CC BY-NC-ND 4.0 · World J Nucl Med 2019; 18(03): 244-250
DOI: 10.4103/wjnm.WJNM_47_18
Original Article

Initial experience of Ga-68 prostate-specific membrane antigen positron emission tomography/computed tomography imaging in evaluation of biochemical recurrence in prostate cancer patients

Aravintho Natarajan
Department of Nuclear Medicine and Molecular Imaging, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Archi Agrawal
Department of Nuclear Medicine and Molecular Imaging, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Vedang Murthy
1   Department of Radiation Oncology, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Ganesh Bakshi
2   Department of Surgical Oncology, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Amit Joshi
3   Department of Medical Oncology, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Nilendu Purandare
Department of Nuclear Medicine and Molecular Imaging, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Sneha Shah
Department of Nuclear Medicine and Molecular Imaging, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Ameya Puranik
Department of Nuclear Medicine and Molecular Imaging, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
,
Venkatesh Rangarajan
Department of Nuclear Medicine and Molecular Imaging, Uro-Oncology Disease Management Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
› Author Affiliations

Abstract

Gallium-68 labeled prostate-specific membrane antigen (Ga-68 PSMA) ligand (HBED-CC) is a novel tracer used for prostate cancer imaging. The aim of the study was to investigate the performance of Ga-68 PSMA positron emission tomography/computed tomography (PET/CT) in patients with biochemical recurrence (BCR) after definitive treatment. Scans of 96 consecutive patients were analyzed. Sixty-two patients received external beam radiotherapy, 34 underwent radical prostatectomy (RP), and 20 patients were on androgen deprivation therapy. Patients with prostate-specific antigen (PSA) level ≥>0.2 ng/mL following RP and PSA rise by 2 ng/mL or more above the nadir PSA following RT (Phoenix criteria) was considered as BCR, respectively. All patients underwent contrast-enhanced PET/CT after injection of 67–111 MBq Ga-68 PSMA ligand. Detection rates were correlated with serum PSA level. Detection rate for nodal metastases was compared with CT. Results of the scan were validated by using either biopsy or follow-up imaging or clinical follow-up. Seventy-four (77%) patients showed abnormal finding in Ga-68 PSMA PET/CT. The median serum PSA level of the population was 5.5 ng/ml (range 0.2–123 ng/ml). The median PSA of the positive scans was higher than that of the negative scans (6 vs. 1.7 ng/ml) and was statistically significant (P = 0.001 by Mann–Whitney U-test). In post-RP group, the detection rates were 23%, 50%, and 82% for PSA <1, 1–2, and >2 ng/ml, respectively. For post-RT, the detection was 86%, 85%, and 95% for PSA 2–5, 5.1–10, and >10 ng/ml, respectively. PSMA PET/CT revealed nodal metastases in 52 (54%) patients while CT showed pathological nodes only in 27 (28%) patients. Overall PSMA PET/CT revealed more number of nodes than CT (111 vs. 48 nodal station). PSMA PET/CT showed relapse in prostate/prostatic bed in 26 (27%) patients, nodal metastases in 50 (52%), skeletal metastases in 20 (21%), and other sites in 4 (4%) patients. Ga-68 PSMA PET/CT has high detection rate for localizing the site of recurrence in patients with biochemical failure and is superior to CT scan in the detection of nodal disease.

Financial support and sponsorship

Nil.




Publication History

Received: 06 May 2018

Accepted: 12 June 2018

Article published online:
22 April 2022

© 2019. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893-917.
  • 2 Jain S, Saxena S, Kumar A. Epidemiology of prostate cancer in India. Meta Gene 2014;2:596-605.
  • 3 Bruce JY, Lang JM, McNeel DG, Liu G. Current controversies in the management of biochemical failure in prostate cancer. Clin Adv Hematol Oncol 2012;10:716-22.
  • 4 Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017;71:630-42.
  • 5 Cher ML, Bianco FJ Jr., Lam JS, Davis LP, Grignon DJ, Sakr WA, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol 1998;160:1387-91.
  • 6 Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol 2011;12:181-91.
  • 7 Castellucci P, Ceci F, Graziani T, Schiavina R, Brunocilla E, Mazzarotto R, et al. Early biochemical relapse after radical prostatectomy: Which prostate cancer patients may benefit from a restaging 11C-choline PET/CT scan before salvage radiation therapy? J Nucl Med 2014;55:1424-9.
  • 8 Bařinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 2012;19:856-70.
  • 9 Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998;52:637-40.
  • 10 Trock BJ, Han M, Freedland SJ, Humphreys EB, DeWeese TL, Partin AW, et al. Prostate cancer-specific survival following salvage radiotherapy vs. observation in men with biochemical recurrence after radical prostatectomy. JAMA 2008;299:2760-9.
  • 11 Amling CL, Lerner SE, Martin SK, Slezak JM, Blute ML, Zincke H. Deoxyribonucleic acid ploidy and serum prostate specific antigen predict outcome following salvage prostatectomy for radiation refractory prostate cancer. J Urol 1999;161:857-62.
  • 12 Kane CJ, Amling CL, Johnstone PA, Pak N, Lance RS, Thrasher JB, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 2003;61:607-11.
  • 13 Hövels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin Radiol 2008;63:387-95.
  • 14 Fitzpatrick C, Lynch O, Marignol L.68Ga-PSMA-PET/CT has a role in detecting prostate cancer lesions in patients with recurrent disease. Anticancer Res 2017;37:2753-60.
  • 15 Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 2015;56:668-74.
  • 16 Lengana T, van de Wiele C, Lawal I, Maes A, Ebenhan T, Boshomane T, et al. 68Ga-PSMA-HBED-CC PET/CT imaging in black versus white South African patients with prostate carcinoma presenting with a low volume, androgen-dependent biochemical recurrence: A prospective study. Nucl Med Commun 2018;39:179-85.
  • 17 Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med 2015;56:1185-90.
  • 18 Einspieler I, Rauscher I, Düwel C, Krönke M, Rischpler C, Habl G, et al. Detection efficacy of hybrid 68Ga-PSMA ligand PET/CT in prostate cancer patients with biochemical recurrence after primary radiation therapy defined by phoenix criteria. J Nucl Med 2017;58:1081-7.
  • 19 Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer 2011;117:5039-46.
  • 20 Ferdinandus J, Violet J, Sandhu S, Hofman MS. Prostate-specific membrane antigen theranostics: Therapy with lutetium-177. Curr Opin Urol 2018;28:197-204.