A microRNA focus on acne


Published: 2 February 2024
Abstract Views: 131
PDF: 75
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Acne (syn. acne vulgaris) is a common inflammatory skin disorder associated with puberty and adolescence. Driven by complex interactions between the pilosebaceous unit and Cutibacterium acnes (C. acnes) bacteria, the disease is characterised by comedonal lesions, papules, pustules and nodules that appear predominantly on the face. Acne and sequelae such as scarring and pigment changes affect health-related quality of life negatively. Approvals for nucleic acid therapies (NATs) such as short-interfering RNA (siRNA) drugs and antisense oligonucleotides (ASOs) have surged in recent years, for rare disorders with little or no effective treatments. These advances, along with clinical trials for microRNA (miRNA) modulation in skin contexts, raise the possibility that NATs may have potential for future acne treatment regimens. In this review, we highlight potential miRNA targets for anti-acne therapy. We provide a brief overview of acne pathophysiology and highlight roles of C. acnes. We then focus on recently discovered differential effects of planktonic and biofilm C. acnes on a Toll-like receptor 2 (TLR2) axis spanning miR-146a-5p. We appraise miR-146a-5p in sebocytes before addressing the putative contributions of miR-21-5p, miR-233-3p and miR-150-5p to inflammatory axes in acne. We conclude with translational perspectives and considerations of patient involvement in miRNA-related research for acne.


Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063-72. DOI: https://doi.org/10.1111/j.1600-0625.2008.00786.x

Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133:2152-60. DOI: https://doi.org/10.1038/jid.2013.21

Tomida S, Nguyen L, Chiu BH, Liu J, Sodergren E, Weinstock GM, et al. Pan-genome and comparative genome analyses of propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome. mBio. 2013;4:e00003-13. DOI: https://doi.org/10.1128/mBio.00003-13

Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold B, et al. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms. 2021;9. DOI: https://doi.org/10.3390/microorganisms9030628

Layton AM, Thiboutot D, Tan J. Reviewing the global burden of acne: how could we improve care to reduce the burden? Br J Dermatol. 2021;184:219-25. DOI: https://doi.org/10.1111/bjd.19477

Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134:1527-34. DOI: https://doi.org/10.1038/jid.2013.446

Tayel K, Attia M, Agamia N, Fadl N. Acne vulgaris: prevalence, severity, and impact on quality of life and self-esteem among Egyptian adolescents. J Egypt Public Health Assoc. 2020;95:30. DOI: https://doi.org/10.1186/s42506-020-00056-9

Reljic V, Maksimovic N, Jankovic J, Mijovic B, Peric J, Jankovic S. Evaluation of the quality of life in adolescents with acne. Vojnosanit Pregl. 2014;71:634-8. DOI: https://doi.org/10.2298/VSP1407634R

Durovic MR, Durovic M, Jankovic J, Jankovic S. Quality of life in Montenegrin pupils with acne. PLoS One. 2021;16:e0250155. DOI: https://doi.org/10.1371/journal.pone.0250155

Desai KP, Martyn-Simmons C, Viner R, Segal TY. Help-seeking behaviours, opportunistic treatment and psychological implications of adolescent acne: cross-sectional studies in schools and hospital outpatient departments in the UK. BMJ Open. 2017;7:e016964. DOI: https://doi.org/10.1136/bmjopen-2017-016964

Uslu G, Sendur N, Uslu M, Savk E, Karaman G, Eskin M. Acne: prevalence, perceptions and effects on psychological health among adolescents in Aydin, Turkey. J Eur Acad Dermatol Venereol. 2008;22:462-9. DOI: https://doi.org/10.1111/j.1468-3083.2007.02497.x

Aksu AE, Metintas S, Saracoglu ZN, Gurel G, Sabuncu I, Arikan I, et al. Acne: prevalence and relationship with dietary habits in Eskisehir, Turkey. J Eur Acad Dermatol Venereol. 2012;26:1503-9. DOI: https://doi.org/10.1111/j.1468-3083.2011.04329.x

