Histological analysis and transcription profiles on somatic embryogenesis in interspecific hybrids of Elaeis guineensis × E. oleifera

Abstract

Elaeis guineensis (African oil palm) and E. oleifera (American oil palm) are bred to attain high oil yields, disease resistances, and decelerated shoot elongation. We cultivated immature zygotic embryos from backcrossed and F1 interspecific progenies on media containing 110, 150, or 200 mg·l-1 2,4-diclorophenoxyacetic acid (2,4-D) to obtain embryogenic cultures. These were set to multiply on medium containing 8 mg·l-1 2,4-D or lower concentrations of auxins and finally we induced plantlets regeneration, from each zygotic embryo, independently, in order to have the clones organized according to their respective origins. Reductions in auxins induced cultures to revert from highly embryogenic into competent for embryogenesis and finally to organogenic degenerated callus lines. Histology and the expression of SOMATIC EMBRYOGENESIS RECEPTOR KINASE, DEHYDRIN, DEFENSIN, TRANSPOSASE, and LIPID TRANSFER PROTEIN were analyzed on four callus lines representative of morphological aspects consistently observed. The highest number of embryogenic cultures was obtained on 150 mg·l-1 2,4-D. Maturation and multiplication of somatic embryos through secondary embryogenesis occurred simultaneously on 8 mg·l-1 2,4-D. LIPID TRANSFER PROTEIN expression was detected in one of the embryogenic cultures and correlated with protoderm onset. Three six-week cycles on induction medium yielded 1.5 shoots above 6 cm per poly-embryogenic complex, which performed better than embryoids individualized mechanically. Rooting was observed for 77% and 82% of shoots from these two types of explants, respectively. Rooted plantlets ready for acclimatization were obtained nine months after shoot induc

Share and Cite:

Angelo, P.C.S., Steinmacher, D. , Lopes, R. , Vieira da Cunha, R. and Guerra, M. (2013) Histological analysis and transcription profiles on somatic embryogenesis in interspecific hybrids of Elaeis guineensis × E. oleifera. Agricultural Sciences, 4, 1-11. doi: 10.4236/as.2013.411A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Homma, O., Furlan Júnior J., Carvalho R.A. and Ferreira, C.A.P. (2000) Bases para uma política de desenvolvimento da cultura do dendezeiro na Amazônia. In: Viégas, I.J.M. and Müller, A.A., Eds., A Cultura do Dendezeiro na Amazônia Brasileira. Embrapa Amazônia Oriental-Embrapa Amazônia Ocidental, Brasil, 11-30.
[2] Fiorese, C. (2008) Notícias da Amazônia.
http://www.noticiasdaamazonia.com.br/2521-com-fabrica-no-para-natura-aposta-na-industria-sustentavel/
[3] NATURA. (2010) NaturaEkos.
http://www.naturaekos.com.br/pt/naturaekos/cadeia-sustentavel/
[4] Barcelos, E., Nunes, C.D.M. and Cunha, R.N.V. (2000) Melhoramento Genético e produção de sementes comerciais de dendezeiro. In: Viégas, I.J. and Müller, A.A., Eds., A Cultura do Dendezeiro na Amazônia Brasileira. Embrapa Amazônia Oriental Belém-Embrapa Amazônia Ocidental Manaus, Brasil, 145-174.
[5] Staritsky, G. (1970) Tissue culture of the oil palm Elaeis guineensis as a tool for its vegetative propagation. Euphytica, 19, 288-292.
http://dx.doi.org/10.1007/BF01904205
[6] Rabéchault, H. and Martin, J.-P. (1976) Multiplication végétative du Palinier à huile (Elaeis guineensis Jacq.) à laide de cultures de tissus foliaires. Comptes Rendus de l’Academie des Sciences de France—Série D, 283, 1735-1737.
[7] Hanower, J. and Pannetier, C. (1982) In vitro vegetative propagation of the oil palm Elaeis guineensis. Plant Tissue Culture, supp, 745-746.
[8] Schwendiman, J., Pannetier, C. and Michaux-Ferrière, N. (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Annals of Botany, 62, 43-52.
[9] Teixeira, J.B., Söndhahl, M.R. and Kirby, E.G. (1993) Somatic embryogenesis from immature zygotic embryos of oil palm. Plant Cell, Tissue and Organ Culture, 34, 227-233. http://dx.doi.org/10.1007/BF00029711
[10] Teixeira, J.B., Söndhahl, M.R., Nakamura, T. and Kirby, E.G. (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell, Tissue and Organ Culture, 40, 105-111.
http://dx.doi.org/10.1007/BF00037662
[11] Wong, G., Tan, C. and Soh, A. (1997) Large scale propagation of oil palm clones—Experiences to date. Acta Horticulturae, 447, 649-658.
