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Abstract: Karstic watersheds are one of the most important areas for water supply.

Because the role of groundwater contribution to surface water flow in karst watersheds is

not well understood, the commonly used hydrologic models in most regular basins do

not provide satisfactory estimates of runoff in karstic regions. This paper uses time-series

analysis to model karstic flow in the Sangsoorakh karst drainage basin in the Karkheh
subbasin of southwest Iran. The comparison of model forecasting performance was

conducted based upon graphical and numerical criteria. The results indicate that

autoregressive integrated moving average (ARIMA) models perform better than

deseasonalized autoregressive moving average (DARMA) models for weekly, monthly

and bimonthly flow forecasting applications in the study area.

INTRODUCTION

Accurate simulation and forecasting of water avail-

ability is a key step in efficient planning, operation, and

management of water resources. Developing reliable sur-

face water flow forecasting methods for real-time opera-

tional water resources management becomes increasingly

important. Various approaches, including physical and

mathematical models, have been used for this purpose. The

problem is more complicated in karstic basins due to the

nature of the dynamic processes involved. Therefore,

karstic basins should be considered distinct from other

drainage areas (LeGrand, 1973). As Graupe et al. (1976)

noted, karstic basins respond differently to rainfall than do

non-karstic drainage areas in such a way that a part of the

precipitation is often stored in underground storage spaces

that discharges at springs after a delay and long after the

rainfall has ceased. Hence, surface hydrology rules and

relationships that are valid in non-karstic watersheds have

a more complex situation in karstic basins.

Similarities of karstic aquifers to surface networks and

their consistency throughout the whole of the karst

drainage network are generally unknown (Glennon and

Groves, 2002). Discrete recharge to a karst aquifer occurs

through openings such as sinkholes. Karst aquifers

recharged in this manner typically have numerous inputs

of surface water to the subsurface with water draining

along cracks, fissures, and zones of weakness in soluble

bedrock (Lerch et al., 2005). Because karstic flow networks

occur underground, karst drainage basins possess complex

boundaries and inexact and sometimes unknown subsur-

face flow routes. Limestone basins behave differently from

normal surface stream systems because of the nature of the

underground drainage (Jakeman et al., 1984). Therefore,

the commonly used surface hydrology models, such as

curve number or rational method, which provides satisfac-

tory estimates of runoff in most regular basins, may not

provide accurate results in karstic regions.

Schomberg et al. (2005) analyzed 72 ungauged,

agricultural watersheds in Minnesota and Michigan using

the hydrologic model SWAT to determine the effects of

land use and surficial geology on stream flow, sediment,

and nutrients. Some streams in those watersheds are

influenced by karst topography. They found seasonal and

annual differences in flow and nutrient and sediment

loading across different land forms and land use types.

Jourde et al. (2007) analyzed the contribution of karst

groundwater to surface water flow using a hydrologic

model. They found that the model was unable to replicate

recorded flood hydrographs at both the upstream (non-

karstic watershed) and downstream (karstic watershed)

gauging stations.

Time-series analysis (Box and Jenkins, 1976) has been

widely used in the field of hydrology and water resources

for simulation and forecasting (Hipel and McLeod, 1994).

Time-series analysis provides effective tools for selecting a

model that describes the historical time series behavior.

Selected models could be used to forecast future events.

Studies have shown that stochastic time-series models are

very useful within the field of complex karstic flow systems,

when detailed information are not available (Graupe et al.,

1976; Jakeman et al., 1984; Dimitrov et al., 1997). The

behavior and the response function of the karstic system

can be characterized by autoregressive models, spectral and

cross correlation analyses, and transfer function noise.

Autoregressive stochastic methods have been used by Ozis
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and Keloglu (1976) for flow simulation in karstic basins in

Turkey. In these basins, karstified limestone formations are

predominant. In most basins, daily and monthly first order
autoregressive models were the most appropriate stochastic

models. Graupe et al. (1976) used an autoregressive model

and moving average for simulating and forecasting flow in

karstic basins. In their research, Graupe et al. found that

the first order autoregressive model for partial karstic

basins and second order autoregressive model for complete

karstic basins were identified as the best models. A

mathematical overview of single and cross correlation
and spectral analyses was presented by Mangin (1984).

