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Abstract
In this essay I assess the impact of generating species distribution models (SDMs), also known as ecological niche models 
(ENMs), within artificial geographical or political boundaries by comparing them with SDMs that use the complete distribution of 
species. I illustrate the differences between the paired SDMs on the plant genus Inga modelled within the political boundaries 
of Brazil (Partial SDM) compared to SDMs developed for the entire Neotropical humid tropics biome (Full SDM). Partial SDMs 
portray range contractions, or under-prediction, at the artificial boundaries and have different patterns of predicted presence and 
absence. It is therefore advisable that SDMs use presence data from the complete distribution ranges of species. Furthermore, 
it should be kept in mind that any SDM essentially has a partial extent in space and time.
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Setting the Scene

The wide use of species distribution models (SDMs), 
was boosted by the seminal review paper of Guisan & 
Zimmermann (2000) on ‘Predictive habitat distribution 
models in ecology’ and has since grown explosively 
(Cayuela et al. 2009; Lobo et al. 2010). To date, this has 
resulted in two textbooks on the principles and applications 
of SDMs by Franklin (2009) and Peterson et al. (2011), and 
in numerous review and perspectives papers. The popularity 
can be ascribed to the application of SDMs in the fields 
of species discovery (Raxworthy et al. 2003), mapping 
biodiversity (Raes et al. 2009; van Welzen et al. 2011), 
conservation planning (Zhang et al. 2012), climate change 
effects (Hsu et al. 2011), species’ invasions (Broennimann 
& Guisan 2008), evolution of niches (Yesson & Culham 
2006; Evans et al. 2009), to list but a few (see Araújo & 
Peterson (2012) for an extensive list).

SDMs identify correlations between aspects of abiotic 
conditions and known occurrences of species across 
‘landscapes of interest’ to define sets of conditions under 
which species are likely to be able to maintain viable 
populations (Araújo & Peterson 2012). This essay focuses 
on the impact of the extent of the ‘landscapes of interest’ 
on predicted distributions of species, for which I provide 
a worked out example. The focus lies on over- and under-
prediction of SDMs fitted on an artificially constrained 
geographic space (i.e. political boundaries) compared 

to SDMs fitted on the total range of occurrence (sensu 
Maiorano et al.(2012) for time slices). To my knowledge this 
territory is largely unexplored (except Barbet-Massin et al. 
2010; Sánchez-Fernández et al. 2011; and conceptually by 
Godsoe 2012).

Before getting into the subject of ‘landscapes of interest’, 
it is important to clarify the differences in the definitions 
of the terms: ‘Bioclimatic envelope models’, ‘Ecological 
niche models (ENMs)’, ‘Habitat suitability models (HSMs)’ 
and ‘Species distribution models (SDMs)’, as proposed 
by Araújo and Peterson (2012). All these terms are being 
used alternately, and not always in the correct context. 
Bioclimatic envelope models estimate the “multivariate 
space of climatic variables (the envelope) best matching the 
observed species’ distribution”. Instead of simply estimating 
the bioclimatic envelope, ENMs “link the envelope to 
elements of ecological niche theory rooted in the early 
work of Grinnell (1917) and Hutchinson (1957)”, and also 
in the later work of Tilman (1982). I interpret ENMs as 
restricting the bioclimatic envelope to variables that are 
meaningful to the ecological niche of the species, without 
inferring any geographic projection. HSMs refer to “the 
suitability of area for a species to occur, its habitat; as such 
the physical space where the species lives and the available 
resources it can use are emphasized”. This is a rather broad 
definition. Lastly, SDMs “characterize the multivariate 
environmental space delimiting species’ distributions, 
and project this subset of environmental space back onto 
geography”. SDMs directly build on Hutchinson’s duality, 
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define niche conservatism as the retention of niche-related 
ecological traits over time. They provide an extensive list 
with examples supporting the existence of conservatism of 
the fundamental niche that provides predictability across 
environmental dimensions and time frames using SDMs; 
the same was concluded by Araújo & Peterson (2012). 
Nonetheless, examples of rapid niche evolution have been 
reported (Broennimann et al. 2007; Pearman et al. 2008). Holt 
(2009) provides a comprehensive framework to study the 
evolution of the niche. Although, the provisional conclusion 
can be that niches are conserved, which is relevant to the 
reliable use of SDMs; this conclusion is of less importance 
to the assessment of the impact of modelling partial versus 
full SDMs, because the models are not projected in time 
nor space.

Probably the most problematic and controversial for 
the reliable use of SDMs is the assumption that species’ 
distributions are in equilibrium with climate. This was shown 
to be incorrect for European trees which are still filling 
their potential distribution since the last glacial maximum, 
21 kyr before present (Svenning & Skov 2004). Similarly, 
expansions and contractions of the Amazonian rain forest 
under the influence of glacial cycles have been reported 
(Mayle et al. 2000). It is therefore advised that SDMs are 
calibrated across the broadest spatial, environmental and/or 
temporal extents that are biologically and biogeographically 
justifiable to capture a species’ niche in its broadest sense 
(Barve et al. 2011; Araújo & Peterson 2012).

Nonetheless, SDMs are often used to model the distribution 
of species within the artificial boundaries of countries, and 
even provinces (Loiselle et al. 2008; Pineda & Lobo 2009; 
Zhang et al. 2012; among many others), covering a subset 
of species’ niches. Here I assess the impact of modelling 
species’ partial niches on their predicted distributions within 
the artificial boundaries of the ‘landscape of interest’, by 
comparing them with their ‘expected’ distributions (within 
the artificial boundaries) derived from a full niche model 
that takes all available collection localities in account. For 
reasons of clarity; this is different from testing how well 
models fitted within artificial boundaries are capable of 
predicting a species’ full extent of occurrence, known as 
transferability studies (Wenger & Olden 2012; Zurell et al. 
2012).

Partial versus Full Distribution Models

There are several reasons why it is important to include 
as many collections as possible and not to restrict SDMs 
to artificial (political) boundaries. First, the subset likely 
does not include the full environmental variation under 
which a species is known to occur. Second, even within 
the entire range of occurrence, collection localities tend 
to be biased to more accessible areas which can result in 
environmentally biased collections (Reddy & Davalos 
2003; Hortal et al. 2007; Schulman et al. 2007). The use of 
environmentally biased collections to fit an SDM, in turn, 

or the reciprocal correspondence between ecological niche 
space and geographic space. It should be noted, however, 
that any defined ecological niche space derived from the 
observed distribution of species in geographical space is, 
at best a realized niche; unless demonstrated otherwise 
(Colwell & Rangel 2009). The full extent of a species’ 
fundamental niche cannot be revealed by the environmental 
conditions at observed collection localities. Estimation of the 
fundamental niche can only be achieved by experimental 
studies and physiological models (Colwell & Rangel 2009). 
This limitation should be kept in mind while interpreting 
any correlative model derived from observed collection 
localities and the abiotic conditions at those localities. Here, 
I prefer to use the term SDM because this unifies the niche 
concept with its geographical projection.