Kubota Y, Shirahige Y, Nakai K, Katsuura J, Moriue T, Yoneda K. Community-based epidemiological study of psychosocial effects of acne in Japanese adolescents. J Dermatol. 2010;37:617-22. DOI: https://doi.org/10.1111/j.1346-8138.2010.00855.x

Bagatin E, Timpano DL, Guadanhim LR, Nogueira VM, Terzian LR, Steiner D, et al. Acne vulgaris: prevalence and clinical forms in adolescents from Sao Paulo, Brazil. Anais brasileiros de dermatologia. 2014;89:428-35. DOI: https://doi.org/10.1590/abd1806-4841.20142100

Ghodsi SZ, Orawa H, Zouboulis CC. Prevalence, severity, and severity risk factors of acne in high school pupils: a community-based study. J Invest Dermatol. 2009;129:2136-41. DOI: https://doi.org/10.1038/jid.2009.47

Lynn DD, Umari T, Dunnick CA, Dellavalle RP. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;7:13-25. DOI: https://doi.org/10.2147/AHMT.S55832

Davis EC, Callender VD. A review of acne in ethnic skin: pathogenesis, clinical manifestations, and management strategies. J Clin Aesthet Dermatol. 2010;3:24-38.

Smith H, Layton AM, Thiboutot D, Smith A, Whitehouse H, Ghumra W, et al. Identifying the Impacts of Acne and the Use of Questionnaires to Detect These Impacts: A Systematic Literature Review. Am J Clin Dermatol. 2021;22:159-71. DOI: https://doi.org/10.1007/s40257-020-00564-6

Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388:3017-26. DOI: https://doi.org/10.1016/S0140-6736(16)31408-8

Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci. 2017;20:497-9. DOI: https://doi.org/10.1038/nn.4508

Wagner KR, Kuntz NL, Koenig E, East L, Upadhyay S, Han B, et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: A randomized, double-blind, placebo-controlled, dose-titration trial. Muscle Nerve. 2021;64:285-92. DOI: https://doi.org/10.1002/mus.27347

Shirley M. Casimersen: First Approval. Drugs. 2021;81:875-9. DOI: https://doi.org/10.1007/s40265-021-01512-2

Gouni-Berthold I, Alexander VJ, Yang Q, Hurh E, Steinhagen-Thiessen E, Moriarty PM, et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021;9:264-75. DOI: https://doi.org/10.1016/S2213-8587(21)00046-2

Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379:11-21. DOI: https://doi.org/10.1056/NEJMoa1716153

Balwani M, Sardh E, Ventura P, Peiro PA, Rees DC, Stolzel U, et al. Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. N Engl J Med. 2020;382:2289-301. DOI: https://doi.org/10.1056/NEJMoa1913147

Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O'Riordan WD, Cochat P, et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med. 2021;384:1216-26. DOI: https://doi.org/10.1056/NEJMoa2021712

Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med. 2020;382:1520-30. DOI: https://doi.org/10.1056/NEJMoa1913805

Adams D, Tournev IL, Taylor MS, Coelho T, Plante-Bordeneuve V, Berk JL, et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis. 2022:1-9. DOI: https://doi.org/10.1080/13506129.2022.2091985

Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16:630-43. DOI: https://doi.org/10.1038/s41565-021-00898-0

Ross K. MiR equal than others: MicroRNA enhancement for cutaneous wound healing. J Cell Physiol. 2021;236:8050-9. DOI: https://doi.org/10.1002/jcp.30485

Bibby G, Krasniqi B, Reddy I, Sekar D, Ross K. Capturing the RNA Castle: Exploiting MicroRNA Inhibition for Wound Healing. FEBS J. 2021. DOI: https://doi.org/10.1111/febs.16160

Dykes IM, Ross K. Restoring the Final Frontier: Exosomal MicroRNA and Cutaneous Wound Repair. Biomolecular Research Reports. 2021;1:1-15.