Dimitrov et al. (1997) also used time series stochastic

models including autoregression on the dependent variable

as well as on the residuals and multiple regression using

different time lags in a karstic basin in Bulgaria. In this

basin, the limestone thickness varied within the range 20–

250 m. The average elevation of the basin was about 800–

1000 m. The Upper Cretaceous limestone is highly
karstified and both surface and underground karst forms

exist. They concluded that the stochastic linear differential

equation with independent error process was the best

approach for flow estimation when detailed information on

the rainfall-runoff processes is not available. Mathevet et

al. (2004) analyzed the hydrological functioning of a karst

system using some time-series analysis methods including

correlation and spectral analyses and noise and wavelet
analyses. The non-stationary and timescale-dependent

behavior of the system was studied.

The objective of this research was to develop and

compare two stochastic models for flow forecasting in the

Sangsoorakh karst basin located in the Karkheh sub-basin

in southwest Iran. The models are based on a seasonal

autoregressive integrated moving average (ARIMA) and a
deseasonalized autoregressive moving average (DARMA).

For this study, stochastic approaches were used to develop

weekly, monthly, and bi-monthly flow simulation and

forecasting models.

METHODS AND MATERIALS

STUDY AREA

The Sangsoorakh karst drainage basin covers an area of

53.4 km2 in the Karkheh subbasin in southwest Iran (Fig. 1).
The highest elevation of the basin is 3498 m in southeastern

portion and the lowest is 1760 m in the northeastern portion.

The average rainfall is 636 mm yr21 (Jalalvand, 1999). The

average annual discharge of the basin at the hydrometric

station is 4.2 m3 s21. The estimated runoff coefficient is

about 0.32 (Jalalvand, 1999). The average monthly tem-

perature is 6.1 uC with a minimum of 27.5 uC in December

and a maximum of 19.0 uC in August. The soil in the area is
mountainous with shallow depth and light texture (sandy)

and with plenty of stones and gravels. This area is covered

by natural rangeland especially near Sarab-Gamasyab

Spring (Fig. 2). Most parts of the basin are karstic

(Jalalvand, 1999). Flow simulation and forecasting is very

important in the study area for management of water

resources, estimation and prediction of spring floods, and

for water supply planning. Furthermore, increasing the
relative accuracy for flow forecasting in high- and low-flow

seasons for efficient water resources management has special

economic values.

DATA

The data collected in this study consisted of weekly,

monthly, and bimonthly flow rates, which were measured

using a hydrometric gauge at the outlet of the basin. The

data period for this study was for the water years of 1979–

80 to 2003–04. A split sample procedure was used for

calibration and validation. In each of the weekly, monthly,

and bi-monthly databases, flow data from 1979–80 to
1997–98 were used for calibration and data from 1998–99

to 2003–04 for validation.

GEOLOGY OF THE BASIN

This area is located in the overthrusted Zagros zone. It

is an intensely fractured and faulted narrow band found

between Sanandaj-Syrjan and the folded Zagros zones

Figure 1. Location of Sangsoorakh Basin in the Karkheh

Basin in western Iran.
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(Fig. 2). The top part of region is mainly covered by

sedimentary and metamorphic rocks. Sedimentary rocks

consist of karstic limestone and conglomerates. Meta-

morphic formations mostly consist of crystallized lime-

stone and low-grade metamorphic shale that are white-gray

to dark-gray in color, and in some cases, there are lime-

marl to marl layers. Geomorphic activities have created

many clay and calcite filled pores.

In Figure 2, the first geologic unit, Cretaceous rocks

from oldest to youngest are indicated as K1vl, K1le, K1lw.
K1lv is a pyroclastic member that consists of crystallized

limestone and volcanic rocks. As shown in Figure 2, these

rocks cover most of the northern region around the basin

outlet. The second member, K1le, consists of carbonate

rocks such as weathered microsparite and dolomicrite in

various shades of gray color in the north and northwestern

part of the region. Therefore, it can be said that these are an

indicator facie among other facies. K1lw is a thick to
massive member that is crystallized white limestone and is

located in northwestern part of the region. According to the

Nahavand geological map (1:100,000), all these members

belong to the lower Cretaceous period (Jalalvand, 1999).

The second unit is ophiolite that is exposed along Garin

Mountain in Nahavand-Nourabad road. It is about 10-km-

long and more than 200-m-wide. It is the main outcrop in

the basin and consists of red plugic limestone and

radiolarian cherts within basaltic volcanic rocks. This unit

has been covered by Oligo-Miocene deposits.