Question is: what do SDMs model or estimate? The presence 
of a species is determined by three factors that can be 
visualized by three overlapping circles, each representing a 
factor in the ‘BAM’- framework (Soberón & Peterson 2005; 
Soberón 2007; Godsoe 2010). In the ‘BAM’- framework, 
the first circle ‘A’ represents the geographic region with 
the appropriate set of abiotic conditions for the species, 
and may be regarded as the geographic expression of 
the fundamental abiotic niche; the second circle ‘B’ is 
the geographic region where the right combination with 
interacting species occurs, which may or may not overlap 
extensively with ‘A’. The intersection of ‘A’ and ‘B’ represents 
the geographic extent of the realized niche of the species. 
And the third circle ‘M’ is a representation of the geographic 
region that is “accessible” to the species in some ecological 
sense, without barriers to movement and colonization. The 
intersection of the three circles is equivalent to the observed 
geographic distribution of the species. Given that most 
SDMs are fitted on a set of abiotic predictors, the output 
is an approximation of the realized abiotic niche (Colwell 
& Rangel 2009). Because dispersal limitation is (mostly) 
not taken into account when plotting the realized abiotic 
niche in its reciprocal geographic space, the result is the 
geographic representation of a species’ potential distribution 
within the ‘landscape of interest’. The degree to which the 
three factors overlap determines to what extent the observed 
geographic distribution is estimated by the realized abiotic 
niche. Efforts are being made to include dispersal limitation 
and biotic interactions in SDMs (Boulangeat et al. 2012), 
but this requires additional high quality data on dispersal 
mechanisms, life history traits, and species co-occurrences 
which are not available for many species and regions in 
the world.

Furthermore, the application of SDMs builds on number of 
assumptions (Araújo & Peterson 2012). When the intention 
is to predict presence of species for other regions or time 
periods than the ‘landscape of interest’ used to fit the 
SDM i.e. to predict the potential invasiveness, or impacts 
of climate change, it is assumed that species’ niches are 
conserved over relevant time periods, known as niche 
conservatism (Wiens et al. 2010). Wiens et al. (2010) 
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MaxEnt uses presence-only data, it still needs to compare the 
predicted occurrence distribution against a background- or 
pseudo-absence sample. To prevent over-fitting of models 
in relation to the extent of the geographical background 
from where the pseudo-absences are drawn (Lobo et al. 
2008; VanDerWal et al. 2009; Acevedo et al. 2012), I 
restricted the study area to the HT biome as defined by 
WWF (Figure 1b – all grey areas; Olson et al. 2001).

First, I developed 49 Inga SDMs for both the entire HT 
biome and the Brazilian subset. After testing all SDMs for 
significant deviation from random expectation (Raes & 
ter Steege 2007), the SDMs for 36 species pairs were retained. 
Secondly, I thresholded the maps to convert the continuous 
MaxEnt predictions to discrete presence-absence maps. 
Thirdly, I clipped the Brazilian extent from the HT biome 
SDMs, resulting in pairs of presence-absence maps both 
covering the Brazilian extent; one generated within the 
artificial political boundaries of Brazil, and one generated for 
the HT biome and clipped to the Brazilian extent. Finally, I 
assessed map similarities between the 36 paired maps using 
the kappa statistic (Visser & De Nijs 2006), AUC values, 
fraction correct prediction, and percentage difference in 
predicted extent. By subtracting the Brazilian maps from 
their paired clipped HT maps, I was able to identify regions 
with the highest dissimilarities in both geographical and 
environmental space.

Inga collection data

I selected the genus Inga for the following reasons; a) 
the genus was monographed in 1997 (Pennington et al. 
1997), b) has a distribution largely restricted to the HT 

might result in under predicted species’ distributions, 
and is essentially similar to modelling a partial niche. 
Environmental bias is also known to occur within country 
boundaries, as was reported for Ecuador (Loiselle et al. 2008); 
but that this is not necessarily the case, was shown for Israel 
(Kadmon et al. 2004). Third, it is common knowledge that 
the majority of species is rare (Hubbell et al. 2008), hence 
represented by a few collection records in herbaria and 
Natural History Museums. To capture the widest possible 
environmental variation under which a species is known 
to occur, it is important to include as many geographically 
unique collections as possible when constructing an SDM 
(Beaumont et al. 2009; Sánchez-Fernández et al. 2011).

The Inga Example

To illustrate that partial SDMs predict different extents 
of occurrence than full SDMs I worked out an example 
on 36 species of the plant genus Inga modelled for the 
entire Neotropical humid tropics (hereafter HT) biome 
and the Brazilian subset of the HT biome. Brazil covers 
the central subset of the entire HT ecological space 
expressed on the first two axes of a PCA analysis on 
eight least correlated environmental variables (Figure 1; 
see Environmental variables section). From Figure 1 it is 
clear that Inga collections (crosses) also occur outside the 
Brazilian ecological envelope (light grey dots). To model 
the species’ distributions I used the maximum entropy 
algorithm – MaxEnt (Phillips et al. 2006; Elith et al. 2011), 
because this algorithm is performing among the best in 
comparative tests (Elith et al. 2006; Graham et al. 2008; 
Wisz et al. 2008), and also because it was specifically 
developed to model with presence-only data. Although 

Figure  1. Ecological space, plotted on the first two principal components derived from 8 selected and standardized bioclimatic 
variables, of the HT biome (dark grey dots; Figure 2b), the Brazilian subset (light grey dots; Figure 2a), and Inga collections of the 36 
species used in the analysis (black crosses).
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distribution of species relates to climate (Lalonde et al. 2012). 
Therefore, I downloaded the 19 bioclimatic variables, plus 
altitude, at 5 arc-minute spatial resolution downloaded from 
the Worldclim dataset (worldclim.org; Hijmans et al. 2005). 
To restrict the analysis to the broadest spatial extent that is 
biologically and biogeographically justifiable, I clipped the 
Neotropical humid tropics (HT) extent from this dataset 
with Manifold GIS (Manifold Ltd.).

