Skip to main content

Advertisement

Log in

The History of Biomechanics in Total Hip Arthroplasty

  • Symposium - Total Hip Arthroplasty
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Biomechanics of the hip joint describes how the complex combination of osseous, ligamentous, and muscular structures transfers the weight of the body from the axial skeleton into the appendicular skeleton of the lower limbs. Throughout history, several biomechanical studies based on theoretical mathematics, in vitro, in vivo as well as in silico models have been successfully performed. The insights gained from these studies have improved our understanding of the development of mechanical hip pathologies such as osteoarthritis, hip fractures, and developmental dysplasia of the hip. The main treatment of end-stage degeneration of the hip is total hip arthroplasty (THA). The increasing number of patients undergoing this surgical procedure, as well as their demand for more than just pain relief and leading an active lifestyle, has challenged surgeons and implant manufacturers to deliver higher function as well as longevity with the prosthesis. The science of biomechanics has played and will continue to play a crucial and integral role in achieving these goals. The aim of this article, therefore, is to present to the readers the key concepts in biomechanics of the hip and their application to THA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy LB, Helmick CG, Schwartz TA, Renner JB, Tudor G, Koch GG, et al. One in four people may develop symptomatic hip osteoarthritis in his or her lifetime. Osteoarthritis Cartilage 2010;18:1372–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Learmonth ID, Young C, Rorabeck C. The operation of the century: Total hip replacement. Lancet 2007;370:1508–19.

    PubMed  Google Scholar 

  3. Wiles P. The surgery of the osteoarthritic hip. Br J Surg 1958;45:488–97.

    CAS  PubMed  Google Scholar 

  4. McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Joint Surg Br 1966;48:245–59.

    CAS  PubMed  Google Scholar 

  5. 13th Annual Report: National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. National Joint Registry; 2016.

  6. Callaghan JJ, Bracha P, Liu SS, Piyaworakhun S, Goetz DD. Johnston RC. Survivorship of a Charnley total hip arthroplasty. A concise followup, at a minimum of thirty-five years, of previous reports. J Bone Joint Surg Am 2009;91:2617–21.

    PubMed  Google Scholar 

  7. Wolff J. Ueber die Innere Architectur der Knochen. Virchows Arch 1870;50:389.

    Google Scholar 

  8. Skedros JG, Brand RA. Biographical sketch: Georg Hermann von Meyer (1815-1892). Clin Orthop Relat Res 2011;469:3072–6.

    PubMed  PubMed Central  Google Scholar 

  9. Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R. Lehr S, et al. Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg Br 2004;86:20–6.

    CAS  PubMed  Google Scholar 

  10. Glassman AH, Crowninshield RD, Schenck R, Herberts P. A low stiffness composite biologically fixed prosthesis. Clin Orthop Relat Res 2001;393:128–36.

    Google Scholar 

  11. Karrholm J, Anderberg C, Snorrason F, Thanner J, Langeland N, Malchau H, et al. Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry. J Bone Joint Surg Am 2002;84-A: 1651–8.

    Google Scholar 

  12. Tanzer M, Kantor S, Rosenthall L, Bobyn JD. Femoral remodeling after porous-coated total hip arthroplasty with and without hydroxyapatite-tricalcium phosphate coating: A prospective randomized trial. J Arthroplasty 2001;16:552–8.

    CAS  PubMed  Google Scholar 

  13. Glassman AH, Bobyn JD, Tanzer M. New femoral designs: Do they influence stress shielding? Clin Orthop Relat Res 2006;453:64–74.

    CAS  PubMed  Google Scholar 

  14. Bugbee WD, Culpepper WJ 2nd, Engh CA Jr., Engh CA Sr. Long term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 1997;79:1007–12.

    CAS  PubMed  Google Scholar 

  15. Engh CA Jr., Young AM, Engh CA Sr., Hopper RH Jr. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res 2003;417:157–63.

    Google Scholar 

  16. Koch JC. The laws of bone architecture. Am J Anat 1917;21:177–298.

    Google Scholar 

  17. Pauwels F. Biomechanics of the Normal and Diseased Hip: Theoretical Foundation, Technique, and Results of Treatment: An Atlas. Berlin, Heidelberg, New York: Springer; 1976.

    Google Scholar 

  18. Lindgren JU, Rysavy J. Restoration of femoral offset during hip replacement. A radiographic cadaver study. Acta Orthop Scand 1992;63:407–10.

    CAS  PubMed  Google Scholar 

  19. Charles MN, Bourne RB, Davey JR, Greenwald AS, Morrey BE Rorabeck CH. Soft-tissue balancing of the hip – The role of femoral offset restoration. J Bone Joint Surg Am 2004;86A: 1078–88.

