based robust spectrum 
sensing in cognitive radio,” IET Communications, 2015, vol. 4, no. 4, 
pp. 428-436. 

[11] S. Chen, S. Zheng, L. Yang, and X. Yang, “Deep learning for large-
scale real-world ACARS and ADS-B radio signal classification,” IEEE 
Access, 2019, vol. 22, no. 13, pp. 1123-1128 

[12] M.K Lakshmanan, H. Nikookar, “A Review of Wavelets for Digital 
Wireless Communication”, Wireless Personal Communications, 2016, 
vol. 37, no. 55, pp. 387–420. 

[13] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine 
learning techniques for cooperative spectrum sensing in cognitive radio 
networks,” IEEE Journal on Selected Areas in Communications, 2019, 
vol. 31, no. 86, pp. 2209– 2221. 

[14] Y. Lu, P. Zhu, D. Wang, and M. Fattouche, “Machine learning 
techniques with probability vector for cooperative spectrum sensing in 
cognitive radio networks,” in 2016 IEEE Wireless Communications 
and Networking Conference, 2016, vol. 3, no. 12, pp. 1–6. 

[15] M. R. Vyas, D. K. Patel, and M. Lopez-Benitez, “Artificial neural 
network based hybrid spectrum sensing scheme for cognitive radio,” in 
IEEE 28th Annual International Symposium on Personal, Indoor, and 
Mobile Radio Communications (PIMRC), 2017, pp. 1–7. 

[16] H. Wang, E. H. Yang, Z. Zhao and W. Zhang, ‘Spectrum sensing in 
cognitive radio using goodness of fit testing’, IEEE Trans. Wireless 
Commun., 2018, vol. 8, no. 11, pp. 5427-5430. 

[17] Y. Tang, Q. Zhang, and W. Lin, “Artificial neural network based 
spectrum sensing method for cognitive radio,” in 2010 6th International 
Conference on Wireless Communications Networking and Mobile 
Computing, 2010, vol. 3, no. 11, pp. 1–4. 

[18] D. Han, G. C. Sobabe, C. Zhang, X. Bai, Z. Wang, S. Liu, and B. Guo, 
“Spectrum sensing for cognitive radio based on convolution neural 
network,” in 10th International Congress on Image and Signal 
Processing, BioMedical Engineering and Informatics (CISP-BMEI), 
2017, vol. 44, no. 7, pp. 1–6. 

[19] W. M. Lees, A. Wunderlich, P. Jeavons, P. D. Hale, and M. R. Souryal, 
“Deep learning classification of 3.5 GHz band spectrograms with 
applications to spectrum sensing,” IEEE Trans. Wireless Commun., 
2019, vol. 3, no. 14, pp. 556-562. 

[20] B. Soni , D. K. Patel and M.L Benítez, “Long Short-Term Memory 
Based Spectrum Sensing Scheme for Cognitive Radio Using Primary 
Activity Statistics”, IEEE Trans. Wireless Commun., 2020, vol. 8, no 
12, pp. 97437-97451. 

[21] W. Lee, M. Kim, D. Cho, and R. Schober, “Deep sensing: Cooperative 
spectrum sensing based on convolutional neural networks,” CoRR, 
2017,  vol. 23, no. 68, pp. 1705- 1712.  

[22] L. Yu, J. Chen, and G. Ding, ‘‘Spectrum prediction via long short term 
memory,’’ in Proc. IEEE ICCC, 2017,vol. 8, no. 31, pp. 643–647. 

[23] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, 
‘‘Deep learning models for wireless signal classification with 
distributed low-cost spectrum sensors,’’ IEEE Trans. Cognit. 
Commun. Netw., 2018, vol. 4, no. 3, pp. 433–445. 

[24] C. Hu , Q. Wu , Hui L , S. Jian 1 , N. Li and Z. Lou , “Deep Learning 
with a Long Short-Term Memory Networks Approach for Rainfall-
Runoff Simulation”, WATER MDPI, 2018, vol. 10, pp. 1543- 59. 

[25] I. Goodfellow, Y. Bengio, and A. Courville, “ Deep learning, ”The MIT 
Press, 2016,  pp. 800, ISBN: 0262035618 

[26] “Maximum-minimum eigenvalue detection for cognitive radio”, The 
18th Annual IEEE International Symposium on Personal, Indoor and 
Mobile Radio Communications (PIMRC), 2017, vol. 1, no. 8, pp. 45-
50. 

 Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
DOI: 10.46300/9107.2021.15.6 Volume 15, 2021

E-ISSN: 1998-4480 32




