We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Photodynamic inactivation of bacteria: finding the effective targets

    Adelaide Almeida

    *Author for correspondence:

    E-mail Address: aalmeida@ua.pt

    Department of Biology & Center for Environmental & Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal

    ,
    Maria AF Faustino

    Department of Chemistry & Organic Chemistry, Natural Products & Food Stuffs Research Unit (QOPNA), University of Aveiro, 3810-193 Aveiro, Portugal

    &
    João PC Tomé

    Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal

    Department of Organic & Macromolecular Chemistry, Ghent University, B-9000 Gent, Belgium

    Published Online:https://doi.org/10.4155/fmc.15.59
    Free first page

    References

    • 1 Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 42, 13–28 (1998).
    • 2 Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3, 436–450 (2004).
    • 3 Alves E, Faustino MAF, Neves MGPMS, Cunha A, Tomé JPC, Almeida A. An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 6, 141–164 (2014).
    • 4 Tavares A, Carvalho CMB, Faustino MA et al. Mechanisms of photoinactivation of Gram-negative recombinant bioluminescent bacteria by cationic porphyrins. Photochem. Photobiol. Sci. 10(10), 1659–1669 (2011).
    • 5 Valduga G, Breda B, Giacometti GM, Jori G, Reddi E. Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra(N-methyl-4-pyridyl)porphine. Biochem. Biophys. Res. Commun. 256, 84–88 (1999).
    • 6 Durantini EN. Photodynamic inactivation of bacteria. Curr. Bioact. Comp. 2, 127–142 (2006).
    • 7 Alves E, Faustino MAF, Tomé JPC et al. Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorg. Med. Chem. 21, 4311–4318 (2013).
    • 8 Nitzan Y, Ashkenazi H. Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr. Microbiol. 42(6), 408–414 (2001).
    • 9 Caminos DA, Spesia MB, Pons P, Durantini EN. Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem. Photobiol. Sci. 7(9), 1071–1078 (2008).
    • 10 Winckler KD. Special section: focus on anti-microbial photodynamic therapy (PDT). J. Photochem. Photobiol. B. Biol. 86, 43–44 (2007).
    • 11 Pedigo LA, Gibbs AJ, Scott RJ, Street CN. Absence of bacterial resistance following repeat exposure to photodynamic therapy. Proc. SPIE USA, 7380, 73803H (2009).
    • 12 Tavares A, Carvalho CMB, Faustino MAF et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8, 91–105 (2010).
    • 13 Jori G, Coppellotti O. Inactivation of pathogenic microorganisms by photodynamic techniques: mechanistic aspects and perspective applications. Anti-Infect. Agents Med. Chem. 6, 119–131 (2007).
    • 14 Almeida J, Tomé JPC, Neves MGPMS et al. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochem. Photobiol. Sci. 13, 626–633 (2014).
    • 15 Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).
    • 16 Madigan MT, Martinko JM. Brock Biology of Microorganisms. Pearson Prentice Hall, NY, USA (2006).
    • 17 Alves E, Santos N, Melo T et al. Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics. Rapid Commun. Mass Spectrom. 27, 2717–2728 (2013).
    • 18 Melo T, Alves E, Simões C et al. Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics. Rapid Commun. Mass Spectrom. 27, 1607–1618 (2013).
    • 19 Bertoloni G, Lauro FM, Cortella G, Merchat M. Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim. Biophys. Acta 1475, 169–174 (2000).
    • 20 Dosselli R, Millioni R, Puricelli L et al. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J. Proteomics 77, 329–343 (2012).
    • 21 George S, Kishen A. Influence of photosensitizer solvent on the mechanisms of photoactivated killing of Enterococcus faecalis. Photochem. Photobiol. 84, 734–740 (2008).
    • 22 Packer S, Bhatti M, Burns T, Wilson M. Inactivation of proteolytic enzymes from Porphyromonas gingivalis using light-activated agents. Lasers Med. Sci. 15, 24–30 (2000).
    • 23 Gomes MC, Silva S, Faustino MAF et al. Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1(O2). Photochem. Photobiol. Sci. 12, 262–271 (2013).
    • 24 Alves A, Esteves AC, Correia A et al. Protein profiles of Escherichia coli and Staphylococcus warneri are altered by photosensitization with cationic porphyrins. Photochem. Photobiol. Sci. doi:10.1039/C4PP00194 (2015) (Epub ahead of print).
    • 25 Gong X, Tao R, Li Z, Quantification of RNA damage by reverse transcription polymerase chain reactions. Anal. Biochem. 357(1), 58–67 (2006).
    • 26 Caminos DA, Durantini EN. Interaction and photodynamic activity of cationic porphyrin derivatives bearing different patterns of charge distribution with GMP and DNA. J. Photochem. Photobiol. A Chem. 198(2–3), 274–281 (2008).
    • 27 Salmon-Divon M, Nitzan Y, Malik Z. Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine. Photochem. Photobiol. Sci. 3(5), 423–429 (2004).
    • 28 Nir U, Ladan H, Malik Z, Nitzan Y. In vivo effects of porphyrins on bacterial DNA. J. Photochem. Photobiol. B. Biol. 11(3–4), 295–306 (1991).