Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 145 No. 5152 (2015)

Role of the odorant receptor in neuronal connectivity in the olfactory bulb

  • Nelly Redolfi
  • Claudia Lodovichi
DOI
https://doi.org/10.4414/smw.2015.14228
Cite this as:
Swiss Med Wkly. 2015;145:w14228
Published
13.12.2015

Summary

Olfaction is a highly sophisticated sensory modality able to detect and discriminate thousands of different odours, even at very low concentration. How such a challenging task is achieved remains to be fully understood. A unique feature of the olfactory system is the dual role of the odorant receptor: it does detect odours in the olfactory epithelium but it also contributes to neuronal circuit formation in the olfactory bulb. The odorant receptors are indeed expressed on the cilia that protrude in the nasal cavity, where they bind odorants, and at the axon termini, where they could act as axon guidance molecules. In this review we discuss findings that show how the odorant receptor contributes in regulating neuronal connectivity.

References

  1. Murthy VN. Olfactory maps in the brain. Annu Rev Neurosci. 2011;34:233–58.
  2. Cho JH, Prince JE, Cloutier JF. Axon guidance events in the wiring of the mammalian olfactory system. Mol Neurobiol. 2009;39(1):1–9.
  3. de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci. 2009;3:52.
  4. Nishizumi H, Sakano H. Developmental regulation of neural map formation in the mouse olfactory system. Dev Neurobiol. 2015;75(6):594–607.
  5. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87.
  6. Chess A, et al. Allelic inactivation regulates olfactory receptor gene expression. Cell. 1994;78(5):823–34.
  7. Serizawa S, et al. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science. 2003;302(5653):2088–94.
  8. Shykind BM, et al. Gene switching and the stability of odorant receptor gene choice. Cell. 2004;117(6):801–15.
  9. Lewcock JW, Reed RR. A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci U S A. 2004;101(4):1069–74.
  10. Serizawa S, Miyamichi K, Sakano H. One neuron-one receptor rule in the mouse olfactory system. Trends Genet. 2004;20(12):648–53.
  11. Ressler KJ, Sullivan SL, Buck LB. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell. 1993;73(3):597–609.
  12. Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell. 1993;74(2):309–18.
  13. Miyamichi K, et al. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J Neurosci. 2005;25(14):3586–92.
  14. Ressler KJ, Sullivan SL, Buck LB. A molecular dissection of spatial patterning in the olfactory system. Curr Opin Neurobiol. 1994;4(4):588–96.
  15. Vassar R, et al. Topographic organization of sensory projections to the olfactory bulb. Cell. 1994;79(6):981–91.
  16. Mombaerts P, et al. Visualizing an olfactory sensory map. Cell. 1996;87(4):675–86.
  17. Shepherd GM. The synaptic organization of the brain. 2004, Oxford: Oxford University Press.
  18. Tan J, et al. Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron. 2010;65(6):912–26.
  19. Kikuta S, et al. Odorant response properties of individual neurons in an olfactory glomerular module. Neuron. 2013;77(6):1122–35.
  20. Dhawale AK, et al. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat Neurosci. 2010;13(11):1404–12.
  21. Rubin BD, Katz LC. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron. 1999;23(3):499–511.
  22. Uchida N, et al. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci. 2000;3(10):1035–43.
  23. Wachowiak M, Cohen LB. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron. 2001;32(4):723–35.
  24. Soucy ER, et al. Precision and diversity in an odor map on the olfactory bulb. Nat Neurosci. 2009;12(2):210–20.
  25. Schoenfeld TA, Marchand JE, Macrides F. Topographic organization of tufted cell axonal projections in the hamster main olfactory bulb: an intrabulbar associational system. J Comp Neurol. 1985;235:503–18.
  26. Belluscio L, et al. Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature. 2002;419(6904):296–300.
  27. Lodovichi C, Belluscio L, Katz LC. Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb. Neuron. 2003;38(2):265–76.
  28. Wang F, et al. Odorant receptors govern the formation of a precise topographic map. Cell. 1998;93(1):47–60.
  29. Feinstein P, et al. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic receptor. Cell. 2004;117(6):833–46.
  30. Feinstein P, Mombaerts P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell. 2004;117(6):817–31.
  31. Barnea G, et al. Odorant receptors on axon termini in the brain. Science. 2004;304(5676):1468.
  32. Strotmann J, et al. Olfactory receptor proteins in axonal processes of chemosensory neurons. J Neurosci. 2004;24(35):7754–61.
  33. Dubacq C, Jamet S, Trembleau A. Evidence for developmentally regulated local translation of odorant receptor mRNAs in the axons of olfactory sensory neurons. J Neurosci. 2009;29(33):10184–90.
  34. Bradley J, Reisert J, Frings S. Regulation of cyclic nucleotide-gated channels. Curr Opin Neurobiol. 2005;15(3):343–9.
  35. Reisert J, et al. Mechanism of the excitatory Cl-response in mouse olfactory receptor neurons. Neuron. 2005;45(4):553–61.