Tertiary deposits of Oligo-Miocene age cover 80 percent

of the basin, and consist of OM and M1 members. OM is a

kind of tectonic thrusted member that is composed of sand,
shale, and siltstone with thin layers of gray limestone. As a

result of faulting, bedding slopes in varying directions, and

in some places, are near vertical. The limestone has many

microfossil traces. The thickness of micro-conglomerates is

about 10 m and consists of shale, crystallized limestone,

and old sandstone. The microfossils were studied in a thin

carbonate layer and were found to belong to upper-

Oligocene and lower-Miocene units (Jalalvand, 1999).

M1, which is located in the southern part of Garin

Mountain, is 360–400-m-thick and composed of biomicrite
carbonate rocks with many microfossil traces. There are

many macropores in this unit caused by infiltrating surface

water and dissolution of limestone, which led to the

creation of a karstic environment. In addition, canyons,

clints, and avens are some other forms of karst morphology

that exist in this unit.

TIME SERIES ANALYSIS

Time-series models can be used to describe the

stochastic structure of a hydrologic data series. In this

study, the ARIMA (Box and Jenkins, 1976) and the

DARMA (Hipel and McLeod, 1994) models were used to

model weekly, monthly, and bimonthly flow time series.

The ARIMA model is constructed using a combination

of moving average (MA) and autoregressive (AR) pro-

cesses, after differencing the data to remove nonstationar-
ity. For the nonseasonal component of a seasonal ARIMA

model, the MA operator is written as

h Bð Þ~1{h1B{h2B2{ . . . {hqBq ð1Þ

where q is the order of the nonseasonal MA operator, hj, j

5 1, 2, …, q, are the MA parameters, and B is the
backward shift operator such that BZt 5 Zt-1. The AR

operator is written as

w Bð Þ~1{w1B{w2B2{ . . . {wpBp ð2Þ

where p is the order of the nonseasonal AR operator, and

wi, i 5 1, 2, …, p, are the nonseasonal AR parameters. The
nonseasonal ARIMA model for a set of equispaced

measurements, Z~fZ1,Z2,:::,Zng, can be written as

w Bð Þ 1{Bð Þd Ztð Þ~h Bð Þat ð3Þ

where d is the number of differences, t is discrete time, and

at is the white noise series which has a finite variance and a
mean of zero. Differencing removes nonstationarity in a

time series. When differencing is not required, the model is

referred to as an ARMA model. Construction of ARIMA

models is conducted based on the three stages of model

Figure 2. Sangsoorakh geology map and its karstic forma-

tions (Jalalvand, 1999).
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building: identification, estimation, and diagnostic check-

ing, which is discussed in detail by Hipel et al. (1977). The

95% confidence limits are calculated using

Var pk½ �%
1

N
1z2

Xq

i~1

p2
i

 !
for kwqð Þ ð4Þ

under the assumption that pk is zero for all nonzero lag and

N is length of the data series

The nonseasonal ARIMA model in Equation (3) can be

expanded to the seasonal case by adding seasonal

differencing, as well as seasonal MA and AR operators

to produce the seasonal ARIMA model defined as

w Bð ÞW Bsð Þ 1{Bð Þd 1{Bsð ÞD Zt{mð Þ~h Bð ÞH Bsð Þat ð5Þ

for which

1. the seasonal length is s (s 5 12 for monthly data),

2. (1{Bs)D is the seasonal differencing operator of

order D,

3. H Bsð Þ~1{H1Bs{H2B2s{ . . . {HQBQs is the sea-

sonal MA operator of order Q,

4. Hi is the ith seasonal MA parameter,

5. and W(Bs)~1{W1Bs{W2B2s{ . . . {WpBPs is the

seasonal AR operator of order P where Wi is the

ith seasonal AR parameter.

The notation (p,d,q)(P,D,Q)s is used to represent the

seasonal ARIMA model in Equation (5). The three entries

within the first set of parentheses stand for the orders of the

nonseasonal AR, differencing, and MA operators, respec-

tively, while the three numbers contained inside the second

set of parentheses give the orders of the seasonal AR,

differencing, and MA operators, respectively. Finally, prior

to fitting the seasonal ARIMA model in Equation (6) to

the Zt time series, the series may first be transformed by a

Box-Cox transformation, for which a logarithmic trans-

formation is a special case, to eliminate problems with non-

normality and heteroscedasticity in the estimated model

residuals (Hipel and McLeod, 1994).

