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Following the inception of mammography (MG) for screening 
purposes in the early 1960s, the field of breast imaging has undergone 
a transformative progression. This evolution gathered significant 
momentum by incorporating ultrasound (US) and advanced image-
guided biopsies into routine clinical practice during the 1990s. 
Subsequently, in the early 2000s, magnetic resonance imaging (MRI) 
emerged as a discriminating option for advanced imaging modalities. 
Furthermore, the shift from conventional to digital radiology occurred 
between the late twentieth and early twenty-first centuries. Concerns 
mainly revolved around the reduced resolution of digital images 
compared to conventional MG, which raised worries about potentially 
missing lesions like microcalcifications and the challenge of detailed 

breast tissue visualization. Nevertheless, due to the broader dynamic 
range of digital MG compared to screen-film MG, it displayed greater 
tolerance to exposure errors. Additionally, the digital format of images 
offered a significant advantage, allowing for the integration of advanced 
techniques. This, in turn, facilitated the incorporation of digital 
breast tomosynthesis imaging, contrast-enhanced MG, and artificial 
intelligence (AI) applications. Subsequently, in the early 2000s, MRI 
emerged as a discerning option for advanced imaging modalities. 
Through the assessment of multimodality and multiparametric 
imaging, breast radiology has indisputably established itself as an 
indispensable and irreplaceable component in the management of 
breast disorders.

Key Points

• 	 Advancing integration of artificial intelligence (AI): AI is becoming integral to breast radiology, streamlining workflows, smart dataprocessing, aiding 
detection and diagnosis, and optimizing decision-making processes.

• 	 Personalized screening and diagnosis: Evolving from mammography, automated breast ultrasound, magnetic resonance imaging (MRI), and contrast-
enhanced mammography offer personalized screening options with AI-driven enhancements for accuracy.

• 	 Innovative imaging and therapies: Multiparametric MRI, virtual biopsy, and photoacoustic imaging provide advanced diagnostic insights. Imaging-
guided therapies and theranostics promise targeted precision treatment, transforming breast radiology’s future.

ABSTRACT

The landscape of breast imaging has transformed significantly since mammography’s introduction in the 1960s, accelerated by ultrasound and image-
guided biopsies in the 1990s. The emergence of magnetic resonance imaging (MRI) in the 2000s added a valuable dimension to advanced imaging. 
Multimodality and multiparametric imaging have firmly established breast radiology’s pivotal role in managing breast disorders. A shift from conventional 
to digital radiology emerged in the late 20th and early 21st centuries, enabling advanced techniques like digital breast tomosynthesis, contrast-enhanced 
mammography, and artificial intelligence (AI) integration. AI’s impending integration into breast radiology may enhance diagnostics and workflows. It 
involves computer-aided diagnosis (CAD) algorithms, workflow support algorithms, and data processing algorithms. CAD systems, developed since the 
1980s, optimize cancer detection rates by addressing false positives and negatives. Radiologists’ roles will evolve into specialized clinicians collaborating with 
AI for efficient patient care and utilizing advanced techniques with multiparametric imaging and radiomics. Wearable technologies, non-contrast MRI, and 
innovative modalities like photoacoustic imaging show potential to enhance diagnostics. Imaging-guided therapy, notably cryotherapy, and theranostics, 
gains traction. Theranostics, integrating therapy and diagnostics, holds potential for precise treatment. Advanced imaging, AI, and novel therapies will 
revolutionize breast radiology, offering refined diagnostics and personalized treatments. Personalized screening, AI’s role, and imaging-guided therapies will 
shape the future of breast radiology.
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The essence of AI lies in its ability to develop algorithms that emulate 
human intelligence, while learning from data and making informed 
decisions. Given the digital nature of radiology, AI’s integration appears 
inevitable (1). However, the gradual integration of AI into breast 
radiology sparks curiosity and concern about the potential impact on 
the profession. AI will inevitably play a significant role in the future of 
breast radiology. The questions remain: what specific role will AI hold 
within breast radiology practice? Would AI replace radiologists, and 
could AI’s findings be relied upon exclusively?

The Integration of AI in Breast Radiology

Radiology departments of the future will operate alongside AI, which 
will serve as a support mechanism, streamlining processes, aiding 
decision-making, and improving regulation. The role of AI in breast 
radiology will manifest in three key ways: Computer-aided diagnosis 
(CAD) algorithms, workflow support algorithms, and data processing 
algorithms.