[12] Konan, E.K., Durand-Gasselin, T., Kouadio, J.Y., Flori, A. and Rival, A. (2007) A modeling approach of the in vitro conversion of oil palm (Elaeis guineensis) somatic embryos. Plant Cell, Tissue and Organ Culture, 84, 99-112. http://dx.doi.org/10.1007/s11627-007-9093-y
[13] Konan, E.K., Durand-Gasselin, T., Kouadio, J.Y., Flori, A., Rival, A., Duval, Y. and Pannetier, C. (2010) In vitro conservation of oil palm somatic embryos for 20 years on a hormone-free culture medium: Characteristics of the embryogenic cultures, derived plantlets and adult palms. Plant Cell Reports, 29, 1-13.
http://dx.doi.org/10.1007/s00299-009-0787-y
[14] Schmidt, E.D.L, Guzzo, F., Toonen, M.A.J. and de Vries, S.C. (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 124, 2049-2062.
[15] Pérez-Núñez, M.T, Souza, R., Sáenz, L., Chan, J.L., Zúñiga-Aguilar, J.J. and Oropeza, C. (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Reports, 28, 11-19.
http://dx.doi.org/10.1007/s00299-008-0616-8
[16] Sterk, P., Booij, H., Schellekens, G.A., van Kammen, A. and de Vries, S.C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 3, 907-921.
[17] Chan, P.-L., Ma, L.-S., Low, E.-T.L., Shariff, E.M., Ooi, LC.-L., Cheah, S.-C. and Singh, R. (2010) Normalized embryoid cDNA library of oil palm (Elaeis guineensis). Electronic Journal of Biotechnology, 13, 1.
http://www.ejbiotechnology.info/content/vol13/issue1/full/14 http://dx.doi.org/10.1007/s00299-008-0616-8
[18] Low, E.-T.L., Alias, H., Boon, S.-H., Shariff, E.M., Tan, C.-Y.A., Ooi, L.C.-L., Cheah, S.-C., Raha, A.-R., Wan, K.-L. and Singh, R. (2008) Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: Identifying genes associated with callogenesis and embryogenesis. BMC Plant Biology, 8, 52. http://dx.doi.org/10.1186/1471-2229-8-62
[19] Lin, H.-C., Morcillo, F., Dussert, S., Tranchant-Dubreuil, C., Tregear, J.W. and Tranbarger, T.J. (2009) Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: Evidence for conserved gene functions in early development. Plant Molecular Biology, 70, 173-192.
http://dx.doi.org/10.1007/s11103-009-9464-3
[20] Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473-497.
http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
[21] Rival, A. and Parveez, G.K.A. (2004) Elaeis guineensis oil palm. In: Litz, R., Ed., Biotechnology of fruit and nut crops. CABI Publishing, 113-143.
[22] Morel, G. and Wetmore, R.H. (1951) Tissue culture of monocotyledons. American Journal of Botany, 38, 138-140. http://dx.doi.org/10.2307/2437836
[23] Steinmacher, D.A., Guerra, M.P, Saare-Surminski, K. and Lieberei, R. (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Annals of Botany, 108, 1-13. http://aob.oxfordjournals.org/lookup/volpage/108/1463 http://dx.doi.org/10.1093/aob/mcr033
[24] Aberlenc-Bertossi, F., Sané, D., Daher, A., Borgel, A. and Duval, Y. (2006) Aptitude à la déshydratation des embryons zygotiques de palmier à huile et de palmier dattier: étude de lexpression de gènes LEA. Les Actes du BRG, 6, 401-403.
[25] Kesanopoulos, K., Tzanakaki, G., Levidiotou, S., Blackwell, C. and Kremastinou, J. (2005) Evaluation of touchdown real-time PCR based on SYBR Green I fluorescent dye for the detection of Neisseria meningitidis in clinical samples. FEMS Immunology and Medical Microbiology, 43, 419-424.
http://dx.doi.org/10.1016/j.femsim.2004.10.011
[26] Steinmacher, D.A., Cangahuala-Inocente, G.C., Clement, C.R. and Guerra, M.P. (2007) Somatic embryogenesis from peach palm zygotic embryos. In Vitro Cellular & Developmental Biology, 43, 124-132.
http://dx.doi.org/10.1007/s11627-007-9032-y
[27] Guerra, M.P. and Handro, W. (1988) Somatic embryogenesis and plant regeneration in embryo cultures of Euterpe edulis Mart. (Palmae). Plant Cell Reports, 7, 550-552. http://dx.doi.org/10.1007/BF00272754
[28] Verdeil, J.-L., Hocher, V., Huet, C., Grosdemange, F., Escoute, J., Re, N.F. and Nicole, M. (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals of Botany, 88, 9-18. http://dx.doi.org/10.1006/anbo.2001.1408
[29] Sané, D., Aberlenc-Bertossi, F., Gassama-Dia, Y.K., Sagna, M., Trouslot, M.F., Duval, Y. and Borgel, A. (2006) Histocytological analysis of callogenesis and somatic embryogenesis from cell suspensions of date palm (Phoenix dactylifera). Annals of Botany, 98, 301-308.
