We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Inhibitors of translation initiation as cancer therapeutics

    Lisa Lindqvist

    Department of Biochemistry, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, McGill University, Montreal, QC, H3G 1Y6, Canada

    &
    Jerry Pelletier

    † Author for correspondence

    Department of Biochemistry, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, McGill University, Montreal, QC, H3G 1Y6, Canada

    The Rosalind and Morris Goodman Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Rm. 810 Montreal, QC, H3G 1Y6, Canada.

    Published Online:https://doi.org/10.4155/fmc.09.122

    Deregulated translation initiation is implicated extensively in cancer initiation and progression. Several translation initiation factors cooperate with known oncogenes, are elevated in human tumors and have been implicated in drug resistance. Consequently, there is a great deal of interest in targeting this process to develop new chemotherapeutics, especially since clinical trial results have been mixed when targeting upstream pathways, such as the mammalian target of rapamycin. Several inhibitors have been characterized over the last 5 years that target the ribosome recruitment phase (eukaryotic initiation factor [eIF]4E [antisense oligonucleotides and 4EGI-1] or eIF4A [pateamine A, hippuristanol and silvestrol]), some of which demonstrate activity in preclinical cancer models. The promise of these inhibitors as chemotherapeutics highlights the importance of targeting this pathway and supports efforts aimed at identifying the most susceptible targets. In addition, the framework in which translation inhibitors would be best employed (i.e., as single agents or as adjuvant therapy) in the clinic remains to be explored systematically. Small-molecule inhibitors of translation initiation are validating the idea that protein synthesis is a legitimate target for curtailing tumor growth.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem.73,657–704 (2004).
    • LeFebvre AK, Korneeva NL, Trutschl M et al. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J. Biol. Chem.281,22917–22932 (2006).
    • Imataka H, Gradi A, Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J.17,7480–7489 (1998).
    • Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene23,3200–3207 (2004).
    • Sonenberg N, Shatkin AJ. Reovirus mRNA can be covalently crosslinked via the 5´ cap to proteins in initiation complexes. Proc. Natl Acad. Sci. USA74,4288–4292 (1977).
    • Lindqvist L, Imataka H, Pelletier J. Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking. RNA14,960–969 (2008).
    • Pestova TV, Lorsch JR, Hellen CUT. The mechanism of translation initiation in eukaryotes. In: Translational Control in Biology and Medicine. Mathews MB, Sonenberg N, Hershey JWB (Eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 87–128 (2007).
    • Haghighat A, Sonenberg N. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5´-cap structure. J. Biol. Chem.272,21677–21680 (1997).
    • Duncan R, Milburn SC, Hershey JW. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem.262,380–388 (1987).
    • 10  Linder P. Dead-box proteins: a family affair – active and passive players in RNP-remodeling. Nucleic Acids Res.34,4168–4180 (2006).
    • 11  Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell125,287–300 (2006).
    • 12  Lindqvist L, Oberer M, M Reibarkh et al. Selective pharmacological targeting of a DEAD box RNA helicase. PLoS ONE3,e1583 (2008).
    • 13  Rogers GW Jr, Lima WF, Merrick WC. Further characterization of the helicase activity of eIF4A. Substrate specificity. J. Biol. Chem.276,12598–12608 (2001).
    • 14  Rogers GW Jr, Richter NJ, Merrick WC. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem.274,12236–12244 (1999).
    • 15  Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell Biol.10,1134–1144 (1990).
    • 16  Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J.13,1205–1215 (1994).
    • 17  Rogers GW Jr, Richter NJ, Lima WF, Merrick WC. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem.276,30914–30922 (2001).
    • 18  Marintchev A, Edmonds KA, Marintcheva B et al. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell136,447–460 (2009).
    • 19  Rozovsky N, Butterworth AC, Moore MJ. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA14,2136–2148 (2008).
    • 20  Svitkin YV, Pause A, Haghighat A et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5´ secondary structure. RNA7,382–394 (2001).
    • 21  von der Haar T, McCarthy JE. Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol. Microbiol.46,531–544 (2002).
    • 22  Yoder-Hill J, Pause A, Sonenberg N, Merrick WC. The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J. Biol. Chem.268,5566–5573 (1993).