To prevent problems with multi-collinearity and unnecessary 
model complexity, I tested the 20 variables for correlations 
with a Pearson’s r correlation test after standardization 
(mean = 0, sd = 1) of the data. Simultaneously, I performed 
a principal component analysis (PCA) using the function 
‘dudi.pca’ from the R-library ‘ade4’ (Dray & Dufour 2007; R 
Development Core Team 2012). From clusters of correlated 
variables (Pearson’s r > 0.7) I retained one variable with 
the highest eigenvalue on one of the first two PCA axes. 
This resulted in an environmental dataset of eight selected 
variables for the entire HT biome covering 114,904 raster 
cells (Figure 2b – all grey areas; Table 1 – bottom triangle). 
To visualize the HT biome in ecological space I plotted the 

biome (Richardson et al. 2001), and c) I could make use 
of Pennington’s Inga occurrences dataset containing 9,379 
collection records. Additionally, I downloaded all Inga records 
from SpeciesLink (2012) containing 5,842 records. The two 
datasets were merged and cleaned with GoogleRefine, and 
all unique species records per raster cell occurring in the 
HT biome were retained. From this dataset I selected all 
records of Inga species which were represented by at least 
5 records in Brazilian subset of the HT biome, and with 
a maximum of 75% of their records within the political 
boundaries of Brazil. The latter assures that partial SDMs 
are modelled when they are restricted to the Brazilian 
subset. This procedure resulted in 3,607 unique collections 
covering 49 Inga species. After significance testing of the 
SDMs (see below) the SDMs of 36 Inga species were retained 
which were represented by 3,005 unique Inga collections.

Environmental variables

Although edaphic conditions can be very important to the 
definition of a species’ fundamental niche (Tuomisto 2006; 
Bertrand et al. 2012), most of the variation in the geographic 

a

b

c

Figure 2. Map a) shows the partial SDM (dark grey = present/light grey = absent) for Inga alba modelled within the political boundaries 
of Brazil. Black points indicate collection localities. Map b) shows the full SDM (dark grey = present/light grey = absent) for Inga alba 
modelled for the entire Neotropical humid tropics biome; and map c) shows the dissimilarity between both predictions (hatched 
areas) for the Brazilian subset of the Neotropical humid tropics biome (all maps in geographic projection).
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species records is drawn randomly from the environmental 
dataset. These randomly drawn sets are modelled similar 
as the species in MaxEnt. Finally, the SDM AUC values of 
the Inga models are tested against the 95th ranked AUC 
values of the 99 models on sets of equally many random 
points as records of the Inga species which is tested. For 
example, the AUC value of a species represented by 11 
records in the Brazilian subset of the HT biome is tested 
against the 95th ranked AUC value derived from 99 times 11 
randomly drawn and modelled records from the Brazilian 
environmental dataset. A species’ AUC value that is larger 
than the 95th ranked AUC value, indicates that the chance 
that a random set of 11 points results in an equally high 
AUC value is less than 5%, hence significantly better than 
random expectation with p < 0.05 (for details see Raes 
& ter Steege 2007). I only retained the species that had a 
significant SDM for both environmental datasets. This was 
the case for 36, or 73%, of the Inga species. The continuous 
MaxEnt SDMs were converted to discrete presence-absence 
maps by applying the 10% percentile training threshold, 
one of the more conservative thresholds methods.

Data analyses

To assess the impact of modelling species’ partial distributions 
within artificial (political) boundaries compared to what is 
expected based on SDMs fitted on their full distribution I 
subtracted the thresholded map derived from the clipped 
full SDM from the thresholded partial SDM, for each of the 
36 Inga species’ paired maps. This resulted in negative values 
where the partial SDM predicts absence and the clipped full 
SDM presence, or under-prediction by the partial SDM; and 
in positive values where the partial SDM predicts presence 
and the full SDM absence, or over-prediction by the partial 
SDM. At the north-western border of Brazil, in the Amazonas 
province, distributions are under-predicted for 19 of the 
36 Inga species (Figure 3a); and in central Brazil, in the 
western Pará province, there is an over-prediction for 14 
species (Figure 3c) when the distributions of partial SDMs 
are compared to what is expected based on the full SDMs. 
When these values are plotted on the first two PCA axes 

raster cells on the first two principal component (PC) axes 
of a PCA on the eight selected variables (Figure 1). PC1 and 
PC2 explain 46% and 21%, respectively, of the variance in 
the eight selected variables.

Since my intention is to assess whether a partial SDM results 
in the same predicted distribution as the full SDM, I clipped 
the Brazilian subset from the entire HT biome dataset. This 
resulted in the second environmental dataset covering the 
Brazilian extent (64,464 raster cells, or 56%) of the HT 
biome (Figure 2a – all grey areas). The Pearson’s r test for 
the Brazilian subset indicated that bio03 and bio06 had a 
correlation of 0.854 (Table 1 – top triangle; caption gives 
the definition of the variables). For reasons of consistency 
I retained all eight variables in the Brazilian subset. To 
visualize the Brazilian subset in ecological space I plotted 
the Brazilian raster cells over the HT raster cells in the 
PCA graph (Figure 1; light grey dots). Crosses in Figure 1 
represent the Inga collection localities in ecological space.

Species Distribution Models (SDMs) and 
significance testing with a null-model

SDMs were generated for all 49 Inga species on datasets 
of both the partial- and full HT biome. The AUC values 
(Fielding & Bell 1997) of all 98 SDMs were tested for 
significant deviation from random expectation with a 
null-model (Olden et al. 2002; Gotelli & McGill 2006; Raes & 
ter Steege 2007). I recognize that the AUC value as measure 
of model accuracy, when applied to presence-only data 
has flaws, caused by the fact that the maximum achievable 
AUC value is no longer 1, but 1-a/2; where a stands for 
the species’ real distribution, which is typically not known 
(Phillips et al. 2006). However, testing the SDM AUC 
value against a null-distribution of AUC values, identifies 
those SDMs that have a correlation with one, or more, of 
the environmental variables that cannot be expected by 
random chance.

