Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T18:31:16.131Z Has data issue: false hasContentIssue false

Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species

Published online by Cambridge University Press:  21 December 2015

Thomas Bawin
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030, Gembloux, Belgium
David Dujeu
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030, Gembloux, Belgium
Lara De Backer
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030, Gembloux, Belgium
Frédéric Francis
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030, Gembloux, Belgium
François J. Verheggen*
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030, Gembloux, Belgium
*
1Corresponding author (e-mail: fverheggen@ulg.ac.be).

Abstract

The tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is a widespread devastating pest reported to develop on economically important solanaceous crops. The characterisation of its host range could help to understand and prevent the dispersion behaviour of the insect in the environment. In this study, the ability of T. absoluta to develop on 12 cultivated or non-cultivated plants including Solanaceae, Amaranthaceae, Convolvulaceae, Fabaceae, and Malvaceae species under laboratory conditions was assessed. For each plant species, we monitored the development times of immature stages, survival, sex ratios, and adult fecundity rates. All the six tested non-solanaceous plants, including Chenopodium Linnaeus (Amaranthaceae), Convolvulus Linnaeus (Convolvulaceae), and Malva Linnaeus (Malvaceae) species, were not able to sustain (i.e., allow growth and development) T. absoluta larvae. Solanum Linnaeus (Solanaceae) species were the most suitable host plants for the pest, but others could be opportunistically colonised with fewer incidences. Tuta absoluta appears to be strongly related to solanaceous plants that would predominantly support self-sustaining field populations. Preventing crop infestation by removing potential host plants in the immediate field vicinity and culture rotations with non-solanaceous crops is of primary importance.

Type
Behaviour & Ecology
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Christopher Buddle

