Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-30T04:41:44.489Z Has data issue: false hasContentIssue false

Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size

Published online by Cambridge University Press:  31 May 2012

B.J. Bentz*
Affiliation:
United States Department of Agriculture Forest Service, Rocky Mountain Research Station, 860 North 1200 East, Logan, Utah, United States 84321
J.A. Logan
Affiliation:
United States Department of Agriculture Forest Service, Rocky Mountain Research Station, 860 North 1200 East, Logan, Utah, United States 84321
J.C. Vandygriff
Affiliation:
United States Department of Agriculture Forest Service, Rocky Mountain Research Station, 860 North 1200 East, Logan, Utah, United States 84321
*
1 Author to whom all correspondence should be addressed (E-mail: bbentz@fs.fed.us).

Abstract

Dendroctonus ponderosae (Hopkins) is widely distributed across western North America, feeding in at least 12 native species of Pinus L. (Pinaceae). We investigated the existence of heritable differences in two life-history parameters (adult size and development time) of D. ponderosae from a northern population (central Idaho, Pinus contorta Douglas ex Loudon) and a southern population (southern Utah, Pinus ponderosa Douglas ex P. and C. Lawson). We attempted to separate heritable from environmental effects by rearing individuals from both populations through two generations (F1 and F2) in a common standardized laboratory environment with a constant temperature. Two treatment effects were tested for in the F2 generation: (1) geographic location (source host) for F0D. ponderosae; and (2) the F2 brood host. We hypothesized that, if differences were observed and the F0 source host and region had a greater effect on F2 brood development time and adult size than did the host in which F2 brood were reared, a heritable factor related to the F0 parents was responsible. Time to emergence was significantly shorter for second-generation offspring of the northern population than for second-generation offspring of the southern population, regardless of the F2 brood host. Although both the F2 brood host and F0 source parents were significant in explaining differences observed in the developmental-time distribution of F2 brood, the F0 source effect was found to be much greater. Also, F2 males and females from southern source parents were significantly larger than F2 brood from northern source parents when reared in both F2 brood hosts. Geographic region and original host of F0 source parents had a significant effect on F2 offspring size, whereas the immediate food for F2 brood was not significant in explaining differences. These results suggest genetically based regional differences in D. ponderosae populations.