    • 23  Shibuya T, Tange TO, Stroupe ME, Moore MJ. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA12,360–374 (2006).
    • 24  Lorsch JR, Herschlag D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry37,2194–2206 (1998).
    • 25  Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors25,209–226 (2007).
    • 26  Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23,357–361 (2005).
    • 27  Margolin K, Longmate J, Baratta T et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer104,1045–1048 (2005).
    • 28  Heys SD, Park KG, McNurlan MA et al. Protein synthesis rates in colon and liver: stimulation by gastrointestinal pathologies. Gut33,976–981 (1992).
    • 29  Silvera D, Arju R, Darvishian F et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat. Cell Biol.11,903–908 (2009).
    • 30  Zhang L, Pan X, Hershey JW. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem.282,5790–5800 (2007).
    • 31  Rothe M, Ko Y, Albers P, Wernert N. Eukaryotic initiation factor 3 p110 mRNA is overexpressed in testicular seminomas. Am. J. Pathol.157,1597–1604 (2000).
    • 32  Pincheira R, Chen Q, Zhang JT. Identification of a 170-kDa protein over-expressed in lung cancers. Br. J. Cancer84,1520–1527 (2001).
    • 33  Wang S, Rosenwald IB, Hutzler MJ et al. Expression of the eukaryotic translation initiation factors 4E and 2α in non-Hodgkin’s lymphomas. Am. J. Pathol.155,247–255 (1999).
    • 34  Rosenwald IB, Wang S, Savas L, Woda B, Pullman J. Expression of translation initiation factor eIF-2α is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer98,1080–1088 (2003).
    • 35  Pelletier J, Sonenberg N. Insertion mutagenesis to increase secondary structure within the 5´ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell40,515–526 (1985).
    • 36  Pelletier J, Sonenberg N. Photochemical cross-linking of cap binding proteins to eucaryotic mRNAs: effect of mRNA 5´ secondary structure. Mol. Cell Biol.5,3222–3230 (1985).
    • 37  Pestova TV, Kolupaeva VG. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev.16,2906–2922 (2002).
    • 38  Pisarev AV, Skabkin MA, Thomas AA, Merrick WC, Ovchinnikov LP, Shatsky IN. Positive and negative effects of the major mammalian messenger ribonucleoprotein p50 on binding of 40 S ribosomal subunits to the initiation codon of beta-globin mRNA. J. Biol. Chem.277,15445–15451 (2002).
    • 39  Chen JY, Stands L, Staley JP, Jackups RR Jr, Latus LJ, Chang TH. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell7,227–232 (2001).
    • 40  Kistler AL, Guthrie C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev.15,42–49 (2001).
    • 41  Koromilas AE, Lazaris-Karatzas A, Sonenberg N. mRNAs containing extensive secondary structure in their 5´ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J.11,4153–4158 (1992).
    • 42  Graff JR, Konicek BW, Vincent TM et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J. Clin. Invest.117,2638–2648 (2007).▪▪ First report of an eIF4E inhibitor used in a preclinical mouse model.
    • 43  Bordeleau ME, Matthews J, Wojnar JM et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl Acad. Sci. USA102,10460–10465 (2005).▪ First report of a translation inhibitor targeting eIF4A.
    • 44  Bordeleau ME, Mori A, Oberer M et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol.2,213–220 (2006).▪ Report characterizing the selective eIF4A inhibitor hippuristanol.
    • 45  Bordeleau ME, Robert F, Gerard B et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest.118,2651–2660 (2008).▪▪ First report of a translation inhibitor targeting eIF4A used in preclinical mouse models.
    • 46  Asselbergs FA, Peters W, Venrooij WJ, Bloemendal H. Diminished sensitivity of re-initiation of translation to inhibition by cap analogues in reticulocyte lysates. Eur. J. Biochem.88,483–488 (1978).
    • 47  Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res.68,631–634 (2008).
    • 48  Kevil C, Carter P, Hu B, DeBenedetti A. Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene11,2339–2348 (1995).
    • 49  Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int. J. Cancer65,785–790 (1996).
    • 50  Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl Acad. Sci. USA93,1065–1070 (1996).
    • 51  Shantz LM, Hu RH, Pegg AE. Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res.56,3265–3269 (1996).
