We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Development of novel aminothiazole-comprising 5-LO inhibitors

    Simon B M Kretschmer

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    Authors contributed equally

    Search for more papers by this author

    ,
    Stefano Woltersdorf

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    Authors contributed equally

    Search for more papers by this author

    ,
    Carmen B Rödl

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    ,
    Dominik Vogt

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    ,
    Ann-Kathrin Häfner

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    ,
    Dieter Steinhilber

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    ,
    Holger Stark

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    Institute of Pharmaceutical & Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

    &
    Bettina Hofmann

    *Author for correspondence:

    E-mail Address: hofmann@pharmchem.uni-frankfurt.de

    Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany

    Published Online:https://doi.org/10.4155/fmc.15.174

    Background: Leukotrienes are pivotal lipid mediators in various immune and inflammatory reactions. Herein, 5-LO is a validated target. 2-Aminothiazoles, as a privileged structure, implicate known 5-LO inhibitors like ST-1083 (IC50 [polymorphonuclear leukocytes (PMNL)] = 0.68 μM), yet deep structure–activity relationships (SAR) have not been established. Materials & methods: Compounds were synthesized via Hantzsch thiazole synthesis. Inhibitory activities were evaluated using intact PMNL and purified 5-LO together with cytotoxicity measurements in U937 cells. Results: We introduced novel functionalities at 2-, 3-, 4- and 5-position of the 2-aminothiazole scaffold and conducted bioisosteric replacement to optimize the parent scaffold. SARs of the 2-aminothiazole scaffold were deduced and extended primarily for inhibition of the 5-LO enzyme. Conclusion: SAR studies provided at least two optimized leads (ST-1853, ST-1906) with high potency (IC50 [polymorphonuclear leukocytes] = 0.05 μM), specificity and noncytotoxic behavior.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Han J, Ulevitch RJ. Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6(12), 1198–1205 (2005).
    • 2 Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220(4597), 568–575 (1983).
    • 3 Peters-Golden M, Henderson WR. Leukotrienes. N. Engl. J. Med. 357(18), 1841–1854 (2007). •• Excellent entry point to leukotriene actions.
    • 4 Rådmark O. Arachidonate 5-lipoxygenase. Prostag. Oth. Lipid M. 68–69, 211–234 (2002).
    • 5 Haeggström JZ. Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J. Biol. Chem. 279(49), 50639–50642 (2004).
    • 6 Sjöström M, Jakobsson P, Heimburger M, Palmblad J, Haeggström JZ. Human umbilical vein endothelial cells generate leukotriene C4 via microsomal glutathione S-transferase type 2 and express the CysLT1 receptor. Eur. J. Biochem. 268(9), 2578–2586 (2001). • Outlines the formation of LTC4 via MGST-2.
    • 7 Powell WS, Rokach J. Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE. Prog. Lipid Res. 44(2–3), 154–183 (2005).
    • 8 Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J. Asthma 50(9), 922–931 (2013).
    • 9 Kanaoka Y, Maekawa A, Austen KF. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J. Biol. Chem. 288(16), 10967–10972 (2013).
    • 10 FDA. Approval History. www.fda.gov/.
    • 11 Berger W, de Chandt MT, Cairns CB. Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract. 61(4), 663–676 (2007).
    • 12 National Heart, Lung, and Blood Institute. Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma: Full Report 2007. www.nhlbi.nih.gov/files/docs/guidelines/asthgdln.pdf.
    • 13 Steinhilber D, Hofmann B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol. 114(1), 70–77 (2014). •• Current update on recent 5-LO inhibitor drug development.
    • 14 Smith DA, Harrison A, Morgan P. Multiple factors govern the association between pharmacology and toxicity in a class of drugs: toward a unification of class effect terminology. Chem. Res. Toxicol. 24(4), 463–474 (2011).