The second stochastic method, DARMA is a widely

used approach to model seasonal data series. In this

method, first the series should be deseasonalized and then

an appropriate nonseasonal stochastic model fit to the

deseasonalized data. Two standard deseasonalization

techniques that have been widely used are

wi,j~Zl
i,j{�mmj ð6Þ

and

wi,j~
Zl

i,j{�mmj

� �
�ssj

ð7Þ

where Zi,j is the transformed observation for the ith year, jth

month, mmj is the fitted mean for season j, ssj is the fitted

standard deviation for season j, and the superscript l is the

exponent of an appropriate Box-Cox transformation (Hipel

and McLeod, 1994). After the series are deseasonalized,

nonseasonal ARMA models are fitted to the data. Finally,

the notation DARMA (p,q) is employed to represent this

type of deseasonalized model where p and q stand for the

orders of the nonseasonal and seasonal AR and MA

operators presented in Equations (2) and (1), respectively.

Calibration of time-series models is conducted based on

the three stages of model building: identification, estimation,

and diagnostic checking (Box and Jenkins, 1976; Hipel et al.,

1977; Hipel and McLeod, 1994). The purpose of the

identification stage is to determine the differencing required

to produce stationarity and the persistence structure in the

series using interpretation of the autocorrelation function

Figure 3. ACF for the monthly flow data series for the

Sangsoorakh Hydrometric Station.
Figure 5. PACF for the seasonally differenced monthly flow

data series for the Sangsoorakh Hydrometric Station.

Figure 4. ACF for the seasonally differenced monthly flow

data series for the Sangsoorakh Hydrometric Station.
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(ACF) and the partial autocorrelation function (PACF). In

the estimation stage, the approximate maximum likelihood

estimates (MLEs) for the model parameters is obtained by

employing the unconditional sum of squares method, as

suggested by Box and Jenkins (1976). The third stage of

time-series analysis consists of diagnostic checking of the

estimated model residuals and is used to evaluate the

ARIMA and DARMA models performance. To determine
whether the residual are white noise and normally indepen-

dently distributed, residual autocorrelation function

(RACF) tests (Hipel et al., 1977) are employed. The Akaike

information criteria (AIC) (Akaike, 1974) and Schwars’

approximation of the Bayes Information Criterion (BIC)

(Schwars, 1978) were utilized to select the most appropriate

model from the candidate set of calibrated models

AIC~{2Ln MLð Þz2K ð8Þ

BIC~{2Ln MLð ÞzKLn nð Þ ð9Þ

where ML is maximum likelihood, K is the number of

adjustable parameters, and n is the length of the time series.

The optimal model is chosen to minimize the AIC or BIC

criterion, depending on which criterion is selected.

For validation of the models, one-step-ahead forecasts

for the test portion of the time series were generated using

the selected set of calibrated models. Plotting the observed

and estimated data series for each model could be used as

an indication of reliability of the models at the validation

stages. The forecasting performance of all the models at the

validation stage was compared based on the mean absolute

error (MAE), root mean square error (RMSE), and Nash-

Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), as

defined in Equations 10, 11 and 12. The procedure having

lower MAE and RMSE values can be assumed to be the

most accurate model for flow forecasting in the study area.

NSE values equal to 1 indicate a perfect fit between

simulated and observed data. An NSE value of 0 indicates

that the model predictions are not acceptable (Motovilov et

al., 1999). To investigate the models’ overall forecasting

performance at the verification stage, the coefficients of

determination (R2) were considered. R2 indicates the

strength of fit between observed and forecasted stream

flow and it has the range of values between 0 and 1.

MAE~
1

n

Xn

i~1

XOi{XEi½ � ð10Þ

Table 1. Selected ARIMA models and the model parameters.

Time Interval Model

Model Parameters

p1 p2 p3 q1 P1 Q1

Weekly ARIMA(3,0,0)(0,1,1)52 0.885 … … 0.089 0.062 0.687

ARIMA(3,0,1)(0,1,1)52 0.885 … 0.662 20.009 20.384 1.345
ARIMA(2,0,0)(0,1,1)52 0.888 … … … 0.124 0.698

ARIMA(1,0,0)(0,1,1)52 0.890 … … … … 0.798

Monthly ARIMA(1,0,0)(0,1,1)12 0.889 … … … … 0.594

ARIMA(1,0,1)(0,1,1)12 0.890 … 0.138 … … 0.684
ARIMA(2,0,1)(0,1,1)12 0.890 … 20.772 … 0.552 20.220

ARIMA(3,0,1)(0,1,1)12 0.885 … 20.733 20.005 0.537 20.182

Bimonthly ARIMA(1,0,1)(1,1,1)6 0.876 20.185 20.193 … … 0.387
ARIMA(1,0,0)(1,1,1)6 0.875 20.201 … … … 0.526