AI as a support tool in breast radiology dates back to the 1980s when 
computer support was initiated for mammographic film evaluation (2, 
3). Early systems flagged suspicious areas for the ultimate decision of 
the radiologist. Image perception errors, human factors like fatigue, 
and overlapping structures all contributed to erroneous diagnoses that 
could be reduced with such support algorithms (4). However, due to the 
emergence of convolutional neural networks and deep learning (DL), 
these CAD systems have transformed, transitioning from basic, user-
defined algorithms to autonomous learning algorithms. This capability 
allows DL models to potentially uncover features that are unidentifiable 
or imperceptible to the human eye. Practical, AI driven new generation 
CAD applications, including detection, triage, and diagnosis, hold 
promise in breast imaging. These AI based applications address 
issues like false positives and negatives in screening mammograms, 
optimizing patient recall rates, and improving cancer detection rates 
(1). The prevalence of false positive outcomes in screening MG can be 
high as 30% (5, 6). On the other hand, retrospective analyses reveal 
that up to 60% of interval cancers exhibit affirmative findings within 
prior mammograms (6, 7). Research indicates that the introduction 
of AI systems in screening mammograms has the potential to decrease 
interval cancers and increase cancer detection rates in routine screening 
mammograms (8-10). AI algorithms will prioritize examinations, mark 
suspicious lesions, and facilitate decision-making, allowing radiologists 
to use their time more efficiently. This AI-assisted workflow will 
reshape the role of radiologists, transforming them into specialized 
clinicians engaging more in multidisciplinary collaborations (11-14). 
Pending examinations will be prioritized based on their significance, 
and comparative reports involving comparison with prior studies 
and meticulously AI-generated clinical information will be ready for 
review (15, 16). Naturally, as these advances unfold, radiologists’ 
characteristics will also evolve. General radiologists, who constitute the 
majority, will gradually be succeeded by specialized radiologists who 
possess expertise in their specific domains and adopt a personalized 
clinical approach when engaging with patients (15, 16). Radiology 
clinic reading rooms will function as central “hubs”, fostering 
multidisciplinary collaboration, shaping patient-centered diagnoses, 
and informing clinicians about treatment options. Leveraging AI 
alongside intranet and internet connectivity, patient data from hosting 
and external hospitals will be aggregated and showcased during 
multidisciplinary meetings. Thus, radiology will gain value as clinically 
based and patient oriented.

From Volume Screening to Personalized Screening

Screening in breast cancer, which began as a simple MG examination 
and has now evolved to a personalized screening approach. A better 
understanding of the significance of breast density has led to a change 
in screening strategies for women with dense fibroglandular tissue, 
driven by heightened awareness of its influence on false negatives and 
elevated breast cancer risk. Supplementary US screening is widely used 
for women with dense breast tissue. A recent large, randomized US 
screening study showed the impact of ultrasonography in detecting 
two additional cancers per 1000 women, in line with previous studies 
(17). However, US encounters significant limitations, including its 
real-time nature and user-dependent operation, leading to archiving 
and retrospective analysis challenges. Automated breast ultrasound 
system (ABUS) can be used for screening and diagnostically, providing 
a 3-dimensional volume view (18). Undoubtedly, AI algorithms to 
be developed in the future will enable better visualization of this 3D 
data, facilitate lesion detection with CAD solutions, and allow faster 
evaluation with decision support algorithms. Since ABUS can also 
help teleradiology, US scanning can be performed where radiologists 
are unavailable. Research continues on automated US imaging with a 
tomography mechanism by allowing the breast to sag with gravity in 
the prone position instead of the supine position (19). In this way, it 
will be possible to evaluate other parameters, such as speed of sound, 
which may show higher specificity in lesion differentiation (20).

Breast MRI is also valuable as a supplementary screening tool and 
is effective not only in high-risk women but also in women with 
average risk but increased breast density (21). Furthermore, a recent 
randomized controlled MRI screening study included women with 
extremely dense breast tissue from a national breast cancer screening 
program. These women were offered supplementary MRI screening 
every two years, resulting in a notable reduction in interval cancers 
and the detection of an additional 15 cancers per thousand screenings 
(22). However, breast MRI is expensive and hard to access as a large-
volume screening method. Contrast-enhanced MG can be an excellent 
alternative to MRI and offers a cost-effective and convenient solution 
for screening high-risk women and those with dense breast tissue (23, 
24). This approach has the potential to facilitate efficient and rapid 
large-scale female screening. 

Wearable technologies, such as specialized bras equipped with US 
sensors, can potentially transform follow-up and screening approaches 
(25). Meanwhile, non-contrast MRI techniques are gaining traction, 
providing valuable information, particularly in screening without 
invasive contrast agents. Combining T2-weighted or STIR images 
with diffusion imaging can provide comparably high-sensitivity results 
to contrast-enhanced MR scanning (26, 27). Future advancements 
aim to enable rapid, non-contrast breast MRI scans, suitable even for 
women with contrast contraindications.