http://dx.doi.org/10.1093/aob/mcl104
[30] Montero-Cortés, M., Rodríguez-Paredes, F., Burgeff, C., Pérez-Nuñez, T., Córdova, I., Oropeza, C., Verdeil, J.-L. and Sáenz, L. (2010) Characterization of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell, Tissue and Organ Culture, 102, 251-258.
http://dx.doi.org/10.1007/s11240-010-9714-8
[31] Nonohay, J.S., Mariath, J.E.A. and Winge, H. (1999) Histological analysis of somatic embryogenesis in Brazilian cultivars of barley Hordeum vulgare vulgare Poaceae. Plant Cell Reports, 18, 929-934.
http://dx.doi.org/10.1007/s002990050686
[32] Reinhardt, D., Frenz, M., Mandel, T. and Kuhlemeier, C. (2003) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development, 130, 4073-4083.
http://dx.doi.org/10.1242/dev.00596
[33] Verdeil, J.-L., Alemanno, L., Niemenak, N. and Tranbarger, T.J. (2007) Pluripotent versus totipotent plant stem cells: Dependence versus autonomy? Trends Plant Science, 12, 1360-1385.
[34] Zakizadeh, H., Stummann, B.M., Lütken, H. and Müller, R. (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell, Tissue and Organ Culture, 101, 331-338.
http://dx.doi.org/10.1007/s11240-010-9693-9
[35] Tregear, J.W., Morcillo, F., Richaud, F., Berger, A., Singh, R., Cheah, S.C., Hartmann, C., Rival, A. and Duval, Y. (2002) Characterization of a defensin gene expressed in oil palm inflorescences: Induction during tissue culture and possible association with epigenetic somaclonal variation events. Journal of Experimental Botany, 53, 1387-1396. http://dx.doi.org/10.1093/jexbot/53.373.1387
[36] Bahramnejad, B., Erickson, L.R., Chuthamat, A. and Goodwin, P.H. (2009) Differential expression of eight defensin genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothiadiazole treatments. Plant Cell Reports, 28, 703-717.
http://dx.doi.org/10.1007/s00299-009-0672-8
[37] Wang, Q.-J., Xu, K.-Y., Tong, Z.-G., Wang, S.-H., Gao, Z.-H., Zhang, J.-Y., Zong, C.-W., Qiao, Y.-S. and Zhang, Z. (2010) Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell, Tissue and Organ Culture, 101, 211-219.
http://dx.doi.org/10.1007/s11240-010-9678-8
[38] Khan, R.S., Alam, S.S., Munir, I., Azadi, P., Nakamura, I. and Mii, M. (2011) Botrytis cinerea-resistant marker-free Petunia hybrida produced using the MAT vector system. Plant Cell, Tissue and Organ Culture, 106, 11-20.
http://dx.doi.org/10.1007/s11240-010-9888-0
[39] Toonen, M.A., Verhees, J.A., Schmidt, E.D., van Kammen, A. and de Vries, S.C. (1997) AtLTP1 luciferase expression during carrot somatic embryogenesis. The Plant Journal, 12, 1213-1221.
http://dx.doi.org/10.1046/j.1365-313X.1997.12051213.x
[40] Guiderdoni, E., Cordero, M.J., Vignols, F., Garcia-Garrido, J.M., Lescot, M., Tharreau, D., Meynard, D., Ferrière, N., Notteghem, J.-L. and Delseny, M. (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Molecular Biology, 49, 683-669. http://dx.doi.org/10.1023/A:1015595100145
[41] Potocka, I., Baldwin, T.C. and Kurczynska, E.U. (2012) Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Reports, 31, 2031-2045.
http://dx.doi.org/10.1007/s00299-012-1314-0
[42] Tanurdzic, M., Vaughn, M.W., Jiang, H., Lee, T.-J., Slotkin, R.K., Sosinski, B., Thompson, W.F., Doerge, R.W. and Martienssen, R.A. (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biology, 6, e302.
http://dx.doi.org/10.1371/journal.pbio.0060302
[43] Karami, O. and Saidi, A. (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Molecular Biology Reports, 36, 2493-2507.
http://dx.doi.org/10.1007/s11033-009-9764-3
[44] Kubis, S.E., Castilho, A.M., Vershinin, A.V. and Heslop-Harrison, J.S. (2003) Retroelements transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Molecular Biology, 52, 69-79.
http://dx.doi.org/10.1023/A:1023942309092
[45] Angelo, P.C.S., Lopes, R., Moraes, L.A.C. and Cunha, R.N.V. (2009) Embryogenic calli induced in interspecific (Elaeis guineensis × E. oleifera) hybrid zygotic embryos. Crop Breeding and Applied Biotechnology, 9, 274-277.
[46] Rai, M.K., Shekhawat, N.S., Gupta, A.K.H., Phulwaria, M., Ram, K. and Jaiswal, U. (2011) The role of abscisic acid in plant tissue culture: A review of recent progress. Plant Cell, Tissue and Organ Culture, 106, 179-190.
http://link.springer.com/article/10.1007/s11240-011-9923-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.