ARIMA(2,0,1)(1,1,1)6 0.877 20.185 20.523 … 0.185 0.057

ARIMA(2,0,0)(1,1,1)6 0.875 20.191 … … 20.056 0.557

The notation (p,d,q)(P,D,Q)s is used to represent the seasonal ARIMA model in which p, d and q are order of the nonseasonal AR, differencing and MA operators respectively.

P, D and Q are the order of the seasonal AR, differencing and MA operators and s is number of season per year.

Table 2. Selected DARMA models and the

model parameters.

Time

Interval Model

Model Parameters

p1 p2 p3 q1

Weekly DARMA(3,0) 0.686 0.065 0.077 …

DARMA(2,1) 1.256 20.324 … 0.571

DARMA(1,1) 0.854 … … 0.178

DARMA(1,0) 0.789 … … …

Monthly DARMA(1,1) 0.671 … … 0.161

DARMA(1,0) 0.562 … … …

DARMA(2,1) 20.131 0.543 … 20.846

DARMA(2,0) 0.498 0.112 … …

Bimonthly DARMA(1,1) 0.335 … … 20.224

DARMA(1,0) 0.503 … … …

DARMA(2,1) 20.066 0.22 … 20.624

DARMA(2,0) 0.538 20.068 … …

The notation (p,q) is used to represent the deseasonalized ARMA model in which p

and q are order of the nonseasonal AR and MA operators respectively.
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RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

XOi{XEi½ �2
s

ð11Þ

NSE~ 1{

P
XO i{XE i

� �2

P
XO i{XO i

� �2

0
B@

1
CA ð12Þ

where n is number of data observations, XO i is observed

value, XE i is estimated value, and XO i is the average of

observed values.

RESULTS AND DISCUSSION

Weekly, monthly, and bimonthly stochastic ARIMA

and DARMA models were developed using a time-series

analysis procedure for the basin under study. To determine

the autocorrelation structure in the series, we plotted the

ACF and PACF that reflect linear dependence among

observations separated by different time lags. As an

example, the ACF for the monthly flow is illustrated in

Figure 3. The ACF follows an attenuating sine wave

pattern. Examination of this function revealed that the

data have seasonality, which requires removal using one

order of seasonal differencing.

Figures 4 and 5 show the ACF and PACF, respectively,

for the seasonally differenced monthly flow-time series. As

Table 3. Comparison of the selected ARIMA models.

Time Interval Model

Comparison Criteria

AIC BIC RACF

Weekly ARIMA(3,0,0)(0,1,1)52 153.6 429.6 Residuals are normally distributed

ARIMA(3,0,1)(0,1,1)52 154.1 435.1 Residuals are normally distributed
ARIMA(2,0,0)(0,1,1)52 159.03 430.4 …

ARIMA(1,0,0)(0,1,1)52 171.5 438.03 …

Monthly ARIMA(1,0,0)(0,1,1)12 222.3 35.9 …

ARIMA(1,0,1)(0,1,1)12 222.3 39.3 Residuals are normally distributed
ARIMA(2,0,1)(0,1,1)12 224.5 40.6 Residuals are normally distributed

ARIMA(3,0,1)(0,1,1)12 222.3 46.2 Residuals are normally distributed

Bimonthly ARIMA(1,0,1)(1,1,1)6 22.02 32.83 Residuals are normally distributed
ARIMA(1,0,0)(0,1,1)6 22.59 26.9 Residuals are normally distributed

ARIMA(1,0,1)(0,1,1)6 21.64 30.53 …

ARIMA(2,0,1)(0,1,1)6 23.24 34.54 …

Figure 6. RACF for the selected ARIMA(1,0,1)(0,1,1)12

monthly model for the Sangesourakh Hydrometric Station.