  36. Menini A. Calcium signalling and regulation in olfactory neurons. Curr Opin Neurobiol. 1999;9(4):419–26.
  37. Kaupp UB. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci. 2010;11(3):188–200.
  38. Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses. 2008;33(9):839–59.
  39. Maritan M, et al. Odorant receptors at the growth cone are coupled to localized cAMP and Ca2+ increases. Proc Natl Acad Sci U S A. 2009;106(9):3537–42.
  40. Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda). 2012;27(4):200–12.
  41. Pietrobon M, et al. Interplay among cGMP, cAMP, and Ca2+ in living olfactory sensory neurons in vitro and in vivo. J Neurosci. 2011;31(23):8395–405.
  42. Zheng JQ, Poo MM. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol. 2007;23:375–404.
  43. Song HJ, Ming GL, Poo MM. cAMP-induced switching in turning direction of nerve growth cones. Nature. 1997;388(6639):275–9.
  44. Nishiyma M, et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature. 2003;423(6943):990–5.
  45. Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci. 2012;13(5):308–24.
  46. Nakashima A, et al. Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory sensory neurons. Cell. 2013;154(6):1314–25.
  47. Cloutier JF, et al. Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections. J Neurosci. 2004;24(41):9087–96.
  48. Nguyen-Ba-Charvet KT, et al. Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. J Neurosci. 2008;28(16):4244–9.
  49. Cloutier JF, et al. Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron. 2002;33(6):877–92.
  50. Takeuchi H, et al. Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell. 2010;141(6):1056–67.
  51. Walz A, Rodriguez I, Mombaerts P. Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci. 2002;22(10):4025–35.
  52. Cho JH, et al. Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. J Neurosci. 2007;27(34):9094–104.
  53. Imai T, Suzuki M, Sakano H. Odorant receptor-derived cAMP signals direct axonal targeting. Science. 2006;314(5799):657–61.
  54. Imai T, et al. Pre-target axon sorting establishes the neural map topography. Science. 2009;325(5940):585–90.
  55. Schwarting GA, et al. Semaphorin 3A is required for guidance of olfactory axons in mice. J Neurosci. 2000;20(20):7691–7.
  56. Schwarting GA, et al. Semaphorin 3A-mediated axon guidance regulates convergence and targeting of P2 odorant receptor axons. Eur J Neurosci. 2004;19(7):1800–10.
  57. Cutforth T, et al. Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. Cell. 2003;114(3):311–22.
  58. Scolnick JA, et al. Role of IGF signaling in olfactory sensory map formation and axon guidance. Neuron. 2008;57(6):847–57.
  59. Royal SJ, Key B. Development of P2 olfactory glomeruli in P2-internal ribosome entry site-tau-LacZ transgenic mice. J Neurosci. 1999;19(22):9856–64.
  60. Serizawa S, et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell. 2006;127(5):1057–69.
  61. Kaneko-Goto T, et al. BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron. 2008;57(6):834–46.
  62. Lin DM, et al. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron. 2000;26(1):69–80.
  63. Zheng C, et al. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron. 2000;26(1):81–91.
  64. Marks CA, et al. Activity-dependent plasticity in the olfactory intrabulbar map. J Neurosci. 2006;26(44):11257–66.
  65. Belluscio L, et al. Mice deficient in G(olf) are anosmic. Neuron. 1998;20(1):69–81.
  66. Zou DJ, et al. Postnatal refinement of peripheral olfactory projections. Science. 2004;304(5679):1976–9.
  67. Trinh K, Storm DR. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci. 2003;6(5):519–25.
  68. Col JA, et al. Adenylyl cyclase-dependent axonal targeting in the olfactory system. Development. 2007;134(13):2481–9.
  69. Zou DJ, et al. Absence of adenylyl cyclase 3 perturbs peripheral olfactory projections in mice. J Neurosci. 2007;27(25):6675–83.
  70. Kerr MA, Belluscio L. Olfactory experience accelerates glomerular refinement in the mammalian olfactory bulb. Nat Neurosci. 2006;9(4):484–6.
  71. Kass MD, et al. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science. 2013;342(6164):1389–92.
  72. Petzold GC, Hagiwara A, Murthy VN. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci. 2009;12(6):784–91.
  73. Hallem EA, Carlson JR. The odor coding system of Drosophila. Trends Genet. 2004;20(9):453–9.
  74. Reisert J. Origin of basal activity in mammalian olfactory receptor neurons. J Gen Physiol. 2010;136(5):529–40.
  75. Connelly T, Savigner A, Ma M. Spontaneous and sensory-evoked activity in mouse olfactory sensory neurons with defined odorant receptors. J Neurophysiol. 2013;110(1):55–62.
  76. Lorenzon P, et al. Circuit formation and function in the olfactory bulb of mice with reduced spontaneous afferent activity. J Neurosci. 2015;35(1):146–60.
  77. Tsai L, Barnea G. A critical period defined by axon-targeting mechanisms in the murine olfactory bulb. Science. 2014;344(6180):197–200.
  78. Ma L, et al. A developmental switch of axon targeting in the continuously regenerating mouse olfactory system. Science. 2014;344(6180):194–7.