Testing against a null-model works as follows; for each 
number of records by which the modelled species are 
represented, a series of 99 times equally many records as 

Table 1. Pearson’s r correlation for the eight standardized bioclim variables used by the SDMs. 

bio02 bio03 bio05 bio06 bio12 bio17 bio18 bio19
bio02 –0.409 0.206 –0.593 –0.320 –0.494 0.181 –0.551
bio03 –0.337 0.390 0.854 0.600 0.323 –0.153 0.594
bio05 –0.068 –0.008 0.591 0.305 –0.329 –0.353 0.158
bio06 –0.648 0.563 0.692 0.568 0.187 –0.356 0.609
bio12 –0.399 0.480 0.244 0.534 0.591 0.263 0.560
bio17 –0.437 0.408 –0.081 0.281 0.705 0.447 0.409
bio18 0.001 0.030 –0.145 –0.099 0.488 0.559 –0.282
bio19 –0.491 0.526 0.183 0.549 0.675 0.496 –0.040

The bottom triangle (grey cells) represents the Neotropical humid tropics biome (Figure 1b) and the top triangle the Brazilian subset (Figure 1a). Highest 
values printed in bold. bio02 = Mean diurnal range (Mean of monthly (max temp – min temp)); bio03 = Isothermality; bio5 = Maximumtemperature of 
warmest month; bio06 = Minimumtemperature of coldest month; bio12 = Annual precipitation; bio17 = Precipitation of driest quarter; bio18 = Precipitation 
of warmest quarter; bio19 = Precipitation of coldest quarter.
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over-predicted maps on average have a slightly higher Kappa 
value. Secondly, I report the Fraction correct. The Fraction 
correct measure of map similarity is the uncorrected Kappa 
value. The average Fraction correct for both groups is approx. 
85% (Figure 4c; Table 2). Thirdly, I assessed the difference 
in model accuracy based on AUC values. The AUC value 
for the Brazilian extent of the full SDM was calculated on 
the ‘logistic’ MaxEnt predictions clipped to the Brazilian 
extent. The presence localities used to calculate the AUC 
values were the same as the ones used for the paired partial 
Brazilian SDM. The AUC values were calculated with the 
function ‘colAUC’ in the R-library ‘caTools’ (Tuszynski 
2012). Figure 4b shows that the AUC values for both groups 
were slightly higher for the partial SDMs (>0). This can at 
least partly be explained by the fact that the partial SDMs 
were fitted to the collection localities of Brazil alone. This 
can lead to over-fitting as can be concluded for the larger 
group of under- than over-predicting SDMs compared 
the full SDMs. This group has on average an approximate 
20% reduction in their predicted presence compared to 
the full SDMs, as is illustrated by the ‘Percentage difference 
Brazil (partial) vs. HT (full)’ (Figure 4d; Table 2). Note that 
Figure 4d shows the absolute value of the ‘percentage range 
difference’ for the under-predicted models.

the under-predicted raster cells are found in the lower left 
corner of the partial Brazilian ecological space (Figure 3b; 
dark grey color), which is close to a region where many 
collections are found just outside the boundary of the 
Brazilian ecological space (Figure 3b; crosses). Vice versa, 
raster cells representing over-prediction are found in the 
centre of the partial Brazilian ecological space (Figure 3d; 
dark grey color).

From the 36 Inga species there were 26 species with a 
smaller (under-)predicted presence range for partial SDMs, 
compared to what would be expected based on the clipped 
full SDMs (Table 2); and 10 species where the partial SDM 
over-predicted the expected presence extent (Table 2; 
grey bars). For these two groups separately I first assessed 
the similarity between the thresholded presence-absence 
maps of the partial - versus the full SDMs using the Kappa 
statistic implemented in the Map Comparison Kit (Visser 
& De Nijs 2006). The Kappa statistic measures the fraction 
of agreement, corrected for the fraction of agreement 
statistically expected from randomly relocating all cells in the 
compared maps (Hagen 2002). Both Figure 4a and Table 2 
show that partial SDMs of under-predicted maps are on 
average approx. 60% similar to the full SDMs; and that the 

a b

c d

Figure 3. a) Number of partial SDMs that under-predict in Brazil when compared to the full HT biome SDMs (n = 36). Light gray 
area shows the extent of the HT biome; points are Inga collection sites; b) Raster cells representing under-predicted species presence 
(max. 19 – dark gray to white) in Brazil and their position in environmental space of the HT biome plotted on the first 2 PCA axes. 
Crosses indicate Inga collection sites outside Brazil; c) Number of partial SDMs that over-predict in Brazil when compared to the 
full HT biome SDMs (n = 36). Light gray area shows the extent of the HT biome; points are Inga collection sites, and; d) Raster cells 
representing over-predicted species presence (max. 14 – dark gray to white) in Brazil and their position in environmental space of the 
HT biome plotted on the first 2 PCA axes. Crosses indicate Inga collection sites outside Brazil.
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The impact of modelling partial SDMs

The Inga example illustrates that modelling the partial 
niche of species by setting artificial geographical or political 
boundaries results in patterns of predicted presence that 
are different from what can be expected from a full SDM. 
I take the position that full SDMs – taking all possible 
collection localities into account, and fitted within the 
Neotropical humid tropics biome as the biologically and 
biogeographically justifiable ‘landscape of interest’ – as 
the correct predictions to which the partial SDMs are 
compared. Importantly, all SDMs used in the comparisons 
were significantly different from random expectation and 
the lowest AUC value reported was 0.713 (Table 2).

The Kappa values indicate that similarities between the 
partial – and full SDMs are only 60-65% (Figure 4a); and 
when not corrected for the relative contribution of presence 
and absence area – the Fraction correct (Figure 4c), values 
of similarity average around 85%. Although the percentage 
difference in presence cells can be low, as is the case for Inga 
alba (Figure 2a, b; Table 2, –4%), the patterns of predicted 
presence-absence between partial – and full SDMs can be 
very different, which can be concluded from the kappa value 
of 0.630 (Table 2) and the areas of dissimilarity between 
the partial – and full SDM of Inga alba (Figure 2c). The 
AUC values of full SDMs were slightly lower than those 
of partial SDMs (Figure 4c). This can at least partly be 

attributed to the behaviour of the AUC value when applied 
to presence-only data. From the 36 partial SDMs, 26 had a 
smaller (under-)predicted range compared to the full SDMs. 
For the 26 under-predicted models the proportional area 
predicted present is reduced with 25% percent on average 
(Table 2; Figure 4d). This is equivalent to a proportional 
expansion of the ‘landscape of interest’, which also results 
in reduced percentages predicted presence. When AUC 
values are calculated with a background sample drawn from 
a proportional larger ‘landscape of interest’ automatically 
leads to AUC values that tend to be higher (Lobo et al. 
2008, 2010). Therefore, it cannot be concluded from the 
slightly higher AUC values of the 26 under-predicted partial 
SDMs, that these models are more accurate than their full 
SDM counterparts.