Figure 7. Plot of the residuals (RACF) of

ARIMA(1,0,1)(0,1,1)12 monthly model with normal curve.
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evident in Figure 4, the ACF did not truncate but rather

damps out, suggesting that a nonseasonal AR parameter

was needed in the model. Because the PACF truncated

after lag 1 (Fig. 5), one nonseasonal AR parameter should

be included in the model. There was a significant value at

lag 12 that indicated the presence of a seasonal MA term in

the model. In a similar way, all possible models were

identified for data series at the other time scales. Table 1

presents the four selected ARIMA models for the weekly,

monthly, and bimonthly flow in the study area.

For the case of DARMA models, all flow-time series

were deseasonalized. For weekly data, flows were deseaso-

nalized using the estimated means of the series (Equation

(6)). For monthly data, it was necessary to use both

Equations (6) and (7), but for bimonthly data, flows were

first transformed using natural logarithms and then

deseasonalized using Equation (6). Then, the three men-

tioned modeling stages of time-series analysis were

followed to calibrate the DARMA forecasting models.

Deseasonalized models are useful for describing time series

in which the mean and variance within each season are

stationary across the year. Table 2 presents four selected

DARMA models which might be suitable for simulating

flow time series at different time scales.

The approximate maximum likelihood (MLE) estimates

for the model parameters were obtained by employing the

unconditional sum of squares method suggested by Box

and Jenkins (1976). Model parameters for ARIMA and

DARMA models are shown in Table 1 and 2, respectively.

For checking the adequacy of the models fitted to the time

series, residual autocorrelation function (RACF) tests were

employed. The AIC and BIC were used to select the best fit

model out of the various competing models.

Table 3 shows the comparison between all ARIMA

models based on RACF, AIC, and BIC. With respect to

these criteria, the ARIMA(3,0,0)(0,1,1)52 model performs

better than the other three weekly models. For the monthly

and bimonthly flow series, ARIMA(1,0,1)(0,1,1)12 and

ARIMA(1,0,1)(1,1,1)6 are more accurate. A plot of the

RACF for the selected ARIMA(1,0,1)(0,1,1)12 model is

shown in Figure 6. From Figure 6, it can be noted that the

estimated values fall within the 5% significance interval.

The residuals were white noise and normally distributed

(Figure 7).

A comparison of all DARMA models is shown in

Table 4. Based on the mentioned diagnostic criteria,

DARMA(1,1) were selected as the most reliable weekly,

monthly, and bimonthly DARMA models, respectively.

One-step-ahead forecasts for the verification part of the

weekly, monthly, and bimonthly flow (1998–99 to 2003–04)

Table 4. Comparison of the selected DARMA models.

Time Interval Model

Comparison Criteria

AIC BIC RACF

Weekly DARMA(3,0) 2120.05 2100.66 Residuals are normally distributed
DARMA(2,1) 2120.29 2100.91 …

DARMA(1,1) 2119.07 2104.5 Residuals are normally distributed

DARMA(1,0) 2104.94 295.25 …

Monthly DARMA(1,1) 283.25 272.96 Residuals are normally distributed

DARMA(1,0) 282.89 276.03 …

DARMA(2,1) 283.5 269.84 …

DARMA(2,0) 283.8 273.53 Residuals are normally distributed

Bimonthly DARMA(1,1) 2316.39 2308.34 Residuals are normally distributed

DARMA(1,0) 2317.48 2312.12 …

DARMA(2,1) 2314.94 2304.21 …

DARMA(2,0) 2315.96 2307.91 …

Table 5. Summary of the performance analysis of

forecasting models.

Time Interval Model MAE RMSE NSE R2

Weekly ARIMA 1.41 1.82 0.49 0.52

DARMA 1.46 1.89 0.43 0.50

Monthly ARIMA 1.25 1.57 0.61 0.54

DARMA 1.29 1.68 0.56 0.60

Bimonthly ARIMA 1.24 1.5 0.62 0.56

DARMA 1.23 1.56 0.59 0.59

Table 6. Statistical comparison of the forecasting models

using paired-sample t-test analysis.

Model Time

Interval t

Degrees of

Freedom Significance

Weekly 21.732 259 0.084

Monthly 210.188 59 0.00

Bimonthly 6.457 29 0.00
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were generated using the selected set of the ARIMA and

DARMA models. The resulting calibrated models were

then examined for use in predicting flow data series at the

three different time scales.

We used the validation data sets to compare the

forecasting ability of the ARIMA and DARMA models.

Table 5 gives the indices used to compare the goodness of

model simulation for weekly, monthly, and bimonthly time

scales.