Innovations in Diagnostic Imaging

The cornerstone of breast MRI examination is dynamic contrast-
enhanced imaging. MRI, highly sensitive in breast radiology, 
evaluates multiple parameters such as diffusion-weighted imaging, 
spectroscopy, and dynamic contrast enhancement (28-30). Through 
multiparametric MRI, neovascularization, tissue water diffusion, and 
molecular markers can be assessed enabling molecular-level imaging 
(31). Tumor characteristics like proliferation, angiogenesis, apoptosis, 
metabolism, and hypoxia can also be demonstrated (31). Dynamic 
contrast-enhanced MRI depicts contrast material kinetics, quantifying 
neovascularization via tumor perfusion. Excessive tumor cell 
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proliferation narrows intercellular space and hinders fluid movement, 
detected through diffusion imaging and vectorial movement with 
diffusion tensor imaging. These methods allow contrast-free breast 
cancer screening with improving image quality. Furthermore, using 
these different parameters, radiomic information, which enhances 
diagnostic accuracy, is obtained. MR spectroscopy (MRS) examines 
various molecules; choline, used in cell membranes, enables molecular 
mapping for virtual biopsy. Hyperpolarized MRS imaging detects rare 
molecules. While current MRI visualizes hydrogen atoms, other rare 
particles like carbon (C) and phosphorous (P) can be facilitated, and 
different parametric MRI outcomes can be achieved (32). 

Photoacoustic or optoacoustic imaging is a hybrid imaging modality 
combining optical illumination and US (33). Angiogenesis and 
hypoxia are some of the main features of cancer, and the capability 
of optical imaging to detect various hemoglobin forms enhances its 
sensitivity in imaging (33, 34). The oxygenation capacity of blood 
vessels and treatment-induced changes in the blood vessels can be 
demonstrated (34). The functional aspect of optoacoustic US has 
the potential to address certain challenges related to morphological 
similarities in distinguishing between benign and malignant masses 
(35-37). In recent studies, the incorporation of optoacoustic US (OA/
US) showed an increase in breast mass assessment specificity of 14.9%, 
and high positive predictive values for malignancy (35, 38). Other 
studies show that utilizing OA/US may assist radiologists in more 
effectively distinguishing between various breast cancer molecular 
subtypes (39). 

Virtual biopsy, notably through multiparametric MR examination, has 
emerged as a pivotal differential diagnostic tool. Imaging genomics 
(radiomics) plays a vital role here. Radiomics integration involves 
aligning the molecular attributes of diverse genetic subgroups of 
breast cancer with their multiparametric imaging features. This 
approach links disease imaging phenotypes with their genotype, 
representing their genetic expression - a vigorously researched subject 
(40). Leveraging AI-enhanced segmentation, lesion features identified 
by radiologists and computers can be matched with genotypes. This 
process enables classification and predictive model creation, addressing 
clinical and biological queries (40, 41).

Since MRI is a frequently used technique for screening, diagnosis, 
and staging in breast radiology, difficulties are often encountered in 
diagnosing lesions detected only by MR examination. MRI-guided 
biopsy is required for these lesions, but MRI-guided biopsy is a 
technically challenging, time-consuming, and expensive technique. 
MRI-guided biopsy can be performed in a few centers worldwide. 
Contrast-enhanced MG, an excellent alternative to MRI, also provides 
biopsy (42). In this way, the lesions detected only with contrast-
enhanced MRI can be diagnosed with contrast-enhanced MG-guided 
stereotaxic vacuum biopsy. This method can be widely used as a more 
practical alternative to MRI-guided biopsy.

Conducting MRI scans with the patient in the prone position while 
performing surgical and biopsy procedures in the supine position 
presents challenges in accurately localizing lesions identified by MRI. 
This incongruity in patient positioning hinders precise pre-surgical 
planning, lesion evaluation, and procedures like biopsy or marking 
(43, 44). However, real-time US examinations can merge supine MRI 
images with US images, allowing for accurate lesion localization and 
guidance during interventional procedures (45, 46). Consequently, 
fusion US-guided biopsy is an alternative to MR-guided biopsy 

(46). With the advancement of fusion biopsy techniques and their 
integration with non-contrast MRI methods, this challenge will be 
more effectively addressed in the future. Transforming prone imaging 
to the supine position also holds significance in preoperative planning 
and locating tumors before and after neoadjuvant chemotherapy, 
providing crucial guidance for surgical interventions.