This behaviour of the AUC value was also demonstrated 
by null-models, where larger sets of random points result 
in larger predicted presence areas and lower AUC values 
(Raes & ter Steege 2007). It is exactly this behaviour of 
AUC values when applied to presence-only data why all 
SDMs used in this example were tested for significance 
against a null-model (Raes & ter Steege 2007), instead of 
relying on subjective interpretation of AUC values, i.e. AUC 
> 0.8 as a reliable model. An explanation for the slightly 
higher average AUC of the 10 over-predicted partial SDMs 
compared to the full SDMs (Figure 4b) requires further 
study, and challenges the above discussion.

Figure 4. Different measures of model similarity and accuracy for SDMs developed for the partial Brazilian SDM compared to full HT 
biome SDMs for under- and over-predicted species separately; (abs = absolute value).

b

d

a

c
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SDMs not only apply to future projections but also extend 
into the past. Veloz et al. (2012) point out that ‘a realized 
niche at any one time often only represents a subset of climate 
conditions in which a taxon can persist’. These problems 
directly relate to the non-analogue climatic contemporary 
conditions when SDMs are projected to the past or future 
(Roberts & Hamann 2011). SDMs fitted on contemporary 
climatic conditions therefore always are partial SDMs, with 
the possibility to represent truncated niches.

Based on the findings of others reported above and the Inga 
example presented here, I advise that SDMs use presence 
data from the complete distribution range of species, or at 
least from biogeographic instead of political boundaries. 
Furthermore, it should be kept in mind that any SDM is 
partial by nature, which is of special relevance when SDMs 
are projected into the past, present and future.

Acknowledgements

I like to thank Terence D. Pennington for allowing me to 
make use of his Inga dataset, Hans ter Steege for useful 
comments and improvements to the manuscript, and Jesus 
Aguire Gutierrez for his advice on the Map Comparison 
Kit. This research was made possible by NWO – ALW 
grant 819.01.014.

References

Acevedo P  et  al.,  2012. Delimiting the geographical 
background in species distribution modelling. Journal 
of Biogeography,  39(8):1383-1390. http://dx.doi.
org/10.1111/j.1365-2699.2012.02713.x

Araújo MB & Peterson AT, 2012. Uses and misuses of bioclimatic 
envelope modeling. Ecology, 93:1527-1539. PMid:22919900. 
http://dx.doi.org/10.1890/11-1930.1

Barbet-Massin M, Thuiller W & Jiguet F, 2010. How much 
do we overestimate future local extinction rates when 
restricting the range of occurrence data in climate 
suitability models? Ecography, 33:878-886. http://dx.doi.
org/10.1111/j.1600-0587.2010.06181.x

Barve N et al., 2011. The crucial role of the accessible area 
in ecological niche modeling and species distribution 
modeling. Ecological Modelling, 222:1810-1819. http://
dx.doi.org/10.1016/j.ecolmodel.2011.02.011

Beaumont LJ et al., 2009. Different climatic envelopes among 
invasive populations may lead to underestimations 
of current and future biological invasions. Diversity 
and Distributions,  15:409-420. http://dx.doi.
org/10.1111/j.1472-4642.2008.00547.x

Bertrand R, Perez V & Gégout J-C, 2012. Disregarding the 
edaphic dimension in species distribution models leads 
to the omission of crucial spatial information under 
climate change: the case of Quercus pubescens in France. 
Global Change Biology,  18:2648-2660. http://dx.doi.
org/10.1111/j.1365-2486.2012.02679.x

Boulangeat I, Gravel D & Thuiller W, 2012. Accounting 
for dispersal and biotic interactions to disentangle the 
drivers of species distributions and their abundances. 

From the Inga example it can be concluded that modelling 
partial SDMs results in the contraction of many predicted 
distributions to the centre of ecological space (Figure 3d), 
which results in over-prediction in central Brazil when plotted 
in geographic space (Figure 3c); and in under-prediction 
at the artificially set boundaries (Figure 3a), there where 
the ecological gradients extend beyond the set boundary 
(Figure 3b). The under-predicted region in western Brazil 
corresponds with the region with the highest annual 
precipitation in the country (data not shown). Many 
Inga collections originate from localities just across the 
Brazil-Colombia/Peru border (Figure 3a, c, grey dots). 
Furthermore, the eastern side of the Ecuadorian Andes 
was also quite heavily sampled and is known to be humid. 
These conditions cannot be taken into account by the 
partial Brazilian SDMs and therefore result in predicted 
absence from the wetter side of the Brazilian precipitation 
gradient. The vector loading of annual precipitation (bio12) 
to PC1 (Figure 3b) was –0.86, what indicates that annual 
precipitation likely plays a role in the under-prediction of 
the partial SDMs in western Brazil. Partial SDMs, which do 
not take regions with high annual precipitation adequately 
into account in their presence – and background samples, 
result in predicted absence from these regions.

Similar contractions at artificial borders of predicted 
distributions based on partial SDMs were reported for the 
Iberian Peninsula (Sánchez-Fernández et al. 2011). Here I 
show that the geographic region of contraction corresponds 
with an artificial delimitation in ecological space in a 
direction where collections are found to occupy ecological 
space across this artificial boundary (Figure 3b – crosses). 
The over-prediction by partial SDMs in central Brazil is likely 
caused by interpolated environmental conditions between 
the reduced numbers of collections that are available to 
train the partial SDMs. To confirm these suggestions would 
require detailed analyses of species’ individual response 
curves to the environmental gradients; a topic of further/
future study and beyond the scope of this essay.

One of the few studies examining the effects of restricting 
the environmental range of data on the projection, or 
transferability, of SDMs to future climatic conditions 
(Thuiller et al. 2004) concluded that data restriction strongly 
influenced the estimation of the response curves. Notably, 
the effects were strongest towards the upper and lower ends 
of the environmental ranges. Thuiller et al. (2004) state 
that ‘using restricted data is analogous to not capturing 
the full species’ environmental range, reduces strongly the 
combinations of environmental conditions under which 
the models are calibrated, and reduces the applicability 
of the models for predictive purposes. This may generate 
unpredictable effects on the tails of the species response 
curves’. That data limitations can lead to truncated niches 
and unrealistic fits leading to spurious extrapolation to novel 
environments was also reported by Barbet-Massin et al. 
(2010) and Zurell et al. (2012). These findings are supported 
by the Inga example. Problems with transferability of partial 

http://dx.doi.org/10.1111/j.1365-2699.2012.02713.x
http://dx.doi.org/10.1111/j.1365-2699.2012.02713.x
http://dx.doi.org/10.1890/11-1930.1
http://dx.doi.org/10.1111/j.1600-0587.2010.06181.x
http://dx.doi.org/10.1111/j.1600-0587.2010.06181.x
http://dx.doi.org/10.1016/j.ecolmodel.2011.02.011
http://dx.doi.org/10.1016/j.ecolmodel.2011.02.011
http://dx.doi.org/10.1111/j.1472-4642.2008.00547.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00547.x
http://dx.doi.org/10.1111/j.1365-2486.2012.02679.x
http://dx.doi.org/10.1111/j.1365-2486.2012.02679.x