    • 52  Scott PA, Smith K, Poulsom R, De Benedetti A, Bicknell R, Harris AL. Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br. J. Cancer77,2120–2128 (1998).
    • 53  Zimmer SG, DeBenedetti A, Graff JR. Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res.20,1343–1351 (2000).
    • 54  Grolleau A, Bowman J, Pradet-Balade B et al. Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J. Biol. Chem.277,22175–22184 (2002).
    • 55  Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5´ cap. Nature345,544–547 (1990).
    • 56  Rinker-Schaeffer CW, Graff JR, De Benedetti A, Zimmer SG, Rhoads RE. Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int. J. Cancer55,841–847 (1993).
    • 57  Graff JR, Boghaert ER, De Benedetti A et al. Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int. J. Cancer60,255–263 (1995).
    • 58  Ruggero D, Montanaro L, Ma L et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med.10,484–486 (2004).
    • 59  Wendel HG, De Stanchina E, Fridman JS et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature428,332–337 (2004).
    • 60  Ko SY, Guo H, Barengo N, Naora H. Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E. Clin. Cancer Res.15(13),4336–4347 (2009).
    • 61  Salehi Z, Mashayekhi F, Shahosseini F. Significance of eIF4E expression in skin squamous cell carcinoma. Cell Biol. Int.31,1400–1404 (2007).
    • 62  Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J. Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene18,2507–2517 (1999).
    • 63  Nathan CO, Amirghahari N, Abreo F et al. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin. Cancer Res.10,5820–5827 (2004).
    • 64  Kerekatte V, Smiley K, Hu B, Smith A, Gelder, F De Benedetti A. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int. J. Cancer64,27–31 (1995).
    • 65  Li BD, Liu L, Dawson M, De Benedetti A. Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer79,2385–2390 (1997).
    • 66  Coleman LJ, Peter MB, Teall TJ et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br. J. Cancer100,1393–1399 (2009).
    • 67  Graff JR, Konicek BW, Lynch RL et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res.69,3866–3873 (2009).
    • 68  Rosenwald IB, Hutzler MJ, Wang S, Savas L, Fraire AE. Expression of eukaryotic translation initiation factors 4E and 2α is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer92,2164–2171 (2001).
    • 69  Li BD, McDonald JC, Nassar R, De Benedetti A. Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann. Surg.227,756–763 (1998).
    • 70  Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cocrystal structure of the messenger RNA 5´ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell89,951–961 (1997).
    • 71  Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell3,707–716 (1999).
    • 72  Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol.27,2278–2287 (2009).
    • 73  Kremer CL, Klein RR, Mendelson J et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate66,1203–1212 (2006).
    • 74  Zhou X, Tan M, Stone Hawthorne V et al. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin. Cancer Res.10,6779–6788 (2004).
    • 75  Eberle J, Krasagakis K, Orfanos CE. Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int. J. Cancer71,396–401 (1997).
    • 76  Lin YW, Aplan PD. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets. Leukemia21,1276–1284 (2007).
    • 77  Shuda M, Kondoh N, Tanaka K et al. Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. AntiCancer Res.20,2489–2494 (2000).
    • 78  Chang JH, Cho YH, Sohn SY et al. Crystal structure of the eIF4A-PDCD4 complex. Proc. Natl Acad. Sci. USA106,3148–3153 (2009).
    • 79  LaRonde-LeBlanc N, Santhanam AN, Baker AR, Wlodawer A, Colburn NH. Structural basis for inhibition of translation by the tumor suppressor Pdcd4. Mol. Cell Biol.27,147–156 (2007).
    • 80  Loh PG, Yang HS, Walsh MA et al. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J.28,274–285 (2009).
    • 81  Suzuki C, Garces RG, Edmonds KA et al. PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc. Natl Acad. Sci. USA105,3274–3279 (2008).
    • 82  Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T. Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene166,297–301 (1995).
    • 83  Yang HS, Jansen AP, Komar AA et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell Biol.23,26–37 (2003).
    • 84  Hilliard A, Hilliard B, Zheng SJ et al. Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J. Immunol.177,8095–8102 (2006).
    • 85  Zhang H, Ozaki I, Mizuta T et al. Involvement of programmed cell death 4 in transforming growth factor-β1-induced apoptosis in human hepatocellular carcinoma. Oncogene25,6101–6112 (2006).