    Google Scholar 

  20. Delia Valle AG, Padgett DE, Salvati EA. Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 2005;13:455–62.

    Google Scholar 

  21. Schmalzried TP. Preoperative templating and biomechanics in total hip arthroplasty. Orthopedics 2005;28 8 Suppl:s849–51.

    PubMed  Google Scholar 

  22. Davey JR, editor. Implant Issues in using High Offset Femoral Stems. Presented as an instructional course lecture at the Annual Meeting of the American Academy of Orthopaedic Surgeons, New Orleans, LA; 2003.

  23. Boese CK, Jostmeier J, Oppermann J, Dargel J, Chang DH, Eysel P, et al. The neck shaft angle: CT reference values of 800 adult hips. Skeletal Radiol 2016;45:455–63.

    PubMed  Google Scholar 

  24. Van Houcke J, Yau WP, Yan CH, Huysse W, Dechamps H, Lau WH, et al. Prevalence of radiographic parameters predisposing to femoroacetabular impingement in young asymptomatic Chinese and white subjects. J Bone Joint Surg Am 2015;97:310–7.

    PubMed  PubMed Central  Google Scholar 

  25. Tohtz SW, Heller MO, Taylor WR Perka C, Duda GN. On the biomechanics of the hip: Relevance of femoral anteversion for hip contact force and loading using a short-stemmed prostheses. Orthopade 2008;37:923–9.

    CAS  PubMed  Google Scholar 

  26. Koerner JD, Patel NM, Yoon RS, Sirkin MS, Reilly MC, Liporace FA. Femoral version of the general population: Does “normal” vary by gender or ethnicity? J Orthop Trauma 2013;27:308–11.

    PubMed  Google Scholar 

  27. Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, Flecher X, et al. Femoral offset: Anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 2009;95:210–9.

    CAS  PubMed  Google Scholar 

  28. Kleemann RU, Heller MO, Stoeckle U, Taylor WR, Duda GN. THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses. J Orthop Res 2003;21:767–74.

    CAS  PubMed  Google Scholar 

  29. Little NJ, Busch CA, Gallagher JA, Rorabeck CH, Bourne RB. Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin Orthop Relat Res 2009;467:2895–900.

    PubMed  PubMed Central  Google Scholar 

  30. Sakalkale DP, Sharkey PF, Eng K, Hozack WJ, Rothman RH. Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res 2001;388:125–34.

    Google Scholar 

  31. McGrory BJ, Morrey BF, Cahalan TD, An KN, Cabanela ME. Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 1995;77:865–9.

    CAS  PubMed  Google Scholar 

  32. Cassidy KA, Noticewala MS, Macaulay W, Lee JH, Geller JA. Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty 2012;27:1863–9.

    PubMed  Google Scholar 

  33. O’Connor DO, Davey JR, Zalenski E, Burke DW, Harris WH. Femoral Component Offset: Its Effect on Micromotion in Stance and Stair Climbing Loading. Vol. 14. Transactions 35th Annual Meeting of the Orthopaedic Research Society; 1989. p. 409.

  34. Davey J, O’connor D, Burke DW. Femoral component offset: Its effect on micromotion strain in the cement, bone and prosthesis. Orthop Translat 1989;13:566.

    Google Scholar 

  35. Blackley HR, Howell GE, Rorabeck CH. Planning and management of the difficult primary hip replacement: Preoperative planning and technical considerations. Instr Course Lect 2000;49:3–11.

    CAS  PubMed  Google Scholar 

  36. Cantin O, Viste A, Desmarchelier R, Besse JL, Fessy MH. Compared fixation and survival of 280 lateralised vs. 527 standard cementless stems after two years (1–7). Orthop Traumatol Surg Res 2015;101:775–80.

    CAS  PubMed  Google Scholar 

  37. Scheerlinck T. Cup positioning in total hip arthroplasty. Acta Orthop Belg 2014;80:336–47.

    CAS  PubMed  Google Scholar 

  38. Kiyama T, Naito M, Shitama H, Maeyama A. Effect of superior placement of the hip center on abductor muscle strength in total hip arthroplasty. J Arthroplasty 2009;24:240–5.

    PubMed  Google Scholar 

  39. Bonnin MP, Archbold PH, Basiglini L, Selmi TA, Beverland DE. Should the acetabular cup be medialised in total hip arthroplasty. Hip Int 2011;21:428–35.

    PubMed  Google Scholar 

  40. Biedermann R, Tonin A, Krismer M, Rachbauer F, Eibl G, Stockl B. Reducing the risk of dislocation after total hip arthroplasty: The effect of orientation of the acetabular component. J Bone Joint Surg Br 2005;87:762–9.