136 Natureza & Conservação 10(2):127-138, December 2012Raes

Guisan A & Zimmermann NE, 2000. Predictive habitat 
distribution models in ecology. Ecological Modelling, 135:147-
186. http://dx.doi.org/10.1016/S0304-3800(00)00354-9

Hagen A, 2002. Multi-method assessment of map similarity. 
In: Proceedings of the 5th AGILE Conference on Geographic 
Information Science; 2002; Palma. Mallorca.

Hijmans RJ et al., 2005. Very high resolution interpolated 
climate surfaces for global land areas. International Journal 
of Climatology, 25:1965-1978. http://dx.doi.org/10.1002/
joc.1276

Holt RD, 2009. Bringing the Hutchinsonian niche into 
the 21st century: Ecological and evolutionary perspectives. 
Proceedings of the National Academy of Sciences, 106:19659-
19665. PMid:19903876 PMCid:2780934. http://dx.doi.
org/10.1073/pnas.0905137106

Hortal J, Lobo JM & Jiménez-Valverde A, 2007. Limitations 
of biodiversity databases: Case study on seed-plant 
diversity in Tenerife, Canary Islands. Conservation 
Biology,  21:853-863. PMid:17531062. http://dx.doi.
org/10.1111/j.1523-1739.2007.00686.x

Hsu RCC et al., 2011. Simulating climate change impacts on 
forests and associated vascular epiphytes in a subtropical 
island of East Asia. Diversity and Distributions, 18(4):334-347.

Hubbell SP et al., 2008. How many tree species are there in the 
Amazon and how many of them will go extinct? Proceedings 
of the National Academy of Sciences, 105:11498-11504. 
PMid:18695228 PMCid:2556410. http://dx.doi.org/10.1073/
pnas.0801915105

Hutchinson GE, 1957. Concluding remarks. Proceedings 
of the Cold Spring Harbor Symposia on Quantitative 
Biology, 22:415-427.

Kadmon R, Farber O & Danin A, 2004. Effect of roadside bias 
on the accuracy of predictive maps produced by bioclimatic 
models. Ecological Applications, 14:401-413. http://dx.doi.
org/10.1890/02-5364

Lalonde VB, Morin A & Currie DJ, 2012. How are tree species 
distributed in climatic space? A simple and general pattern. 
Global Ecology and Biogeography. In press.

Lobo JM, Jiménez-Valverde A & Hortal J, 2010. The uncertain 
nature of absences and their importance in species 
distribution modelling. Ecography, 33:103-114. http://
dx.doi.org/10.1111/j.1600-0587.2009.06039.x

Lobo JM, Jimenez-Valverde A & Real R, 2008. AUC: a misleading 
measure of the performance of predictive distribution 
models. Global Ecology and Biogeography, 17:145-151. 
http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x

Loiselle BA et al., 2008. Predicting species distributions 
from herbarium collections: does climate bias in 
collection sampling influence model outcomes? Journal 
of Biogeography, 35:105-116.

Maiorano L et al., 2012. Building the niche through time: 
using  13,000 years of data to predict the effects of 
climate change on three tree species in Europe. Global 
Ecology and Biogeography. In press. http://dx.doi.
org/10.1111/j.1466-8238.2012.00767.x

Mayle FE, Burbridge R & Killeen TJ, 2000. Millennial-
Scale Dynamics of Southern Amazonian Rain Forests. 

Ecology Letters, 15:584-593. PMid:22462813. http://dx.doi.
org/10.1111/j.1461-0248.2012.01772.x

Broennimann O & Guisan A, 2008. Predicting current and future 
biological invasions: both native and invaded ranges matter. 
Biology Letters, 4:585-589. PMid:18664415 PMCid:2610080. 
http://dx.doi.org/10.1098/rsbl.2008.0254

Broennimann O  et  al.,  2007. Evidence of climatic 
niche shift during biological invasion. Ecology 
Letters,  10:701-709. PMid:17594425. http://dx.doi.
org/10.1111/j.1461-0248.2007.01060.x

Cayuela L et al., 2009. Species distribution modeling in the 
tropics: problems, potentialities, and the role of biological 
data for effective species conservation. Tropical Conservation 
Science, 2:319-352.

Colwell RK & Rangel TF, 2009. Hutchinson’s duality: The once 
and future niche. Proceedings of the National Academy of 
Sciences, 106:19651-19658. PMid:19805163 PMCid:2780946. 
http://dx.doi.org/10.1073/pnas.0901650106

Dray S & Dufour AB, 2007. The ade4 Package: Implementing 
the Duality Diagram for Ecologists. Journal of Statistical 
Software, 22:20.

Elith J et al., 2006. Novel methods improve prediction of species’ 
distributions from occurrence data. Ecography, 29:129-151. 
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x

Elith J et al., 2011. A statistical explanation of MaxEnt for 
ecologists. Diversity and Distributions, 17:43-57. http://
dx.doi.org/10.1111/j.1472-4642.2010.00725.x

Evans, MEK et al., 2009. Climate, Niche Evolution, and 
Diversification of the “Bird-Cage” Evening Primroses 
(Oenothera, Sections Anogra and Kleinia). The American 
Naturalist, 173:225-240. PMid:19072708. http://dx.doi.
org/10.1086/595757

Fielding AH & Bell JF, 1997. A review of methods for the 
assessment of prediction errors in conservation presence/
absence models. Environmental Conservation, 24:38-49. 
http://dx.doi.org/10.1017/S0376892997000088

Franklin J, 2009. Mapping Species Distributions: Spatial Inference 
and Prediction. Cambridge: Cambridge University Press.