Imaging Guided Therapy

Cryotherapy is a treatment method that can be applied with US 
guidance and has been recently researched to treat breast cancer. A 
pivotal study on this subject is the Ice3 study, in which 194 women 
over 60 were evaluated, and the tumor size ranged from 8-14.9 mm. 
In a mean follow-up of 3 years after treatment, ipsilateral tumor 
recurrence was 2.06% (47). Cryotherapy holds promise as a viable 
alternative treatment avenue, particularly for instances wherein 
surgical intervention is not feasible. 

Theranostics is derived from therapy and diagnostics and can be defined 
as using diagnostic methods to provide targeted therapy. Modern 
breast cancer treatment is optimally individualized and targeted, and 
theranostics appears to be an excellent method to achieve this goal. In 
theranostics, the active therapeutic substance will be delivered to the 
target cell without affecting the surrounding healthy tissues, and the 
process will be monitored with imaging guidance. The basic procedure 
is to load the lethal dose to the contrast agent carriers, monitor the 
agent with imaging, and control the release of the therapeutic agent 
loaded to the contrast agent into the tumor with the help of imaging 
methods when it reaches the tumor tissue. For example, after loading 
the chemotherapeutic agent into microbubbles with US contrast, this 
contrast agent is injected into the patient, and the tumor is monitored 
under ultrasonography (48). After tracking the contrast material 
reaching the tumor, these carrier microbubbles are deflated with the 
help of US waves, and the drug is released within the tumor without 
damaging the surrounding tissue (48). Particles or nanoparticles 
suitable for imaging modality are used as therapeutic agent carriers. 
One of the most used particles for MRI are superparamagnetic iron 
oxide nanoparticles (49, 50). Carbon nanotubes are important carriers 
for MRI, and targeted molecules such as drugs, contrast agents, 
antibodies, cell membrane penetrants, and iron oxide nanoparticles 
can be loaded onto these nanotubes (50). Theranostics will play an 
important role in targeted precision therapy in the future.

Conclusion

In the future, breast radiology will be able to offer more patient-
focused diagnosis and treatment approaches, thanks to the developing 
technological applications and AI’s support to radiologists in every 
field, from workflow to image formation and CAD systems. Integrating 
imaging genomics will aid differential diagnosis, aligning genetics 
with multiparametric features via AI-enhanced solutions. Novel 
image-guided therapeutic solutions will provide alternative treatment 
approaches. The future holds enhanced integration of imaging, AI, and 
innovative therapies in breast radiology. From personalized screening 
to innovative theranostics, the trajectory of breast imaging is laden 
with promise, transforming the landscape of breast radiology, and 
ultimately improving patient outcomes. The future of breast radiology 
is not one of replacement, but of transformation as technology and 
human expertise converge to advance patient care to new heights.
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ABSTRACT

Objective: Risk-reducing therapy with selective estrogen receptor (ER) modulators and aromatase inhibitors reduce breast cancer risk. However, the 
effects are limited to ER-positive breast cancer. Therefore, new agents with improved toxicity profiles that reduce the risk in ER-negative breast cancers are 
urgently needed. The aim of this prospective, short-term, prevention study was to evaluate the effect of dasatinib, an inhibitor of the tyrosine kinase Src, on 
biomarkers in normal (but increased risk) breast tissue and serum of women at high risk for a second, contralateral primary breast cancer. 

Materials and Methods: Women with a history of unilateral stage I, II, or III ER-negative breast cancer, having no active disease, and who completed 
all adjuvant therapies were eligible. Patients underwent baseline fine-needle aspiration (FNA) of the contralateral breast and serum collection for biomarker 
analysis and were randomized to receive either no treatment (control) or dasatinib at 40 or 80 mg/day for three months. After three months, serum collection 
and breast FNA were repeated. Planned biomarker analysis consisted of changes in cytology and Ki-67 on breast FNA, and changes in serum levels of 
insulin-like growth factor 1 (IGF-1), IGF-binding protein 1, and IGF-binding protein 3. The primary objective was to evaluate changes in Ki-67 and 
secondary objective included changes in cytology in breast tissue and IGF-related serum biomarkers. Toxicity was also evaluated. 

Results: Twenty-three patients started their assigned treatments. Compliance during the study was high, with 86.9% (20/23) of patients completing their 
assigned doses. Dasatinib was well tolerated and no drug-related grade 3 and 4 adverse events were observed. Since only one patient met the adequacy criteria 
for the paired FNA sample, we could not evaluate Ki-67 level or cytological changes. No significant change in serum biomarkers was observed among the 
three groups. 

Conclusion: Dasatinib was well tolerated but did not induce any significant changes in serum biomarkers. The study could not fulfill its primary objective 
due to an inadequate number of paired FNA samples. Further, larger studies are needed to evaluate the effectiveness of Src inhibitors in breast cancer 
prevention.

Keywords: Chemoprevention; breast cancer risk; Src inhibitors
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