Résumé

Dendroctonus ponderosae (Hopkins) a une vaste répartition dans l’ouest de l’Amérique du Nord où il se nourrit d’au moins 12 espèces indigènes de Pinus (L.) (Pinaceae). Nous avons cherché les différences héritables de deux variables démographiques (taille des adultes et durée du développement) chez des D. ponderosae d’une population nordique (Pinus contorta Douglas ex Loudon du centre de l’Idaho) et d’une population australe (Pinus ponderosa Douglas ex P. et C. Lawson du sud du Utah). Nous avons essayé d’ isoler les effets héritables des effets comportementaux en élevant des individus des deux populations pendant deux générations (F1 et F2) dans un environnement standardisé de laboratoire à température constante. Deux effets ont été testés chez la génération F2 : (1) la position géographique (hôte d’origine) des coléoptères de F0 et (2) l’hôte sur lequel la F2 a été élevée. S’il y a des différences et que l’hôte d’origine et la région géographique de la F0 ont un effet plus grand sur la durée du développement et la taille des adultes que les hôtes de la F2, nous posons en hypothèse qu’un facteur héritable relié aux parents de la F0 est responsable. Le temps écoulé entre la ponte et l’émergence chez les rejetons de la F2 de la population nordique était significativement plus court que celui enregistré chez les rejetons de la population australe, indépendamment de l’hôte d’élevage de la F2. Bien que les hôtes de F2 et ceux de la génération parentale F0 contribuent à expliquer de façon significative les différences observées dans le déroulement du développement de la F2, l’effet de l’hôte d’origine de la F0 est beaucoup plus important. De plus, les mâles et femelles de F2 issus des parents de la population australe étaient de taille significativement plus grande que ceux de la population nordique chez les deux hôtes sur lesquels la F2 a été élevée. La région géographique et l’hôte d’origine de la génération F0 ont un effet significatif sur la taille des rejetons de la F2, alors que la nourriture immédiate des individus de F2 ne peut expliquer significativement les différences. Ces résultats reflètent probablement l’existence de différences régionales génétiques entre les populations de D. ponderosae.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1972. Some factors affecting oviposition behavior of the mountain pine beetle. Environmental Entomology 1: 691–5CrossRefGoogle Scholar
Amman, G.D. 1982. Characteristics of mountain pine beetles reared in four pine hosts. Environmental Entomology 11: 590–3CrossRefGoogle Scholar
Amman, G.D., Cole, W.E. 1983. Mountain pine beetle dynamics in lodgepole pine forests part II: population dynamics. USDA Forest Service General Technical Report INT–145Google Scholar
Atkinson, D. 1994. Temperature and organism size—a biological law for ectotherms? Advances in Ecological Research 25: 158CrossRefGoogle Scholar
Ayres, M.P., Scriber, J.M. 1994. Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecological Monographs 64: 465–82CrossRefGoogle Scholar
Baldwin, J.D., Dingle, H. 1986. Geographic variation in the effects of temperature on life-history traits in the large milkweed bug Oncopeltus fasciatus. Oecologia 69: 6471CrossRefGoogle Scholar
Bentz, B.J., Mullins, D.E. 1999. Ecology of mountain pine beetle cold hardening in the Intermountain West. Environmental Entomology 28: 577–87CrossRefGoogle Scholar
Blanckenhorn, W.U. 1997. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia 109: 342–52CrossRefGoogle Scholar
Cerezke, H.F. 1995. Egg gallery, brood production, and adult characteristics of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), in three pine hosts. The Canadian Entomologist 127: 955–65CrossRefGoogle Scholar
Gomi, T., Takeda, M. 1996. Changes in life-history traits in the fall webworm within a half a century of introduction to Japan. Functional Ecology 10: 384–9CrossRefGoogle Scholar
Hay, C.J. 1956. Experimental crossing of mountain pine beetle with black hills beetle. Annals of the Entomological Society of America 49: 567–71CrossRefGoogle Scholar
Hilbert, D.W. 1995. Growth-based approach to modeling the developmental rate of arthropods. Environmental Entomology 24: 771–8CrossRefGoogle Scholar
Langor, D.W. 1989. Host effects on the phenology, development, and mortality of field populations of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 121: 149–57CrossRefGoogle Scholar
Langor, D.W., Spence, J.R. 1991. Host effects on allozyme and morphological variation of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 123: 395410CrossRefGoogle Scholar
Langor, D.W., Spence, J.R., Pohl, G.L. 1990. Host effects on fertility and reproductive success of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Evolution 44: 609–18CrossRefGoogle ScholarPubMed
Logan, J.A., Bentz, B.J. 1999. Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environmental Entomology 28: 924–34CrossRefGoogle Scholar
Logan, J.A., Bentz, B.J., Vandygriff, J.C., Turner, D.L. 1998. General program for determining instar distributions from headcapsule widths: example analysis of mountain pine beetle data. Environmental Entomology 27: 555–63CrossRefGoogle Scholar
Masaki, S. 1967. Geographic variation and adaptation in a field cricket (Orthoptera: Gryllidae). Evolution 21: 725–41CrossRefGoogle Scholar
Masaki, S. 1972. Climatic adaption and photoperiodic response in the band-legged ground cricket. Evolution 26: 587600CrossRefGoogle ScholarPubMed
Masaki, S. 1978. Climatic adaptation and species status in the lawn ground cricket II. Body size. Oecologia 35: 343–56CrossRefGoogle ScholarPubMed
Mousseau, T.A., Dingle, H. 1991. Maternal effects in insect life histories. Annual Review of Entomology 36: 511–34CrossRefGoogle Scholar
Nelson, W. 1982. Applied life data analysis. New York: J WileyCrossRefGoogle Scholar
Nylin, S., Gotthard, K. 1998. Plasticity in life-history traits. Annual Review of Entomology 43: 6383CrossRefGoogle ScholarPubMed
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia II. Behaviour in the host, fecundity, and internal changes in the female. The Canadian Entomologist 94: 605–13CrossRefGoogle Scholar
Roff, D. 1980. Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45: 202–8CrossRefGoogle Scholar
Safranyik, L., Jahren, R. 1970. Emergence patterns of the mountain pine beetle from lodgepole pine. Bi-Monthly Research Notes, Department of Fisheries and Forestry Canada 26: 11, 19Google Scholar
S-PLUS. 1997. S-PLU. 4, guide to statistics. Seattle, Washington: Data Analysis Division, MathSoft, IncGoogle Scholar
SPSS. 1997. SPSS bas. 8: user's guide. Chicago: SPSS IncGoogle Scholar
Stock, M.W., Amman, G.D. 1980. Genetic differentiation among mountain pine beetle populations from lodge-pole pine and ponderosa pine in Northeast Utah. Annals of the Entomological Society of America 73: 472–8CrossRefGoogle Scholar
Stock, M.W., Amman, G.D., Higby, P.K. 1984. Genetic variation among mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Scolytidae) populations from seven western states. Annals of the Entomological Society of America 77: 760–4CrossRefGoogle Scholar
Sturgeon, K.B., Mitton, J.B. 1986. Allozyme and morphological differentiation of mountain pine beetles Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) associated with host tree. Evolution 40: 290302CrossRefGoogle ScholarPubMed
Tauber, C.A., Tauber, M.J., Gollands, B., Wright, R.J., Obrycki, J.J. 1988. Preimaginal development and reproductive responses to temperature in two populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 81: 755–63CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6: 11359Google Scholar