Godsoe W, 2010. I can’t define the niche but I know it when 
I see it: a formal link between statistical theory and 
the ecological niche. Oikos, 119:53-60. http://dx.doi.
org/10.1111/j.1600-0706.2009.17630.x

Godsoe W, 2012. Are comparisons of species distribution models 
biased? Are they biologically meaningful? Ecography, 35:769-
779. http://dx.doi.org/10.1111/j.1600-0587.2012.07456.x

Gotelli NJ & McGill BJ, 2006. Null versus neutral models: 
What’s the difference? Ecography, 29:793-800. http://dx.doi.
org/10.1111/j.2006.0906-7590.04714.x

Graham CH et al., 2008. The influence of spatial errors in 
species occurrence data used in distribution models. 
Journal of Applied Ecology, 45:239-247. http://dx.doi.
org/10.1111/j.1365-2664.2007.01408.x

Grinnell J, 1917. The niche relationships of the California 
thrasher. Auk, 34:427-433. http://dx.doi.org/10.2307/4072271

http://dx.doi.org/10.1016/S0304-3800(00)00354-9
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1073/pnas.0905137106
http://dx.doi.org/10.1073/pnas.0905137106
http://dx.doi.org/10.1111/j.1523-1739.2007.00686.x
http://dx.doi.org/10.1111/j.1523-1739.2007.00686.x
http://dx.doi.org/10.1073/pnas.0801915105
http://dx.doi.org/10.1073/pnas.0801915105
http://dx.doi.org/10.1890/02-5364
http://dx.doi.org/10.1890/02-5364
http://dx.doi.org/10.1111/j.1600-0587.2009.06039.x
http://dx.doi.org/10.1111/j.1600-0587.2009.06039.x
http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x
http://dx.doi.org/10.1111/j.1466-8238.2012.00767.x
http://dx.doi.org/10.1111/j.1466-8238.2012.00767.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01772.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01772.x
http://dx.doi.org/10.1098/rsbl.2008.0254
http://dx.doi.org/10.1111/j.1461-0248.2007.01060.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01060.x
http://dx.doi.org/10.1073/pnas.0901650106
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1086/595757
http://dx.doi.org/10.1086/595757
http://dx.doi.org/10.1017/S0376892997000088
http://dx.doi.org/10.1111/j.1600-0706.2009.17630.x
http://dx.doi.org/10.1111/j.1600-0706.2009.17630.x
http://dx.doi.org/10.1111/j.1600-0587.2012.07456.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04714.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04714.x
http://dx.doi.org/10.1111/j.1365-2664.2007.01408.x
http://dx.doi.org/10.1111/j.1365-2664.2007.01408.x
http://dx.doi.org/10.2307/4072271



137Partial versus Full Species Distribution Models

incorporate global data misrepresent potential 
distributions: a case study using Iberian diving beetles. 
Diversity and Distributions, 17:163-171. http://dx.doi.
org/10.1111/j.1472-4642.2010.00716.x

Schulman L, Toivonen T & Ruokolainen K, 2007. Analysing 
botanical collecting effort in Amazonia and correcting for it 
in species range estimation. Journal of Biogeography, 34:1388-
1399. http://dx.doi.org/10.1111/j.1365-2699.2007.01716.x

Soberón J,  2007. Grinnellian and Eltonian niches 
and geographic distributions of species. Ecology 
Letters, 10:1115-1123. PMid:17850335. http://dx.doi.
org/10.1111/j.1461-0248.2007.01107.x

Soberón J & Peterson AT, 2005. Interpretation of models of 
fundamental ecological niches and species’ distributional 
areas. Biodiversity Informatics, 2:1-10.

SpeciesLink. Sistema de informação distribuído para coleções 
biológicas. Centro de Referência em Informação Ambiental-
CRIA Available from: <http://www.splink.cria.org.br>. 
Access in: 29 July 2012.

Svenning J-C & Skov F, 2004. Limited filling of the potential 
range in European tree species. Ecology Letters, 7:565-573. 
http://dx.doi.org/10.1111/j.1461-0248.2004.00614.x

Thuiller W et al., 2004. Effects of restricting environmental 
range of data to project current and future species 
distributions. Ecography,  27:165-172. http://dx.doi.
org/10.1111/j.0906-7590.2004.03673.x

Tilman D, 1982. Resource Competition and Community Structure. 
Princeton: Princeton University Press. PMid:7162524.

Tuomisto H, 2006. Edaphic niche differentiation among 
Polybotrya ferns in western Amazonia: implications for 
coexistence and speciation. Ecography, 29:273-284. http://
dx.doi.org/10.1111/j.2006.0906-7590.04390.x

Tuszynski J, 2012. caTools: Tools: moving window statistics, 
GIF, Base64, ROC AUC, etc.

Van Welzen PC et al., 2011. The current and future status of 
floristic provinces in Thailand. In: Trisurat Y, Shrestha RP 
& Alkemade R, editors. Land Use, Climate Change and 
Biodiversity Modeling: Perspectives and Applications. Hershey: 
IGI Globa. p. 219-247. http://dx.doi.org/10.4018/978-1-
60960-619-0.ch011

VanDerWal J et al., 2009. Selecting pseudo-absence data for 
presence-only distribution modeling: How far should you 
stray from what you know? Ecological Modelling, 220:589-594. 
http://dx.doi.org/10.1016/j.ecolmodel.2008.11.010

Veloz SD et al.,  2012. No-analog climates and shifting 
realized niches during the late quaternary: implications 
for 21st-century predictions by species distribution 
models. Global Change Biology, 18:1698-1713. http://
dx.doi.org/10.1111/j.1365-2486.2011.02635.x

Visser H & De Nijs T, 2006. The Map Comparison Kit. 
Environmental Modelling & Software, 21:346-358. http://
dx.doi.org/10.1016/j.envsoft.2004.11.013

Wenger SJ & Olden JD, 2012. Assessing transferability of 
ecological models: an underappreciated aspect of statistical 
validation. Methods in Ecology and Evolution, 3:260-267. 
http://dx.doi.org/10.1111/j.2041-210X.2011.00170.x

Science, 290:2291-2294. PMid:11125139. http://dx.doi.
org/10.1126/science.290.5500.2291

Olden JD, Jackson DA & Peres-Neto PR, 2002. Predictive 
Models of Fish Species Distributions: A Note on Proper 
Validation and Chance Predictions. Transactions of the 
American Fisheries Society, 131:329-336. http://dx.doi.
org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2

Olson DM et al., 2001. Terrestrial ecoregions of the world: A 
new map of life on earth. Bioscience, 51:933-938. http://
dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTW
A]2.0.CO;2

Pearman PB et al., 2008. Niche dynamics in space and time. 
Trends in Ecology & Evolution, 23:149-158. PMid:18289716. 
http://dx.doi.org/10.1016/j.tree.2007.11.005

Pennington TD et al., 1997. The genus Inga: Botany. London: 
Royal Botanical Gardens, Kew.