Li D, Niu G, Landen NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol. 2022. DOI: https://doi.org/10.1101/cshperspect.a041230

Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, et al. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol. 2019;139:1073-81. DOI: https://doi.org/10.1016/j.jid.2018.11.007

Zeng R, Xu H, Liu Y, Du L, Duan Z, Tong J, et al. miR-146a Inhibits Biofilm-Derived Cutibacterium acnes-Induced Inflammatory Reactions in Human Keratinocytes. J Invest Dermatol. 2019;139:2488-96 e4. DOI: https://doi.org/10.1016/j.jid.2019.03.1161

Ghumra W, Lee N, Whitehouse H, Bhutani R, Lagos D, Layton AM. MicroRNAs as biomarkers of atrophic scarring in acne: a cross-sectional analysis of 41 patients. Clinical and experimental dermatology. 2021;46:1495-503. DOI: https://doi.org/10.1111/ced.14792

Dreno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;31 Suppl 5:8-12. DOI: https://doi.org/10.1111/jdv.14374

Bruggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol. 2021;12:673845. DOI: https://doi.org/10.3389/fmicb.2021.673845

Philpott MP. Culture of the human pilosebaceous unit, hair follicle and sebaceous gland. Exp Dermatol. 2018;27:571-7. DOI: https://doi.org/10.1111/exd.13669

Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143-55. DOI: https://doi.org/10.1038/nrmicro.2017.157

Iftikhar U, Choudhry N. Serum levels of androgens in acne & their role in acne severity. Pak J Med Sci. 2019;35:146-50. DOI: https://doi.org/10.12669/pjms.35.1.131

Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379:361-72. DOI: https://doi.org/10.1016/S0140-6736(11)60321-8

Burkhart CG, Burkhart CN. Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes bioflim produces biological glue that holds corneocytes together to form plug. Journal of the American Academy of Dermatology. 2007;57:722-4. DOI: https://doi.org/10.1016/j.jaad.2007.05.013

Coenye T, Spittaels KJ, Achermann Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm. 2022;4:100063. DOI: https://doi.org/10.1016/j.bioflm.2021.100063

Kuehnast T, Cakar F, Weinhaupl T, Pilz A, Selak S, Schmidt MA, et al. Comparative analyses of biofilm formation among different Cutibacterium acnes isolates. International Journal of Medical Microbiology. 2018;308:1027-35. DOI: https://doi.org/10.1016/j.ijmm.2018.09.005

Coenye T, Peeters E, Nelis HJ. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Research in Microbiology. 2007;158:386-92. DOI: https://doi.org/10.1016/j.resmic.2007.02.001

Jahns AC, Lundskog B, Ganceviciene R, Palmer RH, Golovleva I, Zouboulis CC, et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Brit J Dermatol. 2012;167:50-8. DOI: https://doi.org/10.1111/j.1365-2133.2012.10897.x

Jahns AC, Alexeyev OA. Three dimensional distribution of Propionibacterium acnes biofilms in human skin. Experimental Dermatology. 2014;23:687-9. DOI: https://doi.org/10.1111/exd.12482

Bronnec V, Alexeyev OA. In vivo model of Propionibacterium (Cutibacterium) spp. biofilm in Drosophila melanogaster. Anaerobe. 2021;72. DOI: https://doi.org/10.1016/j.anaerobe.2021.102450

Sun L, Liu W, Zhang LJ. The Role of Toll-Like Receptors in Skin Host Defense, Psoriasis, and Atopic Dermatitis. J Immunol Res. 2019;2019:1824624. DOI: https://doi.org/10.1155/2019/1824624

Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481-6. DOI: https://doi.org/10.1073/pnas.0605298103

Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune Microenvironment). Front Immunol. 2019;10:1107. DOI: https://doi.org/10.3389/fimmu.2019.01107

Meisgen F, Xu Landen N, Wang A, Rethi B, Bouez C, Zuccolo M, et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Invest Dermatol. 2014;134:1931-40. DOI: https://doi.org/10.1038/jid.2014.89