    • 15 Gaztanaga J, Farkouh M, Rudd JHF et al. A Phase 2 randomized, double-blind, placebo-controlled study of the effect of VIA-2291, a 5-lipoxygenase inhibitor, on vascular inflammation in patients after an acute coronary syndrome. Atherosclerosis 240(1), 53–60 (2015).
    • 16 Suh J, Yum EK, Cheon HG, Cho YS. Synthesis and biological evaluation of N-aryl-4-aryl-1,3-thiazole-2-amine derivatives as direct 5-lipoxygenase inhibitors. Chem. Biol. Drug. Des. 80(1), 89–98 (2012).
    • 17 Rödl CB, Vogt D, Kretschmer SB et al. Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. Eur. J. Med. Chem. 84, 302–311 (2014).
    • 18 Rasmussen CR, Villani FJ Jr, Weaner LE et al. Improved procedures for the preparation of cycloalkyl-, arylalkyl-, and arylthioureas. Synthesis (06), 456–459 (1988). • Insights of thiourea preparation out of any given aniline derivative.
    • 19 Werz O, Bürkert E, Samuelsson B, Rådmark O, Steinhilber D. Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood 99(3), 1044–1052 (2002).
    • 20 Brungs M, Rådmark O, Samuelsson B, Steinhilber D. Sequential induction of 5-lipoxygenase gene expression and activity in Mono Mac 6 cells by transforming growth factor beta and 1,25-dihydroxyvitamin D3. Proc. Natl Acad. Sci. USA 92(1), 107–111 (1995).
    • 21 Steinhilber D, Herrmann T, Roth HJ. Separation of lipoxins and leukotrienes from human granulocytes by high-performance liquid chromatography with a Radial-Pak cartridge after extraction with an octadecyl reversed-phase column. J. Chromatogr. 493(2), 361–366 (1989).
    • 22 Schröder M, Häfner A, Hofmann B et al. Stabilisation and characterisation of the isolated regulatory domain of human 5-lipoxygenase. Biochim. Biophys. Acta 1842(10), 1538–1547 (2014).
    • 23 Tateson JE, Randall RW, Reynolds CH et al. Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids: biochemical assessment in vitro and ex vivo. Brit. J. Pharmacol. 94(2), 528–539 (1988).
    • 24 Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 56(4), 1363–1388 (2013).
    • 25 Kalgutkar A, Gardner I, Obach R et al. A comprehensive listing of bioactivation pathways of organic functional groups. Curr. Drug. Metab. 6(3), 161–225 (2005).
    • 26 Kalgutkar AS, Driscoll J, Zhao SX et al. A rational chemical intervention strategy to circumvent bioactivation liabilities associated with a nonpeptidyl thrombopoietin receptor agonist containing a 2-amino-4-arylthiazole motif. Chem. Res. Toxicol. 20(12), 1954–1965 (2007).
    • 27 Li F, Chordia MD, Woodling KA, Macdonald TL. Irreversible alkylation of human serum albumin by zileuton metabolite 2-acetylbenzothiophene-S-oxide: a potential model for hepatotoxicity. Chem. Res. Toxicol. 20(12), 1854–1861 (2007).
    • 28 Joshi EM, Heasley BH, Macdonald TL. 2-ABT-S-oxide detoxification by glutathione S-transferases A1-1, M1-1 and P1-1: implications for toxicity associated with zileuton. Xenobiotica 39(3), 197–204 (2009).
    • 29 Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol. Sci. 105(1), 97–105 (2008).
    • 30 O'Brien PJ, Irwin W, Diaz D et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 80(9), 580–604 (2006).
    • 31 Malec J, Przybyszewski WM, Grabarczyk M, Sitarska E. Hydroxyurea has the capacity to induce damage to human erythrocytes which can be modified by radical scavengers. Biochem. Biophys. Res. Commun. 120(2), 566–573 (1984).
    • 32 Fischer L, Szellas D, Rådmark O, Steinhilber D, Werz O. Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. FASEB J. 17(8), 949–951 (2003).
    • 33 Werz O, Steinhilber D. Development of 5-lipoxygenase inhibitors–lessons from cellular enzyme regulation. Biochem. Pharmacol. 70(3), 327–333 (2005). • Review displays pitfalls in 5-LO inhibitor drug development.
    • 34 Gilbert NC, Bartlett SG, Waight MT et al. The structure of human 5-lipoxygenase. Science 331(6014), 217–219 (2011). •• First reported crystal structure of human 5-LO.
    • 35 Riccioni G, Capra V, D'Orazio N, Bucciarelli T, Bazzano LA. Leukotriene modifiers in the treatment of cardiovascular diseases. J. Leukoc. Biol. 84(6), 1374–1378 (2008).
    • 36 Steinhilber D, Fischer AS, Metzner J et al. 5-lipoxygenase: underappreciated role of a pro-inflammatory enzyme in tumorigenesis. Front. Pharmacol. 1, 143 (2010).
    • 37 Joshi YB, Praticò D. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer's disease phenotype. Front. Cell. Neurosci. 8, 436 (2015).