    CAS  PubMed  Google Scholar 

  41. Espehaug B, Havelin LI, Engesaeter LB, Langeland N, Vollset SE. Patient-related risk factors for early revision of total hip replacements. A population register-based case-control study of 674 revised hips. Acta Orthop Scand 1997;68:207–15.

    CAS  PubMed  Google Scholar 

  42. Kiyama T, Kinsey TL, Mahoney OM. Can squeaking with ceramic-on-ceramic hip articulations in total hip arthroplasty be avoided? J Arthroplasty 2013;28:1015–20.

    PubMed  Google Scholar 

  43. Affatato S, Traina F, Mazzega-Fabbro C, Sergo V, Viceconti M. Is ceramic-on-ceramic squeaking phenomenon reproducible in vitro? A long term simulator study under severe conditions. J Biomed Mater Res B Appl Biomater 2009;91:264–71.

    CAS  PubMed  Google Scholar 

  44. De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br 2008;90:1291–7.

    PubMed  Google Scholar 

  45. Wan Z, Boutary M, Dorr LD. The influence of acetabular component position on wear in total hip arthroplasty. J Arthroplasty 2008;23:51–6.

    PubMed  Google Scholar 

  46. Scheerlinck T. Primary hip arthroplasty templating on standard radiographs. A stepwise approach. Acta Orthop Belg 2010;76:432–42.

    PubMed  Google Scholar 

  47. Bonnin MP, Archbold PH, Basiglini L, Fessy MH, Beverland DE. Do we medialise the hip centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int 2012;22:371–8.

    PubMed  Google Scholar 

  48. Robinson M, Bornstein L, Mennear B, Bostrom M, Nestor B, Padgett D, et al. Effect of restoration of combined offset on stability of large head THA. Hip Int 2012;22:248–53.

    PubMed  Google Scholar 

  49. Kosak R, Kralj-Iglic V, Iglic A, Daniel M. Polyethylene wear is related to patient-specific contact stress in THA. Clin Orthop Relat Res 2011;469:3415–22.

    PubMed  PubMed Central  Google Scholar 

  50. Yoo JJ, Yoon HJ, Yoon PW, Lee YK, Kim HJ. Medial placement of the acetabular component in an alumina-on-alumina total hip arthroplasty: A comparative study with propensity score matching. Arch Orthop Trauma Surg 2013;133:413–9.

    PubMed  Google Scholar 

  51. Bicanic G, Delimar D, Delimar M, Pecina M. Influence of the acetabular cup position on hip load during arthroplasty in hip dysplasia. Int Orthop 2009;33:397–402.

    PubMed  Google Scholar 

  52. Genda E, Konishi N, Hasegawa Y Miura T. A computer simulation study of normal and abnormal hip joint contact pressure. Arch Orthop Trauma Surg 1995;114:202–6.

    CAS  PubMed  Google Scholar 

  53. Daniel M, Iglic A, Kralj-Iglic V. Hip contact stress during normal and staircase walking: The influence of acetabular anteversion angle and lateral coverage of the acetabulum. J Appl Biomech 2008;24:88–93.

    PubMed  Google Scholar 

  54. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am 2000;82:315–21.

    PubMed  Google Scholar 

  55. Hisatome T, Doi H. Theoretically optimum position of the prosthesis in total hip arthroplasty to fulfill the severe range of motion criteria due to neck impingement. J Orthop Sci 2011;16:229–37.

    PubMed  Google Scholar 

  56. Malik A, Maheshwari A, Dorr LD. Impingement with total hip replacement. J Bone Joint Surg Am 2007;89:1832–42.

    PubMed  Google Scholar 

  57. Kennedy JG, Rogers WB, Soffe KE, Sullivan RJ, Griffen DG, Sheehan LJ. Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty 1998;13:530–4.

    CAS  PubMed  Google Scholar 

  58. Hart AJ, Ilo K, Underwood R Cann P, Henckel J, Lewis A, et al. The relationship between the angle of version and rate of wear of retrieved metal-on-metal resurfacings: A prospective, CT-based study. J Bone Joint Surg Br 2011;93:315–20.

    CAS  PubMed  Google Scholar 

  59. Hart AJ, Muirhead-Allwood S, Porter M, Matthies A, Ilo K, Maggiore P, et al. Which factors determine the wear rate of large-diameter metal-on-metal hip replacements? Multivariate analysis of two hundred and seventy-six components. J Bone Joint Surg Am 2013;95:678–85.

    CAS  PubMed  Google Scholar 

  60. Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br 1993;75:228–32.

    CAS  PubMed  Google Scholar 

  61. Lu M, Zhou YX, Du H, Zhang J, Liu J. Reliability and validity of measuring acetabular component orientation by plain anteroposterior radiographs. Clin Orthop Relat Res 2013;471:2987–94.

