Skip to main content
Log in

Phenotypic plasticity in the greater mouse-eared bat in extremely different roost conditions

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Bats use various roost types with a wide spectrum of ecological features. The greater mouse-eared bat Myotis myotis (Borkhausen, 1797), creates nurseries in attics and caves in Central Europe. The stable low temperature and high humidity cave microclimate contrasts that of attics, which may alter species adaptations and life strategies. We analysed population characteristics (composition, body condition, parasite load, and immune response) and genetic relatedness of two proximal M. myotis populations. Age, sexual and parasite species composition were similar between the cave and attic sites. However, a significantly higher parasite load and body condition was detected in the post-partum females and juveniles of the cave colony (n = 263 bats from the cave, 231 from the attic), with the cave colony females having a significantly stronger immune response (n = 2 caves and 2 attics, 20 females per site). There was no evidence for genetic divergence between cave and attic populations (n = 3 caves and 3 attics, 24 females per site), indicating that different population characteristics are not genetically based and that M. myotis is an example of a species with rather unique phenotypic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arlettaz R., Christe P., Lugon A., Perrin N. and Vogel P. 2001. Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos 95: 105–111.

    Article  Google Scholar 

  • Arlettaz R., Perrin N. and Hausser J. 1997. Trophic resource partitioning and competition between the two sibling species Myotis myotis and Myotis blythii. Journal of Animal Ecology 66: 897–911.

    Article  Google Scholar 

  • Arlettaz R., Ruedi M. and Hausser J. 1993. Field morphological distinction of Myotis myotis and Myotis blythi (Chiroptera, Vespertilionidae): a multivariate approach. Myotis 29: 7–16.

    Google Scholar 

  • Berthier P., Excoffier L. and Ruedi M. 2006. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proceedings of the Royal Society B 273: 3101–3109.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanowicz W., Van Den Bussche R. A., Gajewska M., Postawa T. and Harutunyan M. 2009. Ancient and contemporary DNA sheds light on the history of mouse-eared bats in Europe and the Caucasus. Acta Chiropterologica 11: 289–305.

    Article  Google Scholar 

  • Burland T. M., Barrat E. M., Beaumont M. A. and Racey P. A. 1999. Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proceedings of the Royal Society Biological Sciences Series B 266: 975–980.

    Article  Google Scholar 

  • Bücs S., Nagy Z., Boldogh S. and Popescu O. 2007. Molecular approaches in the study of bat populations: the greater mouse-eared bat Myotis myotis in Eastern Europe. Annals of West University of Timisoara, Series of Chemistry 16: 13–24.

    Google Scholar 

  • Castella V. and Ruedi M. 2000. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Molecular Ecology 9: 993–1011.

    Article  Google Scholar 

  • Castella V., Ruedi M. and Excoffier L. 2001. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. Journal of Evolutionary Biology 14: 708–720.

    Article  Google Scholar 

  • Christe P., Arlettaz R. and Vogel P. 2000. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters 3: 207–212.

    Article  Google Scholar 

  • Christe P., Giorgi M. S., Vogel P. and Arlettaz R. 2003. Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resourcemediated host attractiveness or parasite specialization? Journal of Animal Ecology 72: 866–872.

    Article  Google Scholar 

  • Corander J., Gyllenberg M. and Koski T. 2007. Random partition models and exchangeability for Bayesian identification of population structure. Bulletin of Mathematical Biology 69: 797–815.

    Article  PubMed  Google Scholar 

  • Entwistle A. C., Racey P. A. and Speakman J. R. 2000. Social and population structure of a gleaning bat, Plecotus auritus. Journal of Zoology, London 252: 11–17.

    Article  Google Scholar 

  • Giorgi M. S., Arlettaz R., Christe P. and Vogel P. 2001. The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proceedings of the Royal Society Biological Sciences Series B 268: 2071–2075.

    Article  CAS  Google Scholar 

  • Godfrey L. R. and Irwin M. T. 2007. The evolution of extinction risk: Past and present anthropogenic impacts on the primate communities of Madagascar. Folia Primatologica 78: 405–419.

    Article  Google Scholar 

  • Güttinger R., Zahn A., Krapp F. and Schober W. 2001. Myotis myotis (Borkhausen, 1771) — Großes Mausohr, Großmausohr. [In: Handbuch der Säugetiere Europas. Band 4: Fledertiere. Teil I: Chiroptera I. Rhinolophidae, Vespertilionidae 1. F. Krapp, ed]. Aula-Verlag, Wiebelsheim: 123–207.