For the case of the weekly flow forecasting, the seasonal

ARIMA model provides slightly better results than

DARMA in terms of MAE and RMSE. As can be seen

in Table 6, the differences are significant at the 0.05 level

based on a paired sample t-test analysis. However, the

results of the monthly and bimonthly ARIMA and

DARMA models were slightly similar and the differences

are not significant at the 0.05 level (Table 6). The NSE was

used to evaluate the simulation accuracies of the two

models. The NSE of the ARIMA in comparison to the

DARMA models is more satisfactory (Motovilov et al.,

1999). The NSF for weekly, monthly, and bimonthly flow

is 0.49, 0.61 and 0.62, respectively (Table 5).

To show the validation results of the models for weekly,

monthly, and bimonthly flows, in Figures 8, 9, and 10,

respectively, we plot both the observations and the

predictions. As seen in Figure 8 for the weekly simulation,

DARMA slightly overestimates the flow during the

recession periods. Overestimation of the flow by the

DARMA model during recession periods also could be

seen in Figures 9 and 10. However, it could be concluded

that the weekly, monthly, and bimonthly ARIMA models

are more suitable than DARMA in the study area,

especially for dry periods.

CONCLUSIONS

Two time-series analysis models, ARIMA and

DARMA, have been used to simulate the surface water

discharges in a karst basin by the identification, estimation,

and diagnostic check stages of stochastic model construc-

tion (Hipel and McLeod, 1994). The main objective of this

work was to provide a set of numerical comparisons

between stochastic-flow simulation and forecasting models

for a small karstic watershed.

As demonstrated by the simulation experiments out-

lined in the paper, selected ARIMA and DARMA models

statistically preserve specified historical statistics. Also,

diagnostic checks reveal that the normality assumptions for

the residuals are fulfilled and model parsimony is

preserved. Therefore, the calibrated ARIMA and

DARMA models adequately simulate weekly, monthly,

and bimonthly flows in the study area.

A comparison of model predictions with historical data

for the period of 1979–80 to 2003–04 water years

demonstrated the accuracy of the models. As indicated in

this research, forecasts of flows are reasonably accurate for

both of the modeling techniques. The NSE for both models

at three time scales are more than 0.43 and it shows that

simulation results are all satisfactory (Motovilov et al.,

1999). However, it has been found that the weekly,

monthly, and bimonthly ARIMA models perform better

than DARMA models based on the results of the

Figure 8. Comparison of observed and forecasted weekly flow using ARIMA and DARMA models for validation period

(1999–00 to 2003–04).
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numerical and graphical comparison of forecasting perfor-

mance of the models.

The process of rainfall-runoff is more complicated in

karst than non-karst basins because it has been shown in

some previous studies. Schomberg et al. (2005) found that

two gauges with a predicted coefficient of variation (CV) of

flow greater than the actual CV of flow were in

predominantly loess areas with karst influence. Predict-

ability, constancy and CV of flow were all predicted as

overly flashy by their SWAT model, which is heavily

influenced by karst geology. They concluded that karst

watersheds are more complex and more poorly understood

Figure 9. Comparison of observed and forecasted monthly flow using ARIMA and DARMA models for validation period

(1999–00 to 2003–04).

Figure 10. Comparison of observed and forecasted bimonthly flow using ARIMA and DARMA models for validation period

(1999–00 to 2003–04).

M.R. GHANBARPOUR, K.C. ABBASPOUR, G. JALALVAND, AND G.A. MOGHADDAM

Journal of Cave and Karst Studies, April 2010 N 9



than non-karst systems (Felton, 1994) and have been

shown to require more specialized calibration to obtain

accurate results (Spruill et al., 2000). Jourde et al. (2007)
have shown that surface runoff hydrologic models cannot

simulate the flow in the karstic part of the watershed under

study because there is an additional contribution to surface

flow from the karstic area and it is probably related to a

delayed contribution of karst groundwater to surface flow.

They suggest a fully coupled surface–subsurface hydrologic

model to characterize the dynamics of the karst ground-

water contribution to the surface drainage network.
In a karstic system, surface water flow is an observed

output of the basin, which is available usually with better

accuracy. As noted by Graupe et al. (1976) and Dimitrov et

al. (1997), the application of stochastic models, such as the

ones used in this study, offers an inexpensive solution to the

operational input data, especially when insufficient spatial

and temporal hydrodynamic information is available. How-

ever, more research is necessary to prove that stochastic time-
series models could have better capabilities than physical

models within the field of complex karstic flow systems.
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