    PubMed  PubMed Central  Google Scholar 

  62. Brown TD, Callaghan JJ. Impingement in total hip replacement: Mechanisms and consequences. Curr Orthop 2008;22:376–391.

    PubMed  PubMed Central  Google Scholar 

  63. Dorr LD, Malik A, Dastane M, Wan Z. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res 2009;467:119–27.

    PubMed  Google Scholar 

  64. Widmer KH, Zurfluh B. Compliant positioning of total hip components for optimal range of motion. J Orthop Res 2004;22:815–21.

    PubMed  Google Scholar 

  65. Barsoum WK, Patterson RW, Higuera C, Klika AK, Krebs VE, Molloy R. A computer model of the position of the combined component in the prevention of impingement in total hip replacement. J Bone Joint Surg Br 2007;89:839–45.

    CAS  PubMed  Google Scholar 

  66. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 1978;60:217–20.

    CAS  PubMed  Google Scholar 

  67. McCollum DE, Gray WJ. Dislocation after total hip arthroplasty. Causes and prevention. Clin Orthop Relat Res 1990;261:159–70.

    Google Scholar 

  68. Yoshimine F. The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech 2006;39:1315–23.

    PubMed  Google Scholar 

  69. Rydell NW. Forces acting on the femoral head-prosthesis. A study on strain gauge supplied prostheses in living persons. Acta Orthop Scand 1966;37 Suppl 88:1–132.

    Google Scholar 

  70. English TA, Kilvington M. In vivo records of hip loads using a femoral implant with telemetric output (a preliminary report). J Biomed Eng 1979;1:111–5.

    CAS  PubMed  Google Scholar 

  71. Davy DT, Kotzar GM, Brown RH, Heiple KG, Goldberg VM, Heiple KG Jr., et al. Telemetric force measurements across the hip after total arthroplasty. J Bone Joint Surg Am 1988;70:45–50.

    CAS  PubMed  Google Scholar 

  72. Graichen F, Bergmann G. A telemetric transmission system for in vivo measuring of hip joint force with instrument-implanted prostheses. Biomed Tech (Berl) 1988;33:305–12.

    CAS  Google Scholar 

  73. Graichen F, Bergmann G. Four-channel telemetry system for in vivo measurement of hip joint forces. J Biomed Eng 1991;13:370–4.

    CAS  PubMed  Google Scholar 

  74. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech 2001;34:859–71.

    CAS  PubMed  Google Scholar 

  75. Kassi JP, Heller MO, Stoeckle U, Perka C, Duda GN. Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. J Biomech 2005;38:1143–54.

    PubMed  Google Scholar 

  76. Bergmann G. Charite Universitaetsmedizin. Berlin: Orthoload; 2008. Available from: http://www.orthoload.com. [Last accessed on 2017 May 20].

    Google Scholar 

  77. Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Theory 2006;14:1100–11.

    Google Scholar 

  78. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 2007;54:1940–50.

    PubMed  Google Scholar 

  79. Manders C, New A, Rasmussen J. Validation of musculoskeletal gait simulation for use in investigation of total hip replacement. J Biomech 2008;41:S488.

    Google Scholar 

  80. Li J, McWilliams AB, Jin Z, Fisher J, Stone MH, Redmond AC, et al. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clin Biomech (Bristol, Avon) 2015;30:513–9.

    Google Scholar 

  81. Weber T, Al-Munajjed AA, Verkerke GJ, Dendorfer S, Renkawitz T. Influence of minimally invasive total hip replacement on hip reaction forces and their orientations. J Orthop Res 2014;32:1680–7.

    PubMed  Google Scholar 

  82. Carbone V, Fluit R, Pellikaan P, van der Krogt MM, Janssen D, Damsgaard M, et al. TLEM 2.0 – A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J Biomech 2015;48:734–41.

    CAS  PubMed  Google Scholar 

  83. Ateshian GA, Henak CR, Weiss JA. Toward patient-specific articular contact mechanics. J Biomech 2015;48:779–86.

    PubMed  Google Scholar 

  84. Viceconti M, Hunter P, Hose R. Big data, big knowledge: Big data for personalized healthcare. IEEE J Biomed Health Inform 2015;19:1209–15.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Van Houcke.

Additional information

This is an open access artcle distributed under the terms of the Creatve Commons Atributon-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creatons are licensed under the identcal terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Houcke, J., Khanduja, V., Pattyn, C. et al. The History of Biomechanics in Total Hip Arthroplasty. IJOO 51, 359–367 (2017). https://doi.org/10.4103/ortho.IJOrtho_280_17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ortho.IJOrtho_280_17

Keywords

MeSH terms

Navigation