References

Abdul-Ridha, M., Alwan, S.L., Helal, S.M., and Aziz, K.A. 2012. Alternative hosts of South American tomato moth Tuta absoluta (Gelechiidae: Lepidoptera) in some tomato farms of Najaf Province. Euphrates Journal of Agriculture Science, 4: 130137.Google Scholar
Agosta, S.J. 2006. On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos, 114: 556565.CrossRefGoogle Scholar
Awmack, C.S. and Leather, S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47: 817844.CrossRefGoogle ScholarPubMed
Ayabe, Y., Minoura, T., and Hijii, N. 2015. Plasticity in resource use by the leafminer moth Phyllocnistis sp. in response to variations in host plant resources over space and time. Journal of Forest Research, 20: 213221. doi:10.1007/s10310-014-0467-9.CrossRefGoogle Scholar
Bawin, T., De Backer, L., Dujeu, D., Legrand, P., Caparros Megido, R., Francis, F., et al. 2014. Infestation level influences oviposition site selection in the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Insects, 5: 877884. doi:10.3390/insects5040877.CrossRefGoogle ScholarPubMed
Bennett, R.N. and Wallsgrove, R.M. 1994. Secondary metabolites in plant defence mechanisms. New Phytologist, 127: 617633.CrossRefGoogle ScholarPubMed
Boggs, C.L. 1992. Resource allocation: exploring connections between foraging and life history. Functional Ecology, 6: 508518.CrossRefGoogle Scholar
Brévault, T., Sylla, S., Diatte, M., Bernadas, G., and Diarra, K. 2014. Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): a new threat to tomato production in Sub-Saharan Africa. African Entomology, 22: 441444.CrossRefGoogle Scholar
Campos, R.G. 1976. Control quimico del “minador de hojas y tallos de la papa” (Scrobipalpula absoluta Meyrick) en el valle del Canete. Revista Peruana de Entomologia, 19: 102106.Google Scholar
Caparros Megido, R., Brostaux, Y., Haubruge, E., and Verheggen, F.J. 2013a. Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. American Journal of Potato Research, 90: 255260.CrossRefGoogle Scholar
Caparros Megido, R., De Backer, L., Ettaïb, R., Brostaux, Y., Fauconnier, M.-L., Delaplace, P., et al. 2014. Role of larval host plant experience and solanaceous plant volatile emissions in Tuta absoluta (Lepidoptera: Gelechiidae) host finding behavior. Arthropod Plant Interactions, 8: 293304.Google Scholar
Caparros Megido, R., Haubruge, E., and Verheggen, F.J. 2012. First evidence of deuterotokous parthenogenesis in the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of Pest Science, 85: 409412.CrossRefGoogle Scholar
Caparros Megido, R., Haubruge, E., and Verheggen, F.J. 2013b. Pheromone-based management strategies to control the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). A review. Biotechnologie, Agronomie, Société et Environnement, 17: 475482.Google Scholar
Caponero, A. 2009. Solanacee, rischio in serre. Resta alta l’attenzione alla tignola del pomodoro nelle colture protette. Colture Protette, 10: 9697.Google Scholar
Castillo, G., Cruz, L.L., Tapia-Lopez, R., Olmedo-Vicente, E., Carmona, D., Anaya-Lang, A.L., et al. 2014. Selection mosaic exerted by specialist and generalist herbivores on chemical and physical defense of Datura stramonium . Public Library of Science One, 9: e102478, doi:10.1371/journal.pone.0102478.Google ScholarPubMed
Cocco, A., Deliperi, S., and Delrio, G. 2013. Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. Journal of Applied Entomology, 137: 1628.CrossRefGoogle Scholar
Coelho, M.C.F. and França, F.H. 1987. Biologia e quetotaxia da larva e descrição da pupa e adulto da traça do tomateiro. Pesquisa Agropecuária Brasileira, 22: 129135.Google Scholar
De Backer, L., Caparros-Megido, R., Fauconnier, M.-L., Brostaux, Y., Francis, F., and Verheggen, F.J. 2015. Tuta absoluta-induced plant volatiles: attractiveness toward the generalist predator Macrolophus pygmaeus . Arthropod-Plant Interactions, 9: 465476. doi:10.1007/s11829-015-9388-6.CrossRefGoogle Scholar
De Backer, L., Caparros Megido, R., Haubruge, E., and Verheggen, F.J. 2014. Macrolophus pygmaeus (Rambur) as an efficient predator of the tomato leafminer Tuta absoluta (Meyrick) in Europe. A review. Biotechnologie, Agronomie, Société et Environnement, 18: 536543.Google Scholar
Desneux, N., Luna, M.G., Guillemaud, T., and Urbaneja, A. 2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science, 84: 403408.CrossRefGoogle Scholar
Desneux, N., Wajnberg, E., Wyckhuys, K.A.G., Burgio, G., Arpaia, S., Narvaez-Vasquez, C.A., et al. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83: 197215.CrossRefGoogle Scholar
European and Mediterranean Plant Protection Organization. 2005. Data sheets on quarantine pests: Tuta absoluta . European and Mediterranean Plant Protection Organization Bulletin, 35: 434435.Google Scholar
European and Mediterranean Plant Protection Organization. 2014. EPPO A1 and A2 list of pests recommended for regulation as quarantine pests [online]. Available from http://www.eppo.int/QUARANTINE/listA2.htm [accessed 1 December 2014].Google Scholar
Greenberg, S.M., Sappington, T.W., Sétamou, M., and Liu, T.X. 2002. Beet armyworm (Lepidoptera: Noctuidae) host plant preferences for oviposition. Environmental Entomology, 31: 142148.CrossRefGoogle Scholar
Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L.M., Gorman, K., et al. 2012. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology, 42: 506513.CrossRefGoogle ScholarPubMed
Harrewijn, P., Minks, A.K., and Mollema, C. 1995. Evolution of plant volatile production in insect-plant relationships. Chemoecology, 5/6: 5573.CrossRefGoogle Scholar
Hilker, M. and Meiners, T. 2011. Plants and insect eggs: how do they affect each other? Phytochemistry, 72: 16121623.CrossRefGoogle ScholarPubMed
Lambinon, J., Delvosalle, L., and Duvigneaud, J. 2004. Nouvelle flore de la Belgique, du G.-D. de Luxembourg, du nord de la France et des régions voisines. Edition du Jardin botanique national de Belgique, Meise, Belgium.Google Scholar
Leather, S.R. 1988. Size, reproductive potential and fecundity in insects: things aren’t as simple as they seem. Oikos, 51: 386389.CrossRefGoogle Scholar
Lee, M.S., Albajes, R., and Eizaguirre, M. 2014. Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): polyandry increases reproductive output. Journal of Pest Science, 87: 429439.CrossRefGoogle Scholar
Lietti, M.M.M., Botto, E., and Alzogaray, R.A. 2005. Insecticide resistance in argentine populations of Tuta absoluta . Neotropical Entomology, 34: 113119.CrossRefGoogle Scholar
Medeiros, M.A., Sujii, E.R., and Morais, H.C. 2009. Effect of plant diversification on abundance of South American tomato pinworm and predators in two cropping systems. Horticultura Brasileira, 27: 300306.CrossRefGoogle Scholar
Mohamed, E.S.I., Mahmoud, M.E.E., Elhaj, M.A.M., Mohamed, S.A., and Ekesi, S. 2015. Host plants record for tomato leaf miner Tuta absoluta (Meyrick) in Sudan. European and Mediterranean Plant Protection Organization Bulletin, 45: 108111.Google Scholar
Moore, B.D., Andrew, R.L., Külheim, C., and Foley, W.J. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, 201: 733750.CrossRefGoogle Scholar
Pereyra, P.C. and Sánchez, N.E. 2006. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology, 35: 671676.CrossRefGoogle ScholarPubMed
Pomilio, A.B., Falzoni, E.M., and Vitale, A.A. 2008. Toxic chemical compounds of the Solanaceae. Natural Product Communications, 3: 593628.CrossRefGoogle Scholar
Portakaldali, M., Öztemiz, S., and Kütük, H. 2013. A new host plant for Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Turkey. Journal Entomological Research Society, 15: 2124.Google Scholar
Proffit, M., Birgersson, G., Bengtsson, M., Reis, R., Witzgall, P., and Lima, E. 2011. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. Journal of Chemical Ecology, 37: 565574.CrossRefGoogle ScholarPubMed
Reyes, M., Rocha, K., Alarcón, L., Siegwart, M., and Sauphanor, B. 2012. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pesticide Biochemistry and Physiology, 102: 4550.CrossRefGoogle Scholar
Rossiter, M.C., Cox-Foster, D.L., and Briggs, M.A. 1993. Initiation of maternal effects in Lymantria dispar: genetic and ecological components of egg provisioning. Journal of Evolutionary Biology, 6: 577590.CrossRefGoogle Scholar
Shapiro, A.M. and DeVay, J.E. 1987. Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia, 71: 631632.CrossRefGoogle ScholarPubMed
Singh, P., Jayaramaiah, R.H., Sarate, P., Thulasiram, H.V., Kulkarni, M.J., and Giri, A.P. 2014. Insecticidal potential of defense metabolites from Ocimum kilimandscharicum against Helicoverpa armigera . Public Library of Science One, 9: e104377, doi:10.1371/journal.pone.0104377.Google ScholarPubMed
Steppuhn, A., Gase, K., Krock, B., Halitschke, R., and Baldwin, I.T. 2004. Nicotine’s defensive function in nature. Public Library of Science Biology, 2: 10741080.Google ScholarPubMed
Suckling, D.M., Charles, J.G., Kay, M.K., Kean, J.M., Burnip, G.M., Chhagan, A., et al. 2014. Host range testing for risk assessment of a sexually dimorphic polyphagous invader, painted apple moth. Agricultural and Forest Entomology, 16: 113.CrossRefGoogle Scholar
Tropea Garzia, G., Siscaro, G., Biondi, A., and Zappalà, L. 2012. Tuta absoluta, an exotic invasive pest from South America now in the EPPO region: biology, distribution and damage. European and Mediterranean Plant Protection Organization Bulletin, 42: 205210.Google Scholar
Urbaneja, A., Gonzalez-Cabrera, J., Arno, J., and Gabarra, R. 2012. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Management Science, 68: 12151222.CrossRefGoogle ScholarPubMed
Vacas, S., Alfaro, C., Primo, J., and Navarro-Llopis, V. 2011. Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Management Science, 67: 14731480.CrossRefGoogle ScholarPubMed
Van Damme, V., Berkvens, N., Moerkens, R., Berckmoes, E., Wittemans, L., De Vis, R., et al. 2015. Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in western Europe. Journal of Pest Science, 88: 533541.CrossRefGoogle Scholar
Vargas, H.C. 1970. Observaciones sobre la biologıa y enemigos naturales de la polilla del tomate, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia, 1: 75110.Google Scholar
Woods, H.A. 2010. Water loss and gas exchange by eggs of Manduca sexta: trading off costs and benefits. Journal of Insect Physiology, 56: 480487.CrossRefGoogle ScholarPubMed
Zappalà, L., Biondi, A., Alma, A., Al-Jboory, I.J., Arnò, J., Bayram, A., et al. 2013. Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle-East, and their potential use in pest control strategies. Journal of Pest Science, 86: 635647.CrossRefGoogle Scholar