Dull K, Fazekas F, Deak D, Kovacs D, Poliska S, Szegedi A, et al. miR-146a modulates TLR1/2 and 4 induced inflammation and links it with proliferation and lipid production via the indirect regulation of GNG7 in human SZ95 sebocytes. Scientific reports. 2021;11:21510. DOI: https://doi.org/10.1038/s41598-021-00907-1

Guinea-Viniegra J, Jimenez M, Schonthaler HB, Navarro R, Delgado Y, Concha-Garzon MJ, et al. Targeting miR-21 to treat psoriasis. Science translational medicine. 2014;6:225re1. DOI: https://doi.org/10.1126/scitranslmed.3008089

Campione E, Mazzotta AM, Bianchi L, Chimenti S. Severe acne successfully treated with etanercept. Acta Derm Venereol. 2006;86:256-7. DOI: https://doi.org/10.2340/00015555-0046

Sand FL, Thomsen SF. Adalimumab for the treatment of refractory acne conglobata. JAMA dermatology. 2013;149:1306-7. DOI: https://doi.org/10.1001/jamadermatol.2013.6678

He Y, Jiang X, Chen J. The role of miR-150 in normal and malignant hematopoiesis. Oncogene. 2014;33:3887-93. DOI: https://doi.org/10.1038/onc.2013.346

Agak GW, Kao S, Ouyang K, Qin M, Moon D, Butt A, et al. Phenotype and Antimicrobial Activity of Th17 Cells Induced by Propionibacterium acnes Strains Associated with Healthy and Acne Skin. J Invest Dermatol. 2018;138:316-24. DOI: https://doi.org/10.1016/j.jid.2017.07.842

Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, et al. AhR Activation Leads to Massive Mobilization of Myeloid-Derived Suppressor Cells with Immunosuppressive Activity through Regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p That Target Anti-Inflammatory Genes. J Immunol. 2019;203:1830-44. DOI: https://doi.org/10.4049/jimmunol.1900291

Chang WA, Tsai MJ, Hung JY, Wu KL, Tsai YM, Huang YC, et al. miR-150-5p-Containing Extracellular Vesicles Are a New Immunoregulator That Favor the Progression of Lung Cancer in Hypoxic Microenvironments by Altering the Phenotype of NK Cells. Cancers (Basel). 2021;13. DOI: https://doi.org/10.3390/cancers13246252

Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451:1125-9. DOI: https://doi.org/10.1038/nature06607

de Kerckhove M, Tanaka K, Umehara T, Okamoto M, Kanematsu S, Hayashi H, et al. Targeting miR-223 in neutrophils enhances the clearance of Staphylococcus aureus in infected wounds. EMBO molecular medicine. 2018;10. DOI: https://doi.org/10.15252/emmm.201809024

Zhou W, Pal AS, Hsu AY, Gurol T, Zhu X, Wirbisky-Hershberger SE, et al. MicroRNA-223 Suppresses the Canonical NF-kappaB Pathway in Basal Keratinocytes to Dampen Neutrophilic Inflammation. Cell reports. 2018;22:1810-23. DOI: https://doi.org/10.1016/j.celrep.2018.01.058

Lee WJ, Jung HD, Chi SG, Kim BS, Lee SJ, Kim DW, et al. Effect of dihydrotestosterone on the upregulation of inflammatory cytokines in cultured sebocytes. Arch Dermatol Res. 2010;302:429-33. DOI: https://doi.org/10.1007/s00403-009-1019-6

Philippe L, Alsaleh G, Suffert G, Meyer A, Georgel P, Sibilia J, et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol. 2012;188:454-61. DOI: https://doi.org/10.4049/jimmunol.1102348

Li Z, Cai J, Cao X. MiR-19 suppresses fibroblast-like synoviocytes cytokine release by targeting toll like receptor 2 in rheumatoid arthritis. Am J Transl Res. 2016;8:5512-8.

Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M, et al. A miR-19 regulon that controls NF-kappaB signaling. Nucleic Acids Res. 2012;40:8048-58. DOI: https://doi.org/10.1093/nar/gks521

Bonora GM, Scremin CL, Colonna FP, Garbesi A. HELP (high efficiency liquid phase) new oligonucleotide synthesis on soluble polymeric support. Nucleic Acids Res. 1990;18:3155-9. DOI: https://doi.org/10.1093/nar/18.11.3155

Bonora GM, Biancotto G, Maffini M, Scremin CL. Large scale, liquid phase synthesis of oligonucleotides by the phosphoramidite approach. Nucleic Acids Res. 1993;21:1213-7. DOI: https://doi.org/10.1093/nar/21.5.1213

Padiya KJ, Salunkhe MM. Large scale, liquid phase oligonucleotide synthesis by alkyl H-phosphonate approach. Bioorg Med Chem. 2000;8:337-42. DOI: https://doi.org/10.1016/S0968-0896(99)00287-4

Molina AG, Sanghvi YS. Liquid-Phase Oligonucleotide Synthesis: Past, Present, and Future Predictions. Curr Protoc Nucleic Acid Chem. 2019;77:e82. DOI: https://doi.org/10.1002/cpnc.82

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122:1630-7. DOI: https://doi.org/10.1038/s41416-020-0802-1

Ross K. Towards topical microRNA-directed therapy for epidermal disorders. J Control Release. 2018;269:136-47. DOI: https://doi.org/10.1016/j.jconrel.2017.11.013

Mandal A, Kumbhojkar N, Reilly C, Dharamdasani V, Ukidve A, Ingber DE, et al. Treatment of psoriasis with NFKBIZ siRNA using topical ionic liquid formulations. Sci Adv. 2020;6:eabb6049. DOI: https://doi.org/10.1126/sciadv.abb6049

Biscans A, Caiazzi J, McHugh N, Hariharan V, Muhuri M, Khvorova A. Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles. Mol Ther. 2021;29:1382-94. DOI: https://doi.org/10.1016/j.ymthe.2020.12.023

Francis NA, Entwistle K, Santer M, Layton AM, Eady EA, Butler CC. The management of acne vulgaris in primary care: a cohort study of consulting and prescribing patterns using the Clinical Practice Research Datalink. Br J Dermatol. 2017;176:107-15. DOI: https://doi.org/10.1111/bjd.15081

NICE. Acne vulgaris: management. NICE guideline [NG198]. 2021.

Layton AM, Henderson CA, Cunliffe WJ. A clinical evaluation of acne scarring and its incidence. Clinical and experimental dermatology. 1994;19:303-8. DOI: https://doi.org/10.1111/j.1365-2230.1994.tb01200.x

Tan J, Thiboutot D, Gollnick H, Kang S, Layton A, Leyden JJ, et al. Development of an atrophic acne scar risk assessment tool. J Eur Acad Dermatol Venereol. 2017;31:1547-54. DOI: https://doi.org/10.1111/jdv.14325

Layton A, Eady EA, Peat M, Whitehouse H, Levell N, Ridd M, et al. Identifying acne treatment uncertainties via a James Lind Alliance Priority Setting Partnership. BMJ Open. 2015;5:e008085. DOI: https://doi.org/10.1136/bmjopen-2015-008085

Santer M, Francis NA, Platt D, Eady EA, Layton AM. Stemming the tide of antimicrobial resistance: implications for management of acne vulgaris. Br J Gen Pract. 2018;68:64-5. DOI: https://doi.org/10.3399/bjgp18X694457

Karadag AS, Aslan Kayiran M, Wu CY, Chen W, Parish LC. Antibiotic resistance in acne: changes, consequences and concerns. J Eur Acad Dermatol Venereol. 2021;35:73-8. DOI: https://doi.org/10.1111/jdv.16686

Padda IS, Mahtani AU, Parmar M. Small Interfering RNA (siRNA) Based Therapy. StatPearls. Treasure Island (FL)2023.

Gordon, S., Layton, A. M., Fawcett, S., & Ross, K. (2024). A microRNA focus on acne. Dermatology Reports. https://doi.org/10.4081/dr.2024.9902

Downloads

Download data is not yet available.

Citations