Peterson AT et al., 2011. Ecological Niches and Geographic 
Distributions. Princeton: Princeton University Press.

Phillips SJ, Anderson RP & Schapire RE, 2006. Maximum 
entropy modeling of species geographic distributions. 
Ecological Modelling, 190:231-259. http://dx.doi.org/10.1016/j.
ecolmodel.2005.03.026

Pineda E & Lobo JM, 2009. Assessing the accuracy of 
species distribution models to predict amphibian 
species richness patterns. Journal of Animal 
Ecology,  78:182-190. PMid:18771504. http://dx.doi.
org/10.1111/j.1365-2656.2008.01471.x

R Development Core Team, 2012. R: A language and environment 
for statistical computing. Vienna: R Foundation for Statistical 
Computing. Available from: <http://www.R-project.org>.

Raes N et al., 2009. Botanical richness and endemicity 
patterns of Borneo derived from species distribution 
models. Ecography,  32:180-192. http://dx.doi.
org/10.1111/j.1600-0587.2009.05800.x

Raes N & ter Steege H, 2007. A null-model for significance 
testing of presence-only species distribution 
models. Ecography,  30:727-736. http://dx.doi.
org/10.1111/j.2007.0906-7590.05041.x

Raxworthy CJ et al., 2003. Predicting distributions of known and 
unknown reptile species in Madagascar. Nature, 426:837-841. 
PMid:14685238. http://dx.doi.org/10.1038/nature02205

Reddy S & Davalos LM, 2003. Geographical sampling bias 
and its implications for conservation priorities in Africa. 
Journal of Biogeography, 30:1719-1727. http://dx.doi.
org/10.1046/j.1365-2699.2003.00946.x

Richardson JE  et  al.,  2001. Rapid Diversification of a 
Species-Rich Genus of Neotropical Rain Forest Trees. 
Science, 293:2242-2245. PMid:11567135. http://dx.doi.
org/10.1126/science.1061421

Roberts DR & Hamann A,  2011. Predicting potential 
climate change impacts with bioclimate envelope 
models: a palaeoecological perspective. Global 
Ecology and Biogeography, 21:121-133. http://dx.doi.
org/10.1111/j.1466-8238.2011.00657.x

Sánchez-Fernández D, Lobo JM & Hernández-Manrique 
OL,  2011. Species distribution models that do not 

http://dx.doi.org/10.1111/j.1472-4642.2010.00716.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00716.x
http://dx.doi.org/10.1111/j.1365-2699.2007.01716.x

http://dx.doi.org/10.1111/j.1461-0248.2007.01107.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01107.x
http://www.splink.cria.org.br
http://dx.doi.org/10.1111/j.1461-0248.2004.00614.x
http://dx.doi.org/10.1111/j.0906-7590.2004.03673.x
http://dx.doi.org/10.1111/j.0906-7590.2004.03673.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04390.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04390.x
http://dx.doi.org/10.4018/978-1-60960-619-0.ch011
http://dx.doi.org/10.4018/978-1-60960-619-0.ch011
http://dx.doi.org/10.1016/j.ecolmodel.2008.11.010
http://dx.doi.org/10.1111/j.1365-2486.2011.02635.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02635.x
http://dx.doi.org/10.1016/j.envsoft.2004.11.013
http://dx.doi.org/10.1016/j.envsoft.2004.11.013
http://dx.doi.org/10.1111/j.2041-210X.2011.00170.x
http://dx.doi.org/10.1126/science.290.5500.2291
http://dx.doi.org/10.1126/science.290.5500.2291
http://dx.doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2

http://dx.doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2

http://dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
http://dx.doi.org/10.1016/j.tree.2007.11.005
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1365-2656.2008.01471.x
http://dx.doi.org/10.1111/j.1365-2656.2008.01471.x
http://www.R-project.org
http://dx.doi.org/10.1111/j.1600-0587.2009.05800.x
http://dx.doi.org/10.1111/j.1600-0587.2009.05800.x
http://dx.doi.org/10.1111/j.2007.0906-7590.05041.x
http://dx.doi.org/10.1111/j.2007.0906-7590.05041.x
http://dx.doi.org/10.1038/nature02205
http://dx.doi.org/10.1046/j.1365-2699.2003.00946.x
http://dx.doi.org/10.1046/j.1365-2699.2003.00946.x
http://dx.doi.org/10.1126/science.1061421
http://dx.doi.org/10.1126/science.1061421
http://dx.doi.org/10.1111/j.1466-8238.2011.00657.x
http://dx.doi.org/10.1111/j.1466-8238.2011.00657.x


138 Natureza & Conservação 10(2):127-138, December 2012Raes

Wiens JJ et al., 2010. Niche conservatism as an emerging 
principle in ecology and conservation biology. Ecology 
Letters, 13:1310-1324. PMid:20649638. http://dx.doi.
org/10.1111/j.1461-0248.2010.01515.x

Wisz MS  et  al.,  2008. Effects of sample size on the 
performance of species distribution models. 
Diversity and Distributions, 14:763-773. http://dx.doi.
org/10.1111/j.1472-4642.2008.00482.x

Yesson C & Culham A, 2006. Phyloclimatic Modeling: 
Combining Phylogenetics and Bioclimatic Modeling. 

Systematic Biology, 55:785-802. PMid:17060200. http://
dx.doi.org/10.1080/1063515060081570

Zhang M-G et al., 2012. Using species distribution modeling 
to improve conservation and land use planning of Yunnan, 
China. Biological Conservation, 153:257-264. http://dx.doi.
org/10.1016/j.biocon.2012.04.023

Zurell D, Elith J & Schröder B, 2012. Predicting to new 
environments: tools for visualizing model behaviour 
and impacts on mapped distributions. Diversity 
and Distributions,  18:628-634. http://dx.doi.
org/10.1111/j.1472-4642.2012.00887.x

Received: August 2012 
First Decision: September 2012 

Accepted: October 2012

http://dx.doi.org/10.1111/j.1461-0248.2010.01515.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01515.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
http://dx.doi.org/10.1080/1063515060081570
http://dx.doi.org/10.1080/1063515060081570
http://dx.doi.org/10.1016/j.biocon.2012.04.023
http://dx.doi.org/10.1016/j.biocon.2012.04.023
http://dx.doi.org/10.1111/j.1472-4642.2012.00887.x
http://dx.doi.org/10.1111/j.1472-4642.2012.00887.x

