Journal List > Tuberc Respir Dis > v.56(5) > 1000635

Yoo and Kim: Mechanism of FHIT-Induced Apoptosis in Lung Cancer Cell Lines

Abstract

Background

The FHIT (fragile histidine triad) gene is a frequent target of deletions associated with abnormal RNA and protein expression in lung cancer. Previous studies have shown FHIT gene transfer into lung cancer cell line lacking FHIT protein expression resulted in inhibition of tumor cell growth attributable to the induction of apoptosis and reversion of tumorigenecity. However, the mechanism of the tumor suppressor activity of the FHIT gene and the cellular pathways associated with its function are not completely understood.

Methods

To gain insight into the biological function of FHIT, we compared the NCI-H358 cell line with its stable FHIT transfectants after treatment with cisplatin or paclitaxel. We investigated the effects of FHIT gene expression on cell proliferation, apoptosis, and activation of caspase system and Bcl-2 family. The induction of apoptosis was evaluated by using DAPI staining and flow cytometry. Activation of caspases and Bcl-2 members was evaluated by Western blot analysis.

Results

A significantly increased cell death was observed in FHIT transfectants after cisplatin or paclitaxel treatment and this was attributable to the induction of apoptosis. Remarkable changes in caspases and Bcl-2 family were observed in the transfected cells as compared with the control cells after treatment with paclitaxel. Activation of caspase-3 and caspase-7 was markedly increased in cells expressing FHIT. Expression level of Bcl-2 and Bcl-xL protein was significantly decreased and that of Bax and Bad protein was significantly increased in the transfected cells.

Conclusion

FHIT gene delivery into lung cancer cells results in enhanced apoptosis induced by treatment with cisplatin or paclitaxel. The data suggest that apoptosis in FHIT-expressing cells could be related to activation of caspase pathway and Bcl-2 family.

TOOLS
Similar articles