    Google Scholar 

  • Heidinger F., Vogel S. and Metzner W. 1989. Thermoregulatory behaviour in a maternity colony of Myotis myotis. [In: European bat research 1987. V. Hanák, I. Horáček and J. Gaisler, eds]. Charles University Press, Praha: 189–190.

    Google Scholar 

  • Horáček I. 1984. Remarks on the causality of population decline in European bats. Myotis 21–22: 138–147.

    Google Scholar 

  • Horáček I. 1985. Population ecology of Myotis myotis in Central Bohemia (Mammalia: Chiroptera). Acta Universitatis Carolinae — Biologica 1981: 161–267.

  • Horn J. 2005. Mausohr-Wochenstube (Myotis myotis) erstmals in einer Holzbetonhöhle des Typs 2FN in einem ostbrandenburgischen Kiefernforst. Teil 1: Gründung im Jahr 2003. Nyctalus (N. F.) 10: 108–116.

    Google Scholar 

  • Hutterer R., Ivanova T., Meyer-Cords C. and Rodrigues L. 2005. Bat migrations in Europe. A review of banding data and literature. Naturschutz und biologische Vielfalt, Heft 28. Federal agency for nature conservation, Bonn: 1–162.

  • Kalinowski S. T., Taper M. L. and Marshall T. C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099–1106.

    Article  PubMed  Google Scholar 

  • Kunz T. H. 1982. Roosting ecology of bats. [In: Ecology of bats. T. H. Kunz, ed]. Plenum Press, New York: 1–55.

    Google Scholar 

  • Kunz T. H. and Fenton M. B. (eds) 2003. Bat ecology. The University of Chicago Press, Chicago and London: 1–779.

    Google Scholar 

  • Kunz T. H. and Lumsden L. F. 2003. Ecology of cavity and foliage roosting bats: [In: Bat ecology. T. H. Kunz and M. B. Fenton, eds]. The University of Chicago Press, Chicago and London: 3–89.

    Google Scholar 

  • Lausen C. L. and Barclay R. M. R. 2006. Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. Journal of Mammalogy 87: 362–370.

    Article  Google Scholar 

  • Law B. S. and Chidel M. 2007. Bats under a hot tin roof: comparing the microclimate of eastern cave bat (Vespadelus troughtoni) roosts in a shed and cave overhangs. Australian Journal of Zoology 55: 49–55.

    Article  Google Scholar 

  • Lourenço S. I. and Palmeirim J. M. 2007. Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. Journal of Zoology, London 273: 161–168.

    Article  Google Scholar 

  • Lourenço S. I. and Palmeirim J. M. 2008. Which factors regulate the reproduction of ectoparasites of temperatezone cave-dwelling bats? Parasitology Research 104: 127–134.

    Article  PubMed  Google Scholar 

  • Marshall A. G. 1982. Ecology of insects ectoparasitic bats. [In: Ecology of bats. T. H. Kunz, ed]. Plenum Press, New York: 369–401.

    Google Scholar 

  • Martin L. B., Han P., Lewittes J., Kuhlman J. R., Klasing, K. C. and Wikelski M. 2006. Phytohemagglutinininduced skin swelling in birds: histological support for a classic immunoecological technique. Functional Ecology 20: 290–299.

    Article  Google Scholar 

  • Mitchell-Jones A. J., Amori G., Bogdanowicz W., Kryštufek B., Reijnders P. J. H., Spitzenberger F., Stubbe M., Thissen J. B. M., Vohralík V. and Zima J. 1999. The Atlas of European Mammals. The Academic Press, London: 1–496.

    Google Scholar 

  • Palmeirim J. M. and Rodrigues L. 1995. Dispersal in colonial animals: the case of Miniopterus schreibersii. Symposia of the Zoological Society of London 67: 219–231.

    Google Scholar 

  • Petri B., Pääbo S., von Haeseler A. and Tautz D. 1997. Paternity assessment and population subdivision in a natural population of the larger mouse-eared bat Myotis myotis. Molecular Ecology 6: 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Pitala N., Gustafsson L., Sendecka J. and Brommer J. E. 2007. Nestling immune response to phytohaemagglutinin is not heritable in collared flycatchers. Biology Letters 3: 418–421.