    • 86  Chen Y, Knosel T, Kristiansen G et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J. Pathol.200,640–646 (2003).
    • 87  Mudduluru G, Medved F, Grobholz R et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer110,1697–1707 (2007).
    • 88  Wen YH, Shi X, Chiriboga L, Matsahashi S, Yee H, Afonja O. Alterations in the expression of PDCD4 in ductal carcinoma of the breast. Oncol. Rep.18,1387–1393 (2007).
    • 89  Gao F, Zhang P, Zhou C et al. Frequent loss of PDCD4 expression in human glioma: possible role in the tumorigenesis of glioma. Oncol. Rep.17,123–128 (2007).
    • 90  Bohm M, Sawicka K, Siebrasse JP, Brehmer-Fastnacht A, Peters R, Klempnauer KH. The transformation suppressor protein Pdcd4 shuttles between nucleus and cytoplasm and binds RNA. Oncogene22,4905–4910 (2003).
    • 91  Palamarchuk A, Efanov A, Maximov V, Aqeilan RI, Croce CM, Pekarsky Y. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Res.65,11282–11286 (2005).
    • 92  Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science314,467–471 (2006).
    • 93  Woodard J, Sassano A, Hay N, Platanias LC. Statin-dependent suppression of the Akt/mammalian target of rapamycin signaling cascade and programmed cell death 4 up-regulation in renal cell carcinoma. Clin. Cancer Res.14,4640–4649 (2008).
    • 94  Kim WJ, Kim JH, Jang SK. Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. EMBO J.26,5020–5032 (2007).
    • 95  Nathan CA, Carter P, Liu L et al. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene15,1087–1094 (1997).
    • 96  DeFatta RJ, Nathan CO, De Benedetti A. Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope110,928–933 (2000).
    • 97  Moerke NJ, Aktas H, Chen H et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell128,257–267 (2007).▪ First report of a cell-permeable inhibitor that affects the eIF4E–eIF4G interaction.
    • 98  Cencic R, Yan Y, Pelletier J. Homogenous time resolved fluorescence assay to identify modulators of cap-dependent translation initiation. Comb. Chem. High Throughput Screen.10,181–188 (2007).
    • 99  Higa T, Tanaka J, Y Tsukitani, Kikuchi H. Hippuristanols, cyto-toxic polyoxygenated steroids from the gorgonian isis-hippuris. Chem. Lett.1647–1650 (1981).
    • 100  Novac O, Guenier AS, Pelletier J. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res.32,902–915 (2004).
    • 101  Gonzalez N, Barral MA, Rodriguez J, Jimenez C. New cytotoxic steroids from the gorgonian Isis hippuris. Structure–activity studies. Tetrahedron57,3487–3497 (2001).
    • 102  Li W, Dang Y, Liu JO, Yu B. Expeditious synthesis of hippuristanol and congeners with potent antiproliferative activities. Chemistry (2009).
    • 103  Fang J, Kubota S, Yang B et al. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev. Virology330,471–480 (2004).
    • 104  Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell119,381–392 (2004).
    • 105  Northcote PT, Blunt JW, Munro MHG. Pateamine – a potent cytotoxin from the New-Zealand marine sponge, Mycale Sp. Tetrahedron Lett.32,6411–6414 (1991).
    • 106  Romo D, Rzasa RM, HA Shea et al. Total synthesis and immunosuppressive activity of (-)-pateamine A and related compounds: Implementation of β-lactam-based macrocyclization. J. Am. Chem. Soc.120,12237–12254 (1998).
    • 107  Hood KA, West LM, Northcote PT, Berridge MV, Miller JH. Induction of apoptosis by the marine sponge (Mycale) metabolites, mycalamide A and pateamine. Apoptosis6,207–219 (2001).
    • 108  Kuznetsov G, Xu Q, Rudolph-Owen Let al. Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Mol. Cancer Ther. (2009).
    • 109  Low WK, Dang Y, Schneider-Poetsch T et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell20,709–722 (2005).
    • 110  Bordeleau ME, Cencic R, Lindqvist L et al. RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem. Biol.13,1287–1295 (2006).
    • 111  Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell12,5–14 (2003).
    • 112  Staley JP, Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell92,315–326 (1998).