    Article  PubMed  Google Scholar 

  • Ransome R. D. 1995. Earlier breeding shortens life in female greater horseshoe bats. Philosophical Transactions of the Royal Society of London, Series B 350: 153–161.

    Article  Google Scholar 

  • Racey P. A. 1982. The ecology of reproduction in bats. [In: Ecology of bats. T. H. Kunz, ed]. Plenum Press, New York: 57–104.

    Google Scholar 

  • Rodrigues L., Zahn A., Rainho A. and Palmeirim J. M. 2003. Contrasting the roosting beaviour and phenology of an insectivorous bat (Myotis myotis) in its southern and northern distribution ranges. Mammalia 67: 321–335.

    Article  Google Scholar 

  • Rousset F. 2008. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

    Article  Google Scholar 

  • Ruczyński I. and Bogdanowicz W. 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. Journal of Mammalogy 86: 921–930.

    Article  Google Scholar 

  • Ruedi M. and Castella V. 2003. Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Molecular Ecology 12: 1527–1540.

    Article  CAS  PubMed  Google Scholar 

  • Ruedi M., Walter S., Fischer M. C., Scaravelli D., Excoffier L. and Heckel G. 2008. Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera: Vespertilionidae) in Europe. Molecular Ecology 17: 1801–1814.

    Article  CAS  PubMed  Google Scholar 

  • Seckerdieck A., Walther B. and Haller S. 2005. Alternative use of two different roost types by a maternity colony of the lesser horseshoe bat (Rhinolophus hipposideros). Mammalian Biology 70: 201–209.

    Article  Google Scholar 

  • Sedgeley J. A. 2001. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a treedwelling bat, Chalinolobus tuberculatus, in New Zealand. Journal of Applied Ecology 38: 425–438.

    Article  Google Scholar 

  • Shiel C. B. and Fairley J. S. 1999. Observations at two nursery roosts of Leisler’s bats Nyctalus leisleri (Kuhl, 1817) in Ireland. Myotis 37: 41–54.

    Google Scholar 

  • Simmons N. B. 2005. Order Chiroptera. [In: Mammal species of the world. A taxonomic and geographic reference. Third ed. Volume I. D. E. Wilson and D. M. Reeder, eds]. The John Hopkins University Press, Baltimore: 312–529.

    Google Scholar 

  • Solick D. I. and Barclay R. M. R. 2006. Morphological differences among western long-eared myotis (Myotis evotis) populations in different environments. Journal of Mammalogy 87: 1020–1026.

    Article  Google Scholar 

  • Walsh S. P., Metzger D. A. and Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506–513.

    CAS  PubMed  Google Scholar 

  • Winemiller K. O. 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62: 872–885.

    Article  Google Scholar 

  • Wojciechowski M. S., Jefimow M. and Tegowska E. 2007. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comparative Biochemistry and Physiology A — Molecular and Integrative Physiology 147: 828–840.

    Article  Google Scholar 

  • Zahn A. 1999. Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis. Journal of Zoology, London 247: 275–280.

    Article  Google Scholar 

  • Zahn A. and Dippel B. 1997. Male roosting habits and mating behaviour of Myotis myotis. Journal of Zoology, London 243: 659–674.

    Article  Google Scholar 

  • Zahn A., Rodrigues L., Rainho A. and Palmeirim J. M. 2007. Critical times of the year for Myotis myotis, a temperate zone bat: roles of climate and food resources. Acta Chiropterologica 9: 115–125.

    Article  Google Scholar 

  • Zahn A., Rottenwallner A. and Güttinger R. 2006. Population density of the greater mouse-eared bat (Myotis myotis), local diet composition and availability of foraging habitats. Journal of Zoology, London 269: 486–493.

    Article  Google Scholar 

  • Zahn A. and Rupp D. 2004. Ectoparasite load in European vespertilionid bats. Journal of Zoology, London 262: 383–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate editor was Karol Zub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhrin, M., Kaňuch, P., Krištofík, J. et al. Phenotypic plasticity in the greater mouse-eared bat in extremely different roost conditions. Acta Theriol 55, 153–164 (2010). https://doi.org/10.4098/j.at.0001-7051.073.2009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.4098/j.at.0001-7051.073.2009

Key words

Navigation