    • 113  Low WK, Dang Y, Bhat S, Romo D, Liu JO. Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine A: negation of domain-linker regulation of activity. Chem. Biol.14,715–727 (2007).
    • 114  Grollman AP. Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. J. Biol. Chem.242,3226–3233 (1967).
    • 115  Adams TE, El Sous M, Hawkins BC et al. Total synthesis of the potent anticancer aglaia metabolites (-)-silvestrol and (-)-episilvestrol and the active analogue (-)-4´-sesmethoxyepisilvestrol. J. Am. Chem. Soc.131,1607–1616 (2009).
    • 116  Kim S, Salim AA, SM Swanson, Kinghorn AD. Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. Anticancer Agents Med. Chem.6,319–345 (2006).▪ Details comparative studies of different flavaglines and their history.
    • 117  Hwang BY, Su BN, Chai HB et al. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J. Organic Chem.69,3350–3358 (2004).
    • 118  Cencic R, Carrier M, Galicia-Vazquez G et al. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS ONE4,e5223 (2009).
    • 119  Bohnenstengel FI, Steube KG, Meyer C et al. Structure activity relationships of antiproliferative rocaglamide derivatives from Aglaia species (Meliaceae). Zeitschrift Fur Naturforschung C54,55–60 (1999).
    • 120  Proksch P, Edrada R, Ebel R, Bohnenstengel FI, Nugroho BW. Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr. Org. Chem.5,923–938 (2001).
    • 121  Gerard B, Cencic R, Pelletier J, Porco JA Jr. Enantioselective synthesis of the complex rocaglate (-)-silvestrol. Angew. Chem. Int. Ed. Engl.46,7831–7834 (2007).
    • 122  El Sous M, Khoo ML, Holloway G, Owen D, Scammells PJ, Rizzacasa MA. Total synthesis of (-)-episilvestrol and (-)-silvestrol. Angewandte Chemie-International Edition46,7835–7838 (2007).
    • 123  Lucas DM, Edwards RB, Lozanski G et al. The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood113(19),4656–4666 (2009).
    • 124  Cencic R, Carrier M, A Trnkus, Porco JA Jr, Minden M, Pelletier J. Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute myelogenous leukemia cells. Leuk. Res. DOI:10.1016/j.leukres.2009.07.043 (2009) (Epub ahead of print).
    • 125  Monks A, Scudiero D, Skehan P et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl Cancer Inst.83,757–766 (1991).
    • 126  Clohessy JG, Zhuang J, de Boer J, Gil-Gomez G, Brady HJ. Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome C release and its role in receptor-mediated apoptosis. J. Biol. Chem.281,5750–5759 (2006).
    • 127  Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl Acad. Sci. USA90,3516–3520 (1993).
    • 128  Wendel HG, Silva RL, Malina A et al. Dissecting eIF4E action in tumorigenesis. Genes Dev.21,3232–3237 (2007).
    • 129  Opferman JT, Iwasaki H, Ong CC et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science307,1101–1104 (2005).
    • 130  Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature426,671–676 (2003).
    • 131  Wuilleme-Toumi S, Robillard N, Gomez P et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia19,1248–1252 (2005).
    • 132  Kitada S, Andersen J, Akar S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood91,3379–3389 (1998).
    • 133  Miyamoto Y, Hosotani R, Wada M et al. Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology56,73–82 (1999).
    • 134  Zhuang L, Lee CS, Scolyer RA et al. Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod. Pathol.20,416–426 (2007).
    • 135  Sano M, Nakanishi Y, Yagasaki H et al. Overexpression of anti-apoptotic Mcl-1 in testicular germ cell tumours. Histopathology46,532–539 (2005).
    • 136  Hussain SR, Cheney CM, Johnson AJ et al. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin. Cancer Res.13,2144–2150 (2007).
    • 137  Mi Q, Kim S, Hwang BY et al. Silvestrol regulates G2/M checkpoint genes independent of p53 activity. Anticancer Res.26,3349–3356 (2006).
    • 138  Kim S, Hwang BY, Su BN et al. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res.27,2175–2183 (2007).
    • 139  Galicia-Vazquez G, Lindqvist L, Wang X, Harvey I, Liu J, Pelletier J. High-throughput assays probing protein-RNA interactions of eukaryotic translation initiation factors. Anal. Biochem